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Abstract

Background: Acinetobacter baumannii ability to develop and acquire resistance makes it one of the most critical
nosocomial pathogens globally. Whole-genome sequencing (WGS) was applied to identify the acquired or
mutational variants of antimicrobial resistance (AMR) genes in 85 German A. baumannii strains utilizing Illumina
technology. Additionally, the whole genome of 104 German isolates deposited in the NCBI database was
investigated.

Results: In-silico analysis of WGS data revealed wide varieties of acquired AMR genes mediating resistance mostly
to aminoglycosides, cephalosporins, carbapenems, sulfonamides, tetracyclines and macrolides. In the 189 analyzed
genomes, the ant (3″)-IIa conferring resistance to aminoglycosides was the most frequent (55%), followed by
blaADC.25 (38.6%) conferring resistance to cephalosporin, blaOXA-23 (29%) and the blaOXA-66 variant of the intrinsic
blaOXA-51-likes (26.5%) conferring resistance to carbapenems, the sul2 (26%) conferring resistance to sulfonamides, the
tet. B (19.5%) conferring resistance to tetracycline, and mph. E and msr. E (19%) conferring resistance to macrolides.
blaTEM variants conferring resistance to cephalosporins were found in 12% of genomes. Thirteen variants of the
intrinsic blaOXA-51 carbapenemase gene, blaOXA-510 and blaADC-25 genes were found in isolates obtained from dried
milk samples.

Conclusion: The presence of strains harboring acquired AMR genes in dried milk raises safety concerns and highlights the
need for changes in producing dried milk. Acquired resistance genes and chromosomal gene mutation are successful routes
for disseminating AMR determinants among A. baumannii. Identification of chromosomal and plasmid-encoded AMR in the
genome of A. baumanniimay help understand the mechanism behind the genetic mobilization and spread of AMR genes.
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Background
Acinetobacter baumannii (A. baumannii) is a member
of the ESKAPE pathogens, the leading cause of
multidrug-resistant (MDR) and extensively drug-
resistant (XDR) nosocomial infections worldwide [1].
The emergence of MDR A. baumannii strains resistant
to last-resort antibiotics such as carbapenems and colis-
tin is on the rise in hospital settings globally and compli-
cates the treatment [2]. Therefore, the World Health
Organization (WHO) has classified A. baumannii among
the most dangerous MDR pathogens worldwide. It is
considered one of the critical pathogens that need devel-
oping new antibiotics [3, 4]. In Germany, A. baumannii
is a ubiquitous pathogen, and several communities and
hospital-based outbreaks were reported in 13 out of 16
federal states [5]. Among other sources, the pathogen
was also isolated from companion animals [6] and found
in dried milk samples [7]. Besides, A. baumannii was re-
leased via manure [8] and through wastewater treatment
plant (WWTP) effluents [9] into the environment in
various districts of Germany. Still, the current know-
ledge on antibiotic resistance in strains collected from
non-humans origin is scarce [10].
Acinetobacter baumannii possesses the ability to de-

velop intrinsic resistance via reducing membrane perme-
ability, efflux pump activity, and the production of wide
varieties of ß-lactamases enzymes [11]. However, resist-
ance in this pathogen is frequently associated with mo-
bile genetic elements (MGEs) transferable between
bacteria, enabling rapid dissemination and maintenance
of resistance genes between different bacterial species
[12]. It can also acquire resistance via mutational
changes in chromosomal structure and horizontal gene
transfer [13], in addition to some different naturally oc-
curring intrinsic resistance genes [14]. Acinetobacter
baumannii has an unprecedented ability to acquire re-
sistance against antimicrobial agents from diverse
sources and further disseminate and develop new resist-
ance mechanisms [15]. Besides the massive resistance is-
land coding for multiple intrinsic resistance within its
genome, it can rapidly acquire further extrinsic resist-
ance during antibiotic therapy by acquiring additional
genetic determinants by cross-species horizontal gene
transfer [16, 17]. The genome of A. baumannii consists
of a chromosome and various plasmids. Most of them
have been linked to the acquisition of AMR genes [18].
Comparative genomic analysis of A. baumannii strains
revealed that the genome of A. baumannii could acquire
a large amount of foreign DNA, which could play a role
in antimicrobial resistance and pathogenesis [19, 20].
Thus, the current study is dedicated to collect data on
acquired resistance genes in 85 clinical and non-clinical
A. baumannii strains originating from Germany. More-
over, the resistance profile in another 104 genomes of

German A. baumannii strains deposited in the National
Centre for Biotechnology Information (NCBI) database
was investigated.

Results
The phenotyping characterization of A. baumannii
The phenotyping characterization of 85 A. baumannii
isolates showed a high frequency of resistance for chlor-
amphenicol (100%), followed by fosfomycin in 81 (95%)
isolates and the third-generation cephalosporins, cefo-
taxime in 80 (94%) isolates. Resistance to at least one of
the carbapenem compounds was found in 24 (28%) iso-
lates. Resistance to aminoglycosides (amikacin) and
tetracycline (tigecycline) was found in 10 (11%) isolates
to each. The lowest frequency of resistance was seen for
colistin in three isolates (Fig. 1). In parallel, the analysis
of the downloaded 104 whole-genome of A. baumannii
deposited at the NCBI indicates that the strains har-
bored genes mediating resistance to ten antimicrobial
agent groups, including ß-lactams, (carbapenems and
cephalosporins), aminoglycosides, phenicoles, tetracyc-
line, trimethoprim, sulfonamides, macrolides, strepto-
thricin, bleomycin and rifampicin. The frequency of
resistance toward aminoglycosides was the highest,
followed by carbapenems and cephalosporins. The low-
est frequency was seen for streptothricin, bleomycin and
rifampicin (Fig. 2).

In-silico detection of acquired AMR genes in A. baumannii
strains
The in-silico detection of acquired AMR genes in A.
baumannii isolates (n = 85) based on WGS data using
the ResFinder database succeeded in identifying 40 ac-
quired AMR genes (Supplementary Table 1). Twenty-
two different β-lactamases resistance genes belonging to
three different Ambler classes were identified. Thirteen
genes were identified in isolates obtained from dried
milk samples. Seven genes were identified in clinical iso-
lates obtained from humans, and two genes were shared
in isolates obtained from milk samples and humans. At
least one, two, and 19 different variants of class C, A,
and D β- lactamases were identified, respectively. The
Ambler class D β-lactamases were the most predomin-
ant genes and represented in 19 blaOXA ß-lactamases
variants. Among them, 16 gene variants were belonging
to the intrinsic blaOXA-51-like carbapenemase group, of
which the blaOXA.430 gene was most frequent, present in
24 (28.2%) isolates obtained from milk powder. All
strains harbored blaOXA.430 gene were resistant to cefo-
taxime, and four of them showed resistance to ertape-
nem. This was followed by blaOXA.91 and blaOXA.66

genes of the same blaOXA-51-like group and were found in
21 (24.5%) and ten (11.8%) isolates, respectively. Four
isolates (4.7%) obtained from milk powder samples
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Fig. 1 Number of resistant and sensitive isolates among 85 A. baumannii strains isolated from human and milk powder samples in Germany. COL,
Colistin; T/S, Trimethoprim/Sulfamethoxazole; TGC, Tigecycline; AMK, Amikacin; CAA, Ceftazidime/Avibactam; CEP, Cefepime; MER, Meropenem;
IMP, Imipenem; CTA, Ceftolozane/Tazobactam; CAZ, Ceftazidime; PIT, Piperacillin/Tazobactam; PIP, Piperacillin; LEV, Levofloxacin; CIP, Ciprofloxacin;
ERT, Ertapenem; CTX, Cefotaxime; FOS, Fosfomycin; CMP, Chloramphenicol

Fig. 2 Number and frequency of AMR genes harbored within 104 genomes of German A. baumannii isolates obtained from the NCBI database as
of September 2020
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harbored blaOXA.343 gene of blaOXA-51-like; however, they
showed sensitivity to all tested antibiotics. Additionally,
the blaOXA.23 was found in 12 (14%) isolates of human
origin, and a single variant of blaOXA-510 and blaOXA-521,
each was found in one isolate (Table 1).
The Ambler class C β-lactamases, Acinetobacter-de-

rived cephalosporinase blaADC.25, was identified in all
isolates (100%). Among them, 11 isolates (13%) were
carbapenem-resistant, and 80 (94%) isolates were resist-
ant to the third-generation cephalosporin cefotaxime
antibiotic. Two acquired AMR genes belonging to the
Ambler class A β-lactamases were identified. The bla-
TEM.1D was found in three isolates (3.8%), and carbenicil-
lin hydrolyzing β-lactamase blaCARB.5 was found in
another three isolates. All six isolates were resistant to
cephalosporins and carbapenems (Table 1).
On the other hand, 18 non-β-lactamases AMR genes

conferring resistance to aminoglycosides, tetracyclines,

phenicoles, sulfonamides and macrolides were identified.
None of them was found in isolates obtained from milk
samples. Eight aminoglycoside-modifying enzymes
(AMEs) genes were detected. Among them, three were
aminoglycoside acetyltransferase (ACT), which were
encoded by plasmids, transposons, and integron in A.
baumannii, two were aminoglycoside nucleotidyltrans-
ferase (NUT), two were aminoglycoside phosphotrans-
ferase (PHT), and one was aminoglycoside
methyltransferase (MET). Those eight AMEs genes con-
ferred resistance to amikacin in ten isolates. At least
three genes encoding resistance to each tetracycline and
phenicoles compounds were identified. The tet. B encod-
ing resistance to tetracycline was identified in nine iso-
lates; among them, eight were resistant to tigecycline. In
spite, tet.39 was identified in two isolates, but both were
susceptible to tetracycline compounds. All investigated
isolates were resistant to chloramphenicol; however, only

Table 1 List of acquired β-lactamases resistance genes identified in A. baumannii isolates (n = 85) from humans and dried milk
based on WGS data using ResFinder database

Mechanism AMR genes Group No. (%) Source Resistance pattern

Amber class A β-lactamases blaTEM.1D_1 TEM 3 (3.5%) Human PIP-PIT/CTX-CAZ-CAA-CTA-CEP /IMP-MER-ERT

blaCARB.5_1 CARB-5 3 (3.5%) Human

Amber class C β-lactamases blaADC.25_1 ADC 14 (16.5%) Human 11 [PIP-PIT/CTX-CAZ-CTA-CEP/IMP-MER-ERT]

71 (83.5%) Milk powder 66 [CTX], 10 [ERT]

Amber class D β-lactamases blaOXA.23_1 OXA-23 12 (14%) Human 12 [PIP-PIT/CTX-CAZ-CTA-CE/IMP-MER-ERT], 10 [CAA]

blaOXA.120_1 OXA-51 2 (2.3%) Milk powder CTX

blaOXA.203_1 1 (1.2%) Milk powder CTX

blaOXA.259_1 1 (1.2%) Milk powder CTX-ERT

blaOXA.343_1 4 (4.7%) Milk powder –

blaOXA.346_1 4 (4.7%) Milk powder 4 [CTX], 2 [ERT]

blaOXA.380_1 2 (2.3%) Milk powder CTX

blaOXA.386_1 1 (1.2%) Milk powder CTX

blaOXA.424_1 1 (1.2%) Milk powder CTX-ERT

blaOXA.430_1 24 (28.2%) Milk powder 24 [CTX], 4 [ERT]

blaOXA.431_1 1 (1.2%) Milk powder CTX

blaOXA.51_1 1 (1.2%) Milk powder CTX

blaOXA.64_1 9 (10.5%) Milk powder 8[CTX]/1 [COL]

blaOXA.66_1 10 (11.8%) Human 10 [PIP-PIT/CTX-CAZ-CTA/IMP-MER-ERT], 9 [CEP], 7 [CAA].

blaOXA.69_1 1 (1.2%) Human PIP-PIT/CTX-CAZ-CAA-CTA-CEP /IMP-MER-ERT

blaOXA.72_1 1 (1.2%) Human PIP-PIT/CTX-CAZ-CTA/IMP-MER-ERT

blaOXA.91_1 2 (2.2%) Human PIP-PIT/CTX-CAZ-CAA-CTA-CEP /IMP-MER-ERT

19 (22.3%) Milk powder CTX

blaOXA.510_1 single
variant

1 (1.2%) Milk powder CTX

blaOXA.521_1 single
variant

1 (1.2%) Human PIP-PIT/CTX-CAZ-CAA-CTA-CEP/IMP-MER-ERT

AMR antimicrobial resistance gene, PIP piperacillin, PIT piperacillin/tazobactam, CTX cefotaxime, CAZ ceftazidime, CAA ceftazidime/avibactam, CEP cefepime;
CTA ceftolozane/tazobactam, IMP imipenem, MER meropenem, ERT ertapenem
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four isolates harbored three genes (catA, catB and floR)
confer resistance to phenicoles were identified. Two
genes encoding resistance to each macrolide and sul-
fonamide antibiotics were identified. The gene sul1 and
sul2 variants were found in three and one isolates, re-
spectively, and all were resistant to trimethoprim/
sulphamethoxazole. The mph. E and msr. E genes en-
coding resistance to macrolides were identified in two
and three isolates, respectively; however, none of them
showed resistance to macrolides (Table 2).

In-silico analysis of AMR in A. baumannii genomes
deposited at the NCBI
In parallel, the frequency and percentage of resistance genes
were investigated in 104 whole-genome of A. baumannii
strains of German origin deposited at the NCBI. The num-
bers of resistance genes conferring a specific antibiotic resist-
ance were identified. Additionally, beta-lactamase genes were
indicated and divided into their molecular group (class A, B,
C, D; based on Ambler), and the plot is separated into
chromosomal and plasmid DNA contigs. The identified ß-
lactamases and non-ß-lactamases AMR genes in genomes,
some are chromosomal-encoded, and some are plasmid-
encoded genes (Fig. S1).
In total, 101 AMR genes were identified in 104 ge-

nomes. AMR genes confer resistance to cephalosporin
antibiotics were the most frequent genes identified and

represented by 37 different gene variants. Among them,
31 blaADC variants were identified, and blaADC-73 was
the most frequent gene and was found in 19 (18%) iso-
lates, followed by blaADC-30 in 15 (14.4%), and
blaADC-166 in eight (7.7%) isolates, while blaADC-25 was
seen only in two isolates (1.9%). Besides, the acquired
blaTEM-12 was found in 19 (18%) isolates.
Twenty-four AMR genes conferring resistance to carba-

penem compounds were identified. Among them, 19 genes
belong to the intrinsic blaOXA-51-like carbapenemase gene; of
them, blaOXA-66 was the most frequent and was found in 40
(38.5%) isolates. Additionally, the blaOXA-23 was the most fre-
quent gene found in 43 (41%) isolates, while the blaNDM-1

was found in three (2.9%) isolates. Sixteen AMR genes confer-
ring resistance to aminoglycosides were identified. Aminogly-
coside nucleotidyltransferase ant (3″)-IIa conferred resistance
to streptomycin and spectinomycin and was found in 104
(100%) genomes. Aminoglycoside O-phosphotransferase aph
(3″)-Ib and aph (6)-Id confers resistance to streptomycin
were found in 48 (46%), and 45 (43%) of genomes, respect-
ively, followed by aph (3′)-Ia and aph (3′)-VIa that were
found in 28 (27%) and 24 (23%) of genomes, respectively
(Table 3).
Six AMR genes confer resistance to chloramphenicol

antibiotics were found. The catA1 and cmlB1 were the
most frequent and found in nine (8.6%) and six (5.8%)
genomes, respectively. Three AMR genes confer

Table 2 List of acquired non-β-lactamases resistance genes identified in A. baumannii isolates from humans (n = 14/85) based on
WGS data using ResFinder databases

Antibiotic class AMR resistant genes Mechanism Resistance
patternGene family Number (%)

Aminoglycosides
Antibiotic inactivation

aac.3...Ia_1 3 (21.5%) ACT: Acetyltransferase 2/3 AMK

aac.6...Iaf_1 1 (7%) ACT: Acetyltransferase AMK

aac.6...Ian_1 1 (7%) ACT: Acetyltransferase AMK

ant.2 … Ia_1 1 (7%) NUT: Nucleotidyltransferase AMK

aph.3...Ia_7 6 (43%) PHT: Phosphotransferase AMK

aph.6...Id_1 9 (64%) PHT: Phosphotransferase 7/9 AMK

armA_1 7 (50%) MET: Methyltransferase AMK

strA_1 9 (64%) NUT: Nucleotidyltransferase 7/9 AMK

Phenicoles catA1_1 1 (7%) Enzymes Inactivation CMP

catB8_1 2 (14%) Enzymes Inactivation CMP

floR_2 1 (7%) Antibiotic Efflux CMP

Macrolide-lincosamide-streptogramin B (MLS) mph. E_1 2 (14%) Enzymes Inactivation –

msr. E_4 3 (21.4%) Antibiotic Efflux –

Sulfonamides sul1_5 3 (21.4%) Antibiotic Target Replacement T/S

sul2_2 1 (7%) Antibiotic Target Replacement T/S

Tetracyclines tet.39._1 2 (14%) Antibiotic Efflux –

tet. A_6 1 (7%) Antibiotic Efflux TGC

tet. B_1 9 (64%) Antibiotic Efflux 8/9 TGC

AMK amikacin, CMP chloramphenicol, T/S trimethoprim/sulfamethoxazole, TGC tigecycline
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Table 3 Antimicrobial resistance genes detected in 104 whole-genome sequences of A. baumannii originating from Germany and
deposited in NCBI

No. Name of gene Group Frequency (n = 104) Percentage 100% Predicted Phenotype Accession No.

1 aph(3′)-VI PHT 7 6.7 Amikacin, Kanamycin NG_051730.1

2 aph(3′)-VIa PHT 24 23 NG_047448.1

3 aph(3′)-VIb PHT 2 1.9 NG_047449.1

4 aac(6′)-Ib ACT 3 2.9 Aminoglycoside NG_051695.1

5 aacA16 ACT 6 5.7 NG_052380.1

6 aac(3)-I ACT 22 21 Gentamicin NG_047234.1

7 aac(3)-IId ACT 1 0.96 NG_047251.1

8 armA MET 22 21 NG_052432.1

9 ant(2″)-Ia NUT 13 12.5 Gentamicin; Kanamycin; Tobramycin NG_047431.1

10 aph(3′)-Ia PHT 28 27 Kanamycin NG_052432.1

11 aadA1 NUT 22 21 Streptomycin NG_047327.1

12 aadA2 NUT 1 0.96 NG_051846.1

13 aadA5 NUT 1 0.96 NG_047357.1

14 aph(3″)-Ib PHT 48 46 NG_047413.1

15 aph(6)-Id PHT 45 43 NG_047464.1

16 ant(3″)-IIa PHT 104 100 Streptomycin; Spectinomycin NG_054646.1

17 blaCARB-16 CARB-5 1 0.96 Beta-Lactam NG_048718.1

18 blaNmca Class A 1 0.96 NG_055474.1

19 blaOXA-699 Single 1 0.96 NG_062321.1

20 blaOXA-735 Single 1 0.96 NG_062267.1

21 blaTEM-1 TEM 1 0.96 NG_050145.1

22 ble-MBL BRP 3 2.9 Bleomycin NG_047559.1

23 blaNDM-1 NDM 3 2.9 Carbapenem NG_049326.1

24 blaOXA-100 OXA-51 6 5.7 NG_049394.1

25 blaOXA-104 1 0.96 NG_049397.1

26 blaOXA-126 1 0.96 NG_049425.1

27 blaOXA-208 4 3.8 NG_049506.1

28 blaOXA-314 1 0.96 NG_049608.1

29 blaOXA-317 1 0.96 NG_049611.1

30 blaOXA-365 1 0.96 NG_049658.1

31 blaOXA-374 2 1.9 NG_049665.1

32 blaOXA-378 2 1.9 NG_049669.1

33 blaOXA-430 3 2.9 NG_049717.1

34 blaOXA-51 1 0.96 NG_049788.1

35 blaOXA-64 12 11.5 NG_049804.1

36 blaOXA-66 40 38.5 NG_049806.1

37 blaOXA-68 5 4.8 NG_049808.1

38 blaOXA-69 11 10.6 NG_049809.1

39 blaOXA-88 1 0.96 NG_049828.1

40 blaOXA-90 2 1.9 NG_049831.1

41 blaOXA-94 3 2.9 NG_049835.1

42 blaOXA-98 1 0.96 NG_049839.1

43 blaOXA-23 OXA-23 43 41 NG_049525.1
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Table 3 Antimicrobial resistance genes detected in 104 whole-genome sequences of A. baumannii originating from Germany and
deposited in NCBI (Continued)

No. Name of gene Group Frequency (n = 104) Percentage 100% Predicted Phenotype Accession No.

44 blaOXA-164 OXA-58 3 2.9 NG_049463.1

45 blaOXA-72 OXA-40 10 9.6 NG_049813.1

46 blaOXA-558 Single 4 3.8 NG_054702.1

47 catA1 catA 9 8.6 Chloramphenicol NG_047582.1

48 catB8 catB3 2 1.9 NG_047616.1

49 cmlA1 cmlA1 1 0.96 NG_047647.1

50 cmlA5 cmlA1 1 0.96 NG_051436.1

51 cmlB1 cmlB1 6 5.8 NG_047658.1

52 floR type E-3 3 2.8 Chloramphenicol; Florfenicol NG_047869.1

53 blaADC-101 ADC 2 1.9 Cephalosporin NG_051440.1

54 blaADC-11 3 2.9 NG_048635.1

55 blaADC-117 1 0.96 NG_064676.1

56 blaADC-120 3 2.9 NG_064678.1

57 blaADC-154 1 0.96 NG_054996.1

58 blaADC-155 2 1.9 NG_055285.1

59 blaADC-156 1 0.96 NG_055286.1

60 blaADC-158 1 0.96 NG_055786.1

61 blaADC-160 1 0.96 NG_055788.1

62 blaADC-163 1 0.96 NG_056105.1

63 blaADC-165 1 0.96 NG_056107.1

64 blaADC-166 8 7.7 NG_056108.1

65 blaADC-167 1 0.96 NG_056109.1

66 blaADC-179 1 0.96 NG_061395.1

67 blaADC-184 1 0.96 NG_064707.1

68 blaADC-185 1 0.96 NG_064708.1

69 blaADC-186 3 2.9 NG_064709.1

70 blaADC-192 1 0.96 NG_064715.1

71 blaADC-25 2 1.9 NG_048649.1

72 blaADC-26 6 5.8 NG_048650.1

73 blaADC-30 15 14.4 NG_048652.1

74 blaADC-32 2 1.9 NG_050717.1

75 blaADC-57 4 3.8 NG_051494.1

76 blaADC-6 1 0.96 NG_048669.1

77 blaADC-73 19 18 NG_048678.1

78 blaADC-74 4 3.8 NG_048679.1

79 blaADC-76 5 4.8 NG_048681.1

80 blaADC-79 7 6.7 NG_048684.1

81 blaADC-80 1 0.96 NG_048686.1

82 blaADC-95 1 0.96 NG_051459.1

83 blaADC-96 1 0.96 NG_051460.1

84 blaCMY-30 CMY 1 0.96 NG_048825.1

85 blaCTX-M−15 CTX-M−15 1 0.96 NG_048935.1
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resistance to tetracycline compounds were identified.
The tet. B gene was the most frequent and found in 38
(36.5%) isolates, followed by tet.39 and tet. A. Two AMR
genes confer resistance to sulfonamides were identified;
the sul1 and sul2 were found in 22 (21%) and 47 (45%)
of genomes, respectively. Three genes encoded Tri-
methoprim resistance were found, and the dfrA1 was
the most frequent and found in four (3.8%) isolates,
followed by the dfrA7 and dfrA17 genes. Macrolide re-
sistance was predominantly encoded by the mph. E gene
in 34 (32.7%) isolates and msr. E in 33 (31.7%) genomes.
Rifampicin resistance was encoded by arr-2 and was
found in one strain (Table 3).

The frequency and profiling of AMR in genomes of A.
baumannii from Germany
As shown in Table 4, the comprehensive analysis of
AMR in 189 genomes of A. baumannii of German origin
revealed 15 AMR genes with a frequency of more than
10%. The ant (3″)-IIa confers resistance to aminoglyco-
sides was the most prevalent gene with a frequency of
55%, followed by the blaADC.25 confer resistance to ceph-
alosporin with a frequency of 38.6%, and the two genes
confer resistance to carbapenems, blaOXA-23 and
blaOXA-51-like (blaOXA-66 variant), with a frequency of 29
and 26.5%, respectively. Around a quarter of genomes
(26%) harbored sul2 that confer resistance to sulfon-
amides, while sul1 was found in 13.2% of the genomes.
The frequency of tet. B gene confer resistance to tetra-
cycline was 19.5%, and the frequency of mph. E and msr.

E confer resistance to macrolide was 19%. The variants
of acquired blaTEM were found in 23 genomes with a
frequency of 12% (Table 4).

Discussion
The ability of A. baumannii to survive in adverse envir-
onmental conditions and to develop or acquire resist-
ance make it one of the most critical nosocomial
pathogens in the hospital’s environment [21]. The pres-
ence of various plasmids in the genome of A. baumannii
[18] and its ability to acquire foreign DNA [19, 20] en-
hance the acquisition of AMR genes. Several reports
suggested that integrons play significant roles in the
horizontal transfer of AMR genes in A. baumannii, par-
ticularly genes that confer resistance to aminoglycosides,
chloramphenicol and tetracycline [22–24]. Identification
of acquired AMR genes circulating in A. baumannii is
essential for understanding the underlying mechanisms
of the acquisition and development of antimicrobial re-
sistance. Next-generation sequence (NGS) technology
became available in most routine diagnostic laboratories
worldwide, and it is anticipated to substitute the trad-
itional PCR tools for identifying AMR genes. Thus, the
current study is focusing on the detection of acquired
AMR genes and antimicrobial resistance profiles of 85
A. baumannii strains that were isolated from humans
and dried milk samples in Germany and extraction of
the relevant information from another 104 genomes of
A. baumannii submitted to the NCBI from different la-
boratories across Germany.

Table 3 Antimicrobial resistance genes detected in 104 whole-genome sequences of A. baumannii originating from Germany and
deposited in NCBI (Continued)

No. Name of gene Group Frequency (n = 104) Percentage 100% Predicted Phenotype Accession No.

86 blaGES-11 GES 1 0.96 NG_049113.1

87 blaPER-1 PER 2 1.9 NG_049960.1

88 blaPER-10 1 0.95 NG_059319.1

89 blaTEM-12 TEM 19 18 NG_050163.1

90 mph(E) mph(E) 34 32.7 Macrolide NG_064660.1

91 msr(E) msr(E) 33 31.7 NG_048007.1

92 arr-2 1 0.96 Rifamycin NG_048580.1

93 sat2_gen 4 3.8 Streptothricin NG_048068.1

94 sul1 22 21 Sulfonamide NG_048082.1

95 sul2 47 45 NG_051852.1

96 Tet.39 tet efflux 7 6.7 Tetracycline NG_048137.1

97 Tet.A 6 5.8 NG_048154.1

98 Tet.B 38 36.5 NG_048163.1

99 dfrA1 dfrA 4 3.8 Trimethoprim NG_047676.1

100 dfrA17 1 0.96 NG_047710.1

101 dfrA7 1 0.96 NG_047737.1

BRP bleomycin resistant protein, ACT acetyltransferase, MET methyltransferase, NUTN ucleotidyltransferase, PHT phosphotransferase
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Antimicrobial resistance is on the rise in foods and en-
vironmental sources. MDR Acinetobacter strains have
been isolated from dried milk in Germany [7], infant
milk formulas in Brazil [25] and China [26], as well as
from bulk tank milk (BTM) samples and mastitic milk
samples of dairy cattle in different districts of Korea [27,
28], representing a significant risk of the transmission of
this pathogen to consumers. Inside animal hosts and in
the environment, A. baumannii cohabits with several
bacterial species. The potential acquisition of horizontal
resistance genes from other bacterial species is very high
due to the presence of plasmids [18]. In total, 15 AMR
genes were identified in strains obtained from powdered
milk samples. All milk powder samples were obtained
from the end product at the production level. Thus, the
origin of A. baumannii in milk samples is unknown be-
cause the microbes can enter the dairy supply chain at
different stages during milk collection, production and
processing [29]. Contamination of dried milk with A.
baumannii and the existence of such genes is evidence
of a potential threat that should be considered and can
affecting human consumers. This highlights the urgent
need for strict hygiene measures during the processing
of dried milk.
The high frequency of resistance for carbapenems and

cephalosporins was found in both groups of A. bauman-
nii, either sequenced isolates or genomes deposited at
NCBI. MDR strains harboring diverse resistance genes
confer resistance for carbapenems and cephalosporins

were isolated in various hospital outbreaks in Germany
[30–32]. Broad diversity of OXA-type carbapenemase
genes was identified, and the blaOXA-23 and blaOXA-51-like

(blaOXA-66 variant) were among the most frequent. Both
are ambler class D ß-lactamases, which originally rela-
tively rare and always plasmid-mediated. It is worth
mentioning that the OXA β-lactamase group was among
the earliest β-lactamases detected, and the variants
OXA-23 and OXA-51 are currently spreading on plas-
mids. Therefore their transmission between different
bacterial species can be reasonably assumed [33]. Several
studies have shown that the presence of one or both of
those genes in A. baumannii is associated with resist-
ance to all β-lactam antibiotics, including carbapenems
[34–37]. The class D carbapenemase blaOXA-66/OXA-51--

like contributes to intrinsic resistance to imipenem in
clinical strains of A. baumannii [38]. The blaOXA-51 was
detected initially in A. baumannii from Argentina in
1996 [39]. It is the largest group of intrinsic OXA-type
β-lactamases identified and became an important marker
for species identification of A. baumannii. Association of
ISAba1 with blaOXA-51-like can increase its expression
levels by 50-fold [33]. The oxacillinase blaOXA-23 was
identified for the first time in A. baumannii strains
isolated from the United Kingdom in 1993. Later, it has
been found and linked to the dissemination of
carbapenem-resistant in A. baumannii worldwide [40]
and is one of the most dominant resistance genes de-
scribed in A. baumannii in Germany last decade [5].

Table 4 The total frequency and percentages of the AMR genes in 189 genomes of A. baumannii isolated from Germany

AMR gene Mechanism Frequency a

(NCBI+WGS)
Total (189) % Predicted phenotype

1 ant(3″)-IIa Antibiotic inactivation 104 + 0 104 55% Aminoglycosides

2 blaADC.25 Ambler class C
beta-lactamase

2 + 71 73 38.6% Cephalosporins

3 blaOXA-23 Ambler class D
beta-lactamase

43 + 12 55 29% Carbapenems

4 blaOXA-66
(blaOXA-51-like)

Ambler class D
beta-lactamase

40 + 10 50 26.5% Carbapenems

5 sul2 Antibiotic target replacement 47 + 2 49 26% Sulfonamides

6 aph(3″)-Ib Antibiotic inactivation 48 + 0 48 25.3% Aminoglycosides

7 aph(6)-Id Antibiotic inactivation 45 + 9 44 23.3% Aminoglycosides

8 tet. B Antibiotic efflux 38 + 9 37 19.5% Tetracycline

9 mph(E) Enzymes inactivation 34 + 2 36 19% Macrolide

10 msr(E) Antibiotic target protection 33 + 3 36 19% Macrolide

11 aph(3″)-Ia Antibiotic inactivation 28 + 0 34 18% Aminoglycosides

12 sul1 Antibiotic target replacement 22 + 3 25 13.2% Sulfonamides

13 aph(3′)-VIa Antibiotic inactivation 24 + 0 24 12.6% Aminoglycosides

14 blaTEM Antibiotic inactivation 20 + 3 23 12% Cephalosporins

15 blaADC-73 Ambler class C
beta-lactamase

19 + 0 19 10% Cephalosporins

afrequency of genes in genomes deposited in the NCBI (104) and 85 WGS data at our laboratory
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The ADC beta-lactamases are cephalosporinase with
extended-spectrum resistance to cephalosporins. Thirty-
one ADC beta-lactamases variants were found in isolates
deposited at NCBI, and the blaADC-73 was the most fre-
quent. The blaADC-73 is a novel variant of blaADC and
has been detected in A. baumannii isolates in a few
studies [41, 42]. Proteogenomic analysis of XDR strains
showed that blaADC-73 is one of the significant determi-
nants responsible for antibiotic resistance in A. bauman-
nii [43]. The presence of the ISAba1 element in blaADC–
73 gene is responsible for increase the cephalosporinase
gene expression [44]. In contrast, blaADC-25_1 was the
only variant identified in the 85 sequenced isolates and
was found in all isolates (100%). The cephalosporinase-
encoding blaADC-25-like gene was uncommon in
Germany; however, it has been detected in hospital-
acquired A. baumannii infection [31]. It is worth men-
tioning that the ant (3″)-IIa conferring resistance to
aminoglycosides was found in all isolates (n = 104) de-
posited in the NCBI database. However, none of the 85
sequenced isolates contained this gene by using the
ResFinder server. The comprehensive ResFinder server
was used for the detection of acquired resistance genes
in the sequenced isolates and failed to detect the ant
(3″)-IIa. Searching for non-β-lactamases intrinsic resist-
ance genes using CARD and NCBI databases succeeded
in detecting this gene in all sequenced isolates [11].
Thus, this study highlights the necessity of combining
different databases to determine the resistance profiles
of A. baumannii isolates and depending on one database
to discriminate the presence of all AMR genes was insuf-
ficient [11].
Three tetracycline-encoding genes were identified in A.

baumannii, and tet. B was the most frequent in both
groups. The tet. B is a tetracycline efflux protein expressed
in various Gram-negative bacteria. It is a major facilitator
superfamily (MFS) antibiotic efflux pump that confers
tetracycline resistance but not tigecycline [45]. In our sur-
vey, it was found in nine sequenced isolates; among them,
only eight were tigecycline resistant. Tigecycline is a gly-
cylcycline developed to help overcome tetracycline-
resistant in microorganisms [46]. In A. baumannii, it was
reported that tet. A plays an essential role in tigecycline ef-
flux by removing and transporting tigecycline from the
cytoplasm to the periplasm [47]. The tet. A.6 was identi-
fied in a tigecycline resistant strain of human origin and
was present in 5.8% of genomes deposited in NCBI. Two
genes, the sul1 and sul2 mediated resistance to sulfon-
amides were identified. Both are mediated by transposons
and plasmids and are express dihydropteroate synthases
in Gram-negative bacteria that confer resistance to sulfon-
amides [48]. The presence of one or both genes in A. bau-
mannii isolates conferred resistance to trimethoprim/
sulfamethoxazole.

In spite, all sequenced A. baumannii isolates (100%) in
the current study were chloramphenicol resistant; only
four isolates harbored chloramphenicol acetyltransferase
encoded variant of the cat genes and chloramphenicol
exporter floR gene. It was indicated previously that most
A. baumannii isolates are intrinsically resistant to chlor-
amphenicol; however, the mechanism responsible for
such resistance is not apparent yet [49]. Three isolates
were colistin-resistant; however, none of the plasmid-
mediated resistance to colistin (mcr genes) was identi-
fied. The mechanism of resistance to colistin in A. bau-
mannii is associated with the mutation in the protein
PmrAB [50].

Conclusion
Acinetobacter baumannii is an important opportunistic
nosocomial pathogen in healthcare settings in Germany.
AMR genes were investigated in the genome of 189 Ger-
man A. baumannii strains. The spread of MGE is the
main driving force in the spread and dissemination of
acquired resistance, but a chromosomal gene mutation
is a possible route. Three major known resistance mech-
anisms are associated with MGE, i.e., enzyme inactiva-
tion, antibiotics efflux, and antibiotic target sites’
replacement. Acquired AMR belonging to those mecha-
nisms was seen in the current studied group of A.
baumannii. Understanding the genetic mobilization of
AMR genes in A. baumannii collected from different
reservoirs is essential to investigate resistance genes’ in-
terspecies mobility. This is paramount in preventing dis-
semination and spillover. The presence of A. baumannii
strains harboring divers acquired AMR genes in milk
powder raises safety and health concerns and highlights
the need for a more hygienic environment for the pro-
cessing of dried milk.

Materials and methods
Molecular characterization and phenotyping of A.
baumannii strains
Eighty-five A. baumannii strains isolated between 2005
and 2018 in Germany were received by the Institute of
Bacterial Infections and Zoonoses (IBIZ, Jena) for con-
firmation and typing. Fourteen clinical strains were iso-
lated from humans between 2017 and 2018, and 71 non-
clinical strains were obtained from powdered milk sam-
ples produced in Germany. All milk powder samples in-
vestigated in the current study were isolated from the
end product of three different companies in Germany
between 2005 and 2012 at the production level. The
strains were identified at species level using a combin-
ation of Matrix-Assisted Laser Desorption/Ionization
Mass Spectrometry (MALDI-TOF MS) with a score
value > 2.300 and the intrinsic blaOXA-51-like-PCR [51].
The identity and non-clonality of all isolates were
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confirmed using the WGS data. Antimicrobial suscepti-
bility testing (AST) for 18 antibiotics was carried out via
the broth microdilution method using an automated
MICRONAUT-S system (Micronaut, MERLIN Diagnos-
tics GmbH, Bornheim-Hersel Germany) according to
the manufacturer’s instructions. The minimum inhibi-
tory concentration (MIC) was determined according to
the Clinical and Laboratory Standards Institute (CLSI)
breakpoint guidelines available for A. baumannii, as pre-
viously described [11].

WGS based detection of acquired AMR genes in A.
baumannii strains
DNA was extracted using the High Pure PCR Template
Preparation Kit (Roche Diagnostics GmbH, Mannheim,
Germany) according to the manufacturer’s instructions.
The sequencing library was prepared, followed by
paired-end sequencing on an Illumina MiSeq sequencer
(Illumina, USA). The raw sequencing data were assem-
bled and analyzed as previously described [11]. The
comprehensive ResFinder server [52] was used to iden-
tify the acquired AMR genes among A. baumannii
strains. Known acquired resistance genes relevant to ß-
lactams (including carbapenems and cephalosporins),
aminoglycosides, phenicoles, macrolide-lincosamide-
streptogramin B, quinolones, sulfonamides, and tetracy-
clines were included in the analysis. The β-lactamase
and non-β-lactamase gene variants were determined
with a 100% identity using the A. baumannii reference
genome (Accession ASM74664v1) as input. Reference
sequences for acquired resistance genes were curated
from those described in the ResFinder (https://cge.cbs.
dtu.dk/services/data.php) datasets.

WGS based detection of AMR genes in A. baumannii
genomes
In parallel, 104 out of 9.579 available genomes of A. bau-
mannii were downloaded from the NCBI database
https://www.ncbi.nlm.nih.gov/genome/browse/#!/ pro-
karyotes/403/ (access date 10.09.2020). Acinetobacter
baumannii genomes with the Genbank tag (/country=),
which contained “Germany” were eligible for inclusion.
In this way, we extracted 104 out of 195 German A. bau-
mannii. The extracted isolates were mostly clinical iso-
lates from 2012 to 2019, and in 88 out of 104 isolates,
an isolation source was specified as the following: 19
groins, 12 wounds, 10 wound swab, 9 rectal swabs, 7 tra-
cheal secretions, 4 respiratory, 3 blood, 3 clinical mater-
ial, 2 bronchial secretions, 2 screening swab, 1 catheter
swab, 1 catheter urine, 1 cerebrospinal fluid, 1 conjunc-
tivitis, 1 drainage liquid, 1 groin swab, 1 perianal swab, 1
pleural drainage, 1 respiratory tract, 1 sterile tissue, 1
stoma swab, 1 throat, 1 tracheal secretion, 1 urine, 2
water and 1 eggshell. These sequences were annotated

with ABRicate v.1.0.1 (https://github.com/tseemann/
abricate). The NCBI AMR Finder Plus [53], the ResFin-
der database [52], the CARD database [54] and the
ARG-ANNOT [55] were used for the identification of
resistance genes. Only resistance genes with a coverage
of > 80 and > 75% identity (proportion of exact nucleo-
tide matches) were accepted. The following information
was extracted from the data: the gene’s names, frequency
within 104 genomes, percentage, predicted phenotype
and accession number for each gene. DNA contigs were
separated via plasflow (v1.1.0) into chromosomal and
plasmid contigs. Gene detection was performed via abri-
ca t e and fa rgene (h t tps : / /microb iome journa l .
biomedcentral.com/articles/10.1186/s40168-019-0670-1),
and plotted via ggplot2.
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