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Abstract

Background: The potential role of the gut microbiome (GM) in heart failure (HF) had recently been revealed.
However, the underlying mechanisms of the GM and fecal metabolome in HF have not been characterized. The
Dahl salt-sensitive rat model of hypertensive heart failure (H-HF) was used to study the clinical symptoms and
characteristics. To elucidate the pathogenesis of HF, we combined 16S rRNA gene sequencing and metabolomics
to analyze gut microbial compositions and fecal metabolomic profiles of rats with H-HF.

Results: PCoA of beta diversity shown that the gut microbiome composition profiles among the three groups were
separated. Gut microbial composition was significantly altered in H-HF rats, the ratio of Firmicutes to Bacteroidetes(F/
B) increased and the abundance of Muribaculaceae, Lachnospiraceae, and Lactobacillaceae decreased. Significantly
altered levels of 17 genera and 35 metabolites were identified as the potential biomarker of H-HF. Correlation
analysis revealed that specific altered genera were strongly correlated with changed fecal metabolites. The
reduction in short-chain fatty acids (SCFA)-producing bacteria and trimethylamine N-oxide (TMAO) might be a
notable characteristic for H-HF.

Conclusions: This is the first study to characterize the fecal microbiome of hypertensive heart failure by integrating
16S rRNA gene sequencing and LC–MS-based metabolomics approaches. Collectively, the results suggesting
changes of gut microbiome composition and metabolites are associated with hypertensive heart failure rats.
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Background
Heart failure (HF) is the terminal stage of all cardiac dis-
eases, with high morbidity and mortality rates [1]. Epi-
demiological data revealed that the prevalence of HF is
1–2% in adults and increases to more than 10% in
people over the age of 70 [2]. The leading causes of HF
are hypertension and ischemic heart diseases, and HF
resulting from hypertension has become to be a major

public health concern [3]. Therefore, timely diagnosis
and early treatment are the keys. The gut microbiome
(GM) is a complex community of trillions of bacteria in
the gastrointestinal tract and has emerged as a central
factor affecting human health and disease [4]. Host-
microbiota interactions involving inflammatory and
metabolic pathways have been linked to the pathogenesis
of cardiovascular disease [5, 6]. A growing number of
studies have shown that GM is closely related to the oc-
currence and development of HF, in addition to alter-
ations in GM composition, the metabolic potential of
GM has been identified as a contributing factor in the
development of diseases, including the trimethylamine
(TMA)/ trimethylamine N-oxide (TMAO) pathway,
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short-chain fatty acids (SCFA) pathway, bile acid path-
way and uremic toxin pathways, so microbiota is ex-
pected to become an essential target for intervention of
HF [7]. HF has long been recognized to be associated
with changed in intestinal function [8]. The gut hypoth-
esis suggests that HF can lead to bacterial translocation
across the intestine, and increase the level of bacteria
throughout the systemic circulation with increased in-
flammatory status, thus promoting the further devel-
opment of HF [9]. These studies had significantly
increased attention towards the connection between
our gut and heart. Thus, recognition of the gut–heart
axis may lead to new insights and breakthroughs in
the therapies for HF [10, 11].
However, comprehensive analysis of the composition

and metabolism of the microbiome in HF has not been
conducted. Thus, studies are needed to investigate the
fecal microbiome in association with HF and further

reveal the effects of fecal metabolic changes in disease
pathogenesis. Dahl salt-sensitive rat model is a well-
established model of hypertensive heart failure [12–14].
Therefore, in the present study, we performed animal
studies using Dahl salt-sensitive rats to evaluate intes-
tinal microbial communities and metabolic profiles of
H-HF, using 16S rRNA gene sequencing and metabolo-
mics, to clarify the pathogenesis and consequences of
HF.

Result
Echocardiographic and blood pressure measurement
The echocardiographic parameters were shown in Fig. 1a
and b,compared to the CON group and the SR group,
both LVEF and LVFS decreased in H-HF group, suggest-
ing compromised cardiac function, consistent with ex-
tant literature [14]. SBP and DBP were significantly
higher in H-HF group, whereas blood pressure in the

Fig. 1 Echocardiographic data on LVEF and LVFS, serum concentration of Nt-proBNP, Zonulin, LPS, and blood pressure. a: left ventricular ejection
fraction (LVEF); b: left ventricular fractional shortening (LVFS). c: systolic blood pressure (SBP); d: diastolic blood pressure (DBP); e: NT-proBNP was
assessed by ELISA; f: LPS was assessed by ELISA. g: Zonulin was assessed by ELISA. #P < 0.05, ##P < 0.01 compared with the CON group; *P <
0.05,** P < 0.01 compared with the SR group; Data are presented as the mean ± SD; n = 8
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CON group and the SR group did not significantly
change over time (Fig. 1c and d).

Concentration of NT-proBNP, LPS, Zonulin in serum
The N-terminal proB-type natriuretic peptide (NT-
proBNP) concentration is a sensitive and reliable bio-
marker for the diagnosis of heart failure. Our results re-
vealed a significant increase in the NT-proBNP in the
H-HF group compared to the CON group and the SR
group (Fig. 1e). The intestinal barrier function is crucial
for gut homeostasis. Serum lipopolysaccharide (LPS) was
measured as an indicator of intestinal barrier function,
and Zonulin was considered a marker of intestinal per-
meability. As shown in Fig. 1f and g, compared to the
CON group and the SR group, the LPS and the Zonulin
in the H-HF group significantly increased, indicating in-
creased intestinal permeability and compromised intes-
tinal barrier in the H-HF group rats.

Histological results
HE staining revealed the distribution of myocardial cells
was regular in both CON group and SR group, while the
myocardial cells in the H-HF group were swollen with
irregular shapes and disordered arrangements, and sub-
stantial inflammatory cellular infiltrate in the myocardial
interstitium was observed (Fig. 2a-c). HE-stained colonic
section of the H-HF group exhibited integrity loss of the
intestinal mucosa and infiltration of inflammatory cells
into the colon tissue with lymphoid hyperplasia, which
was not observed in the CON and SR groups (Fig. 2 d-f).
This suggests intestinal barrier damage (leaky gut) in the
H-HF group.

Changes in metabolomics features of H-HF
PCA was applied to visualize metabolic alterations of the
three experimental groups. As shown in the Fig. 3a, the
CON group, H-HF group and SR group can be clearly
separated. A segregation was visible between the CON
and H-HF groups, indicating that certain significant bio-
chemical changes occurred after the high salt diet. In
addition, further OPLS-DA analysis also displays that
the three groups were obviously separated (Fig. 3c,e).
Meanwhile, a statistical validation of the OPLS-DA
model was performed using 200 permutation tests, as
shown in Fig. 3d and f, the model was reliable.
The metabolites with VIP > 1.0 and p < 0.05 were con-

sidered as significantly changed. In comparison of the
H-HF group and CON group, 70 metabolites showed
significantly different levels (Table S1), and 97 metabo-
lites in the SR group were significantly different from
those in the H-HF group (Table S2). The common dif-
ferential metabolites were analyzed by Venn diagram
(Fig. 3b), and it revealed that 35 metabolites were com-
mon of the three groups, the results are shown in
Table 1. These metabolites could be regarded as poten-
tial biomarkers of H-HF. The heatmap of differential
metabolite biomarkers is displayed in Fig. 4e. Differen-
tially expressed biomarkers mainly consisted of organo-
nitrogen compounds, organoheterocyclic compounds,
organic oxygen compounds, organic nitrogen com-
pounds, organic acids and derivatives, lipids and lipid-
like molecules, and alkaloids and derivatives. Among
them, studies have shown that metabolites associated
with gut microbiota metabolism included creatinine,
lithocholic acid, cholic acid, capric acid, glutaric acid, tri-
methylamine N-oxide, choline, and betaine [15].

Fig. 2 The pathological changes in the heart tissue (a, b, c: × 400) and colon tissues (d, e, f: × 100) in rats (Hematoxylin-eosin (HE) Staining). a, d:
CON group; b, e: H-HF group; c, f: SR group
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Key metabolic pathway analysis for different metabolites
All 35 potential biomarkers were subjected to metabolic
pathway analysis (MetPA) using the KEGG online data-
base and MetaboAnalyst. As shown in Fig. 4a, five meta-
bolic pathways were influenced (P < 0.05), involving: (1)
Histidine metabolism, (2) Arginine and proline metabol-
ism, (3) Alanine, aspartate and glutamate metabolism,
(4) Glycine, serine and threonine metabolism, and (5)
Glycerophospholipid metabolism. The information for
all the affected pathways is described in Table S3.

Diversity analysis of gut microbiota
A total of 1,920,409 paired-end reads were obtained
from the 24 samples after sequencing (Table S4), with 1,
795,548 clean tags after alignment and filtering. Samples
contained 74,814 clean tags on average. A total of 609
OTUs (gamma diversity) were obtained at a similarity

level of 97%. The community composition of the three
groups at the phylum (Fig. 5a) and family (Fig. 5b) was
determined. For simplicity, only the 10 most abundant
taxa are shown, with all others grouped into “other.”
Compared with the CON group and SR group, the

abundance of Firmicutes in H-HF group increased sig-
nificantly (Fig. 5c), while Bacteroidetes decreased. Thus,
the ratio of Firmicutes to Bacteroidetes increased signifi-
cantly (Fig. 5d). An increase in the abundance of Rumi-
nococcaceae, contrary to a decrease in the abundance of
Muribaculaceae, Lachnospiraceae, and Lactobacillaceae,
was observed in the H-HF group compared with the
CON group and SR group (Fig. 5e). It revealed that the
structure of gut microbiota in H-HF model has changed.
Research suggests that the imbalance in the F/B ratio is
largely related to energy metabolism [16, 17], an increase
in the F/B ratio in our study also indicates the

Fig. 3 Results of multivariate analysis among three groups. Each dot with three kinds of color (green, H-HF model group; red, CON group; purple,
SR group) represented the different sample. a: PCA score plots of among three groups (R2X = 0.632); b: Venn diagram showed the overlapping
and unique differential metabolites amongst the comparison groups. c: OPLS-DA score plots of CON and H-HF group (R2X = 0.505, R2Y = 0.997,
Q2 = 0.977); d:The permutation test(n = 200) for the OPLS-DA model of CON and H-HF group; e: OPLS-DA score plots of H-HF and SR group
(R2X = 0.387, R2Y = 0.976, Q2 = 0.736); f: The permutation test (n = 200) for the OPLS-DA model of H-HF and SR group
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dysregulated energy metabolism, indicating that abnor-
mal energy metabolism was found in H-HF [18], consist-
ent with the existing literature.
Rarefaction curves (Fig. 5f) revealed the amount of se-

quencing data was sufficient to reflect the true taxo-
nomic diversity. The value of Good’s coverage for each
group was higher than 99.8% (Table S4). To investigate
the variances of gut microbiota structural diversity in

the three groups, Chao1 and Shannon indexes of alpha
diversity analysis were used to evaluate richness, even-
ness and diversity, respectively. Alpha diversity analysis
revealed no significant difference in gut microbiota di-
versity between groups based on Chao 1 and Shannon
indices (Fig. S1b,c), but unweighted unifrac PCoA of
beta diversity shown that the gut microbiome compos-
ition profiles among the SR, CON and H-HF groups

Table 1 Identification of potential biomarkers of H-HF

No Retention time(s) Metabolite identification Molecular
formula

Ion form MZ KEGG ID

1 230.706 Pyruvic acid C3H4O3 ES− 87.00772076 C00022

2 77.84335 Uracil C4H4N2O2 ES− 111.01899 C00106

3 282.828 L-Norleucine C6H13NO2 ES− 130.0863208 C01933

4 66.92525 Lithocholic acid C24H40O3 ES− 375.2900014 C03990

5 210.881 Cholic acid C24H40O5 ES− 407.280768 C00695

6 189.278 Hypoxanthine C5H4N4O ES+ 137.0456494 C00262

7 324.4045 L-Proline C5H9NO2 ES− 114.0550451 C00148

8 48.528 Capric acid C10H20O2 ES− 171.1384219 C01571

9 314.297 L-Valine C5H11NO2 ES+ 118.0862667 C00183

10 288.356 Choline C5H14NO ES+ 104.1071126 C00114

11 336.777 gamma-Aminobutyric acid C4H9NO2 ES− 102.0550772 C00334

12 46.0601 Harman C12H10N2 ES+ 183.091462 C09209

13 190.9455 Creatinine C4H7N3O ES+ 114.0663089 C00791

14 402.345 D-Maltose C12H22O11 ES+ 365.1042254 C00208

15 47.4337 Undecanoic acid C11H22O2 ES− 185.1540159 C17715

16 359.129 L-Alanine C3H7NO2 ES+ 90.05519587 C00041

17 398.0985 Glutaric acid C5H8O4 ES− 131.034148 C00489

18 326.4825 15-Keto-prostaglandin E2 C20H30O5 ES− 349.2016798 C04707

19 223.7705 Oleamide C18H35NO ES+ 282.2778295 C19670

20 234.303 Tetradecanedioic acid C15H24NO4PS ES− 257.1754713 C11002

21 302.881 Urocanic acid C6H6N2O2 ES+ 139.0499338 C00785

22 394.914 Niacinamide C6H6N2O ES+ 123.0551588 C00153

23 281.996 Dimethylethanolamine C9H16NO8PR2 ES+ 90.09161492 C04308

24 255.7855 (13E)-11a-Hydroxy-9,15-dioxoprost-13-enoic acid C20H32O5 ES− 351.2172613 C04654

25 358.403 4-Hydroxyproline C5H9NO3 ES− 130.0500239 C01157

26 298.929 Trimethylamine N-oxide C3H9NO ES+ 76.07608207 C01104

27 334.166 Betaine C5H11NO2 ES− 116.0707807 C00719

28 286.6195 Norvaline C5H11NO2 ES+ 118.0862646 C01799

29 43.08045 Palmitoleic acid C16H30O2 ES− 253.2168827 C08362

30 311.8905 Pyroglutamic acid C5H7NO3 ES− 128.0344652 C01879

31 212.083 Prostaglandin E3 C20H30O5 ES− 349.2017343 C06439

32 332.553 D-Alanyl-D-alanine C6H12N2O3 ES− 159.0767659 C00993

33 419.462 Histamine C5H9N3 ES+ 112.0869868 C00388

34 174.24 PE(15:0/14:0) C7H12NO8PR2 ES+ 650.4736181 C00350

35 333.989 Imidazoleacetic acid C5H6N2O2 ES+ 127.050143 C02835

ES + = positive ion mode; ES − = negative ion mode
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were separated (Fig. 4b). ANOSIM tests on UniFrac
distance data were applied to permutational multi-
variate analysis(R = 0.753, P < 0.01). That is, the
structural diversity of the gut microbiota was signifi-
cantly different in H-HF group. Our results indicated
a significant gut microbial shift during the develop-
ment of HF, in accord with literatures [19], which
highlights the potential role of gut microbiota in HF
pathogenesis.

The alterations of the gut microbiota in H-HF
A total of 61 genera were found to vary significantly dif-
ferent in the H-HF and CON groups (Table S5) and 27
genera were found to differ be significantly different be-
tween in the SR and H-HF groups (Table S6). Venn dia-
gram showed the overlapping and unique differential
flora amongst the comparison groups. As shown in the
Fig. 4c, there were a total of 17 different flora among the
three groups. The microflora can be considered as the

Fig. 4 a: Summary of the pathway analysis with MetPA of differential metabolites; b: PCoA analysis of three groups; c: Venn diagrams of three
groups; d: Heat map of the differential gut microbiota of three groups; e: Heat map of the differential metabolites of three groups
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biomarkers of hypertensive heart failure. Variations in
the identified differential gut microbiota of three groups
were depicted in the heatmap (Fig. 4d).
Compared to the CON group and SR group, the rela-

tive abundance of [Eubacterium]_coprostanoligenes_
group, Catabacter, Ruminococcaceae_UCG-009, uncul-
tured_bacterium_f_Erysipelotrichaceae, Adlercreutzia,
Faecalibaculum, Gordonibacter, uncultured_bacterium_
f_Peptococcaceae, Allobaculum, Peptococcus, Quinella,
Staphylococcus, and uncultured_bacterium_f_Atopobia-
ceae increased in the H-HF group, and the abundance of

Butyricicoccus,Treponema_2,Lachnospiraceae_UCG-008,
and [Eubacterium]_ventriosum_group also decreased.

Correlation of the gut microbiota and fecal metabolic
Pearson correlation analysis was performed for the
screened fecal metabolites and the gut microbiome taxa
at genus levels. The significantly related metabolites and
gut genera are shown in the form of heat maps (Fig. 6).
The related dataset of Pearson’s correlation is described
in Table S7. The Pearson’s r-value > 0.75 is considered
as a strong correlation. As shown in Fig. 7, for example,

Fig. 5 The histogram of species distribution at the phylum (a) and family (b) levels in three groups; c:The relative abundance of Firmicutes and
Bacteroidetes; d The F/B ratio; e: The relative abundance of Ruminococcaceae, Muribaculaceae, Lachnospiraceae, and Lactobacillaceae, f: Rarefaction
curves;;#P < 0.05, ##P < 0.01 compared with the CON group;*P < 0.05, ** P < 0.01 compared with the SR group; data are presented as the
mean ± SD; n = 8
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Pyruvic acid and D-Maltose were strong negatively re-
lated to Adlercreutzia, Gordonibacter and uncultured_
bacterium_f_Erysipelotrichaceae, while Creatinine dis-
played strong negative correlation with Gordonibacter,
and uncultured_bacterium_f_Erysipelotrichaceae. Pyru-
vic acid, D-Maltose and Creatinine are important indica-
tor of energy metabolism. It indicates that Adlercreutzia,
Gordonibacter and uncultured_bacterium_f_Erysipelotri-
chaceae were closely related to energy metabolism.
Betaine correlated positively with [Eubacterium]_ventrio-
sum_group, but negatively with Peptococcus and uncul-
tured_bacterium_f_Erysipelotrichaceae, and a negative

correlation was also detected between TMAO and un-
cultured_bacterium _f_Erysipelotrichaceae. Therefore,
the gut microbiota plays an important role in methyl-
amine metabolism. TMAO is a metabolite derived
from intestinal flora, while choline and betaine are
the nutrient precursors of TMAO, they are each inde-
pendently associated with the prevalence of CVD.
Cholic acid and lithocholic acid shown strong nega-
tive to Treponema_2, but positive to Staphylococcus,
Gordonibacter and Adlercreutzia. Cholic acid is one
of the primary bile acids produced from cholesterol
in the liver. Therefore, it can be considered H-HF is

Fig. 6 Correlation analysis of relative abundance of gut microbiota in the genus level and fecal metabolite levels. Red means a positive
correlation, and blue means a negative correlation. *P < 0.05, ** P < 0.01
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related to dysbiosis of bile acid metabolism mediated
by treponema_2, staphylococcus, gordonibacter and
adlercreutzia.
These correlations indicated that perturbations in the

gut microbiome, which may result in a significantly al-
tered metabolomic profile; mainly including energy me-
tabolism, amino acid metabolism, and methylamine
metabolism. Our results further confirmed that the vari-
ations in gut microbiota and fecal metabolic phenotype
associated with the development of HF.

Discussion
To the best of our knowledge, this is the first examin-
ation of specific changes in the gut microbiota compos-
ition and function in Dahl salt-sensitive rat model of
hypertensive heart failure using both 16S rRNA and LC-
MS metabolomics. Altered gut microbial composition
and metabolites were observed in the H-HF rat model.
The correlation analysis revealed that alterations in GM
might contribute to H-HF through amino acid metabol-
ism, bile acid metabolism, methylamine metabolism, en-
ergy metabolism and other aspects. The reduction in
SCFA-producing bacteria and TMAO might be a not-
able characteristic for H-HF.
Recent evidence indicates that inflammation drives

hypertensive heart failure [20], and impaired epithelial
absorption may lead to translocation of microorganisms
into the systemic circulation, possibly increasing HF by
inducing systemic inflammation [21, 22]. In our study,

substantial inflammatory cellular infiltrate in the myo-
cardial interstitium and integrity loss of the intestinal
mucosal with infiltration of inflammatory cells into the
colon tissue were observed in the H-HF rat model,
which indicated inflammation involvement. Increased
serum LPS and Zonulin indicated increased intestinal
permeability and the loss of gut barrier function, which
may lead to the development of metabolic endotoxemia
and promote cardiac inflammation, thus exacerbating
the development of heart failure.
Different from some clinical studies of GM [23, 24],

we found that alpha diversity analysis revealed no signifi-
cant difference in gut microbiota diversity between
groups based on Chao 1 and Shannon indices. However,
another clinical study [11] showed the Chao 1 richness
and the Shannon index were not significantly different
between younger and older patients with HF, which is
similar to our results.
To investigate taxonomic changes, we calculated the

microbial abundance of the GM at the phylum level and
family level. Altered gut microbiota composition was ob-
served in H-HF group compared to CON and SR groups
based on 16S rRNA gene sequencing results. The ratio
of F/B increased at phylum level, while a decrease in the
abundance of Muribaculaceae, Lachnospiraceae, and
Lactobacillaceae was shown in the H-HF group com-
pared with the CON group and SR group at family level,
which suggested the occurrence of bacterial transloca-
tion in H-HF. Butyrate is an energy source for intestinal

Fig. 7 Network diagram of correlation analysis (Pearson’s R-value > 0.75,P < 0.05)
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epithelial cells, modulating the epithelial barrier integ-
rity and playing a local anti-inflammatory role in in-
testinal mucosa. Therefore, the decrease of butyrate
content has been associated with an increase in endo-
toxemia and inflammation, and the decrease of
butyrate-producing bacteria has been associated with
inflammatory disease, including diabetes mellitus,
obesity, hypertension, and inflammatory bowel disease
[25]. Researchers have shown that the Lachnospira-
ceae family, which includes of several butyrate-
producing species, is reduced in patients with heart
failure [24]. The abundance of Muribaculaceae has
also been proved to have a strong correlation with
propionate and was an important predictor of SCFA
concentrations [26]. As SCFA, the energy source for
intestinal epithelial cells is also important in main-
taining the integrity of intestinal epithelial cells, we
could hypothesize that SCFA content is reduced due
to the decrease of SCFA producing bacteria, and the
imbalance of F/B ratio leads to abnormal energy [16,
17],thus abnormal energy supply may directly affect
the systolic function of the heart, which may lead to
HF [18], the reduction in SCFA-producing bacteria
might be a notable characteristic for H-HF, consistent
with the results of clinical studies [27].
Moreover, Lactobacillus is essential in the mainten-

ance of intestinal barrier function and integrity [28].
Studies have found that the decrease of Lactobacillus
seems to promote the development of HF [29]. In our
study, a decrease of Lactobacillus was also detected in
H-HF groups. Lactobacilli can reduce cardiac hyper-
trophy and HF after myocardial infarction and improve
left ventricular ejection fraction and shortening fraction,
thus regulating intestinal flora may be used to develop a
potential therapy to attenuate heart failure [30].
Comparing the different microbiotas between groups

at the genus level, there were a total of 17 different flora
among the three groups. The microflora can be consid-
ered as the biomarkers of hypertensive heart failure. To
further assess the impact of a shifted gut microbiome on
the host, we conducted metabolome analyses. A series of
studies have been published which have highlighted the
power of metabolic profiling to expand our understand-
ing of metabolic derangements of the HF [31]. In our
study, 35 metabolites have been identified as bio-
markers for hypertensive heart failure, and 5 metabolic
pathways were influenced, including: Histidine metab-
olism, Arginine and proline metabolism, Alanine, as-
partate and glutamate metabolism, Glycine, serine and
threonine metabolism and Glycerophospholipid metab-
olism. The pathways mainly involved energy metabol-
ism and amino acid metabolism, it indicated that there
are abnormities of energy metabolism and amino acid
metabolism in H-HF.

Among these differential metabolites, TMAO is con-
sidered to be positively associated with cardiovascular
disease. TMAO, a metabolites of the gut microbiota
from specific dietary nutrients, is linked to a higher risk
of HF, and a combination of TMAO and NT-proBNP
could provide additional prognostic information [32].
Research shown that elevated plasma TMAO level in pa-
tients with HF is associated with poorer prognoses [33].
Systematic review and meta-analysis also demonstrated
a positive dose-dependent relationship between TMAO
plasma levels and increased cardiovascular risk and mor-
tality [34]. Different from the present studies of TMAO,
our study shown that the TMAO content in the feces of
H-HF group was lower than the CON group and SR
group, results were inconsistent perhaps owing to the
different samples examined (e.g., plasma versus feces
samples).
Gut microbiota perturbations associated with meta-

bolic phenotype can be used to explore the possible
mechanisms in the development of diseases. Peng et al.,
integrated 16S rRNA sequencing, metagenomics, and
metabolomics to characterize gut microbial composition,
function, and fecal metabolic phenotype in non-obese
Type 2 diabetic goto-kakizaki rats [35], the results sug-
gested that an altered gut microbiota is associated with
T2DM pathogenesis. Yu et al. studied the variations in
gut microbiota and fecal metabolic phenotype associated
with depression by 16S rRNA gene sequencing and LC/
MS-based metabolomics [36], and showed a strong cor-
relation between gut microbiota, fecal metabolites, and
catecholamine levels. Herein, we observed a significant
correlation between gut microbiota at genus level and
fecal metabolites through Pearson’s correlation analysis.
The correlation indicated that perturbations in the gut
microbiome, which may result in a significantly altered
amino acid metabolism, bile acid metabolism, TMAO
metabolism, energy metabolism and other aspects.
Aberrant energy metabolism is one of the most import-

ant signs of HF [37]. Dysfunction of energy metabolism
can further promote the development and deterioration of
HF. Therefore, an improvement in energy metabolism has
been proposed as a potential treatment for HF. Recently,
the importance of gut microbiota to the body’s energy me-
tabolism has been widely acknowledged. Our study shows
that Adlercreutzia, Gordonibacter and uncultured_bacter-
ium_f_Erysipelotrichaceae were closely related to energy
metabolism. Therefore, regulation of related flora may be
a new way to improve host energy metabolism.
Bile acids (BAs) are secreted by the liver and released

into the small intestine during a meal where they aid in
the absorption of dietary fat and fat-soluble vitamins
[38]. BAs have emerged as important mediators of meta-
bolic homeostasis, and have been proposed to play a dir-
ect role in regulating cardiovascular physiology and gut
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dysbiosis-induced HF [39]. BAs have been shown to
regulate microbiota both directly and indirectly [40].
Our study shows that treponema_2, staphylococcus, gor-
donibacter and adlercreutzia were closely related to bile
acid metabolism, which indicates that bile acid is closely
related to intestinal flora, which is consistent with the
literature.
Our results further confirmed that the variations in

gut microbiota and fecal metabolic phenotype were asso-
ciated with the development of HF, and an intervention
to correct gut microbiota composition could be an in-
novative therapeutic strategy for HF.

Conclusion
In this study, an integrated approach of 16S rRNA gene
sequencing combined with LC-MS based metabolomics
was performed to assess the changes variations of gut
microbiota in hypertensive heart failure rats. A total of
17 significantly altered bacterial genera and 35 metabo-
lites were identified as the biomarkers of H-HF. Our re-
sults showed that HF significantly altered not only the
gut microbiota composition but also fecal metabolic
phenotype. In addition, correlation analysis revealed that
some altered gut microbiota genera were strongly corre-
lated with changed fecal metabolites. The reduction in
SCFA-producing bacteria and TMAO might be a not-
able characteristic for H-HF. Overall, HF may contribute
to changes in intestinal flora structure and metabolic
function, regulated gut microbiota-related metabolites
may be the potential biomarkers for diagnosis, preven-
tion and treatment of HF.

Methods
Animals and treatments
Six-week-old Dahl salt-sensitive (SS, n = 16) rats and
salt-resistant consomic SS.13BN (SR group, n = 8) rats
with a body weight of 200-220 g were purchased from
the Beijing Weitong Lihua Animal Co., Ltd., with a
qualified number of 1,100,111,911,056,756,. Animals
were housed in a specific pathogen-free area with ambi-
ent temperature (22 ± 5 °C) and a 12/12 h light/dark
cycle. After one week of adaptation, the SS rats were
randomly allocated into two groups (8 per group): con-
trol (CON) group and hypertensive heart failure (H-HF)
model. The CON group was given a low-salt diet con-
taining 0.3% NaCl. To exclude the effects of high salt on
the results, the SR group was set. The SR group and H-
HF group were given a high-salt diet containing 8%
NaCl for 20 weeks [41]. All feed was provided by Beijing
Keao Xieli Feed Co., Ltd., (Beijing, China). Food and
water were provided ad libitum throughout the experi-
ments. Animal protocols in this study were supervised
and approved by the Institutional Animal Care and Use
Committee of Hunan University of Chinese Medicine.

Sample collections and preparation
The rats were sacrificed using urethane anesthesia (1.0
g/kg, i.p.). Fecal samples were collected immediately
after defecation at the end of the experiment (20 weeks),
and blood samples were collected from the abdominal
aorta. All blood samples were processed into serum ali-
quots on the day of collection and stored at − 80 °C just
before the following analysis. Heart tissues were fixed in
4% paraformaldehyde solution, and 5-μm-thick paraffin-
embedded tissue sections were cut and stained with
hematoxylin and eosin. The serum concentrations of
NT-proBNP and LPS were detected using ELISA kits
following the manufacturer’s instructions (NT-proBNP
Elisa Kit and LPS Elisa Kit: CUSABIO, Wuhan, China,
Zonulin Elisa Kit: mlbio, Shanghai, China).

Echocardiography and blood pressure measurement
Cardiac functions were evaluated before the animals
were sacrificed using an echocardiography method. After
anesthetizing with urethane (1.0 g/kg, i.p.), all rats
underwent echocardiography using a SonoScape-S2N
ultrasound system (Shenzhen Kaili technology co., Ltd.).
The following parameters were measured from two-
dimensional images and M-mode interrogation taken
from the parasternal long-axis view at the papillary
muscle level. The left ventricular ejection fraction
(LVEF) and left ventricular fractional shortening (LVFS)
were calculated according to the Teichholtz formula.
Blood pressure was measured using a Volume Pressure
Recording (VPR) system (CODA; Kent Scientific). For
each animal, the systolic blood pressure (SBP) and dia-
stolic blood pressure (DBP) were calculated as the aver-
age of 3 independent measurements.

Fecal metabolomics
Samples comprising 50 mg of fecal was placed in an EP
tube, and 1mL extraction solution (acetonitrile: metha-
nol: water = 2:2:1, with isotopically-labelled internal
standard mixture) was added. After 30s vortexing, the
samples were homogenized at 35 Hz for 4 min and soni-
cated for 5 min in ice-water bath. The homogenization
and sonication cycle were repeated for 3 times. Then the
samples were incubated for 1 h at − 40 °C and centri-
fuged at 12000 rpm for 15min at 4 °C. The resulting
supernatant was transferred to a fresh glass vial for ana-
lysis. The quality control (QC) sample was prepared by
mixing an equal aliquot of the supernatants from each
samples (Fig. S1a). LC-MS/MS analyses were performed
using an UHPLC system (Vanquish, Thermo Fisher Sci-
entific) with a UPLC BEH Amide column (2.1 mm × 100
mm, 1.7 μm) coupled to Q Exactive HFX mass spec-
trometer (Orbitrap MS, Thermo). The raw data were
converted to the mzXML format using ProteoWizard
and processed with an in-house program, which was
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developed using R and based on XCMS, for peak detec-
tion, extraction, alignment, and integration. Then an in-
house MS2 database (BiotreeDB) was applied for metab-
olite annotation. The cutoff for annotation was set at
0.3. The methods used in this study were in accordance
with the published literature [13, 42]. Data was acquired
in positive and negative ion modes, with the two sets of
data combined for analysis.
In this study, 13,929 peaks in positive ion mode and

11,910 peaks in negative ion mode were detected, and
among them, 1066 metabolites were found in positive
ion mode, while 346 metabolites were found in negative
ion mode after relative standard deviation de-noising.
The data were trimmed using Compound Discoverer

2.1 (Thermo Fisher Scientific, Waltham, MA, United
States) and imported into SIMCA16.0.2 software pack-
age (Sartorius Stedim Data Analytics AB, Umea,
Sweden) for principle component analysis (PCA) and or-
thogonal projections to latent structures discriminate
analysis (OPLS-DA). Then, a 7-fold cross validation was
performed to calculate the value of R2 and Q2.Further-
more, the value of variable importance in the projection
(VIP) of the first principal component in OPLS-DA ana-
lysis was obtained. It summarizes the contribution of
each variable to the model. The metabolites with VIP >
1.0 and p < 0.05 (Student’s t test) were considered as
significantly changed. In addition, commercial databases
including KEGG (http://www.genome.jp/kegg/) and
MetaboAnalyst (http://www.metaboanalyst.ca/) were
used for pathway enrichment analysis. The Data analysis
method used in this study is consistent with published
literature [42].

16S rRNA gene sequencing analysis
Total genomic DNA from fecal samples was extracted
by Tiangen Fecal Genomic DNA Extraction Kit under
the manufacturer’s instruction. The V3-V4 regions of
16S rRNA genes were PCR-amplified using the following
primers: 338F: 5′- ACTCCTACGGGAGGCAGCA-3′
and 806R: 5′-GGACTACHVGGGTWTCTAAT-3′, and
amplification products were purified, quantified and ho-
mogenized to get a sequencing library. Library QC was
performed for constructing libraries, qualified libraries
were sequenced on Illumina HiSeq 2500. The original
image data files obtained by Illumina HiSeq high-
throughput sequencing were converted into Sequenced
Reads by Base Calling analysis, the results were stored in
FASTQ format files. Paired-ends sequences were merged
then filtered in three steps: 1) PE reads merge: FLASH
v1.2.7 [43] software was used to merge reads through
overlap, the obtained merged sequences were Raw Tags;
2) Tags filtering: Trimmomatic v0.33 software was used
to filter merged Raw Tags to get high quality Clean
Tags;3) Remove Chimera: UCHIME v4.2 software was

used [44] to identify and remove chimeric sequences to
get Effective Tags.
Sequence analysis was performed by Uparse software

(Uparse v7.0.100, http://drive5.com/uparse/) [45]. Se-
quences with ≥97% similarity were assigned to the same
OTU. Representative sequence for each OTU was com-
pared to the Silva Database (http://www.arb-silva.de/)
[46] using Mothur (version v.1.30) to identify taxonomic
information. In order to study phylogenetic relationships
between OTUs, multiple sequence alignment was con-
ducted using the MUSCLE software (Version 3.8.31,
http://www.drive5.com/muscle/) [47] . All samples were
normalized and mothur software was used to analyze
alpha diversity of samples. QIIME software (Version 1.9.1)
was used to perform beta diversity analysis. Finally,
ANOVA analysis was performed to screen species with
significant differences at genus level (P < 0.05).

Statistical analysis
Statistical analysis was performed using IBM SPSS
Statistics 22.0 (Chicago, USA). Differences between
groups were evaluated by one-way analysis of variance
(ANOVA). The relationships between fecal metabolites
and the gut microbiome taxa were assessed using Pear-
son correlation. The significance threshold was set at
P < 0.05 for all tests.
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