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Homology analysis between clinically
isolated extraintestinal and enteral
Klebsiella pneumoniae among neonates
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Abstract

Background: Klebsiella pneumoniae is a leading cause of hospital-associated (HA) infections. It has been reported
that gastrointestinal colonization (GI) is likely to be a common and significant reservoir for the transmission and
infections of K. pneumoniae in both adults and neonates. However, the homologous relationship between clinically
isolated extraintestinal and enteral K. pneumoniae in neonates hasn’t been characterized yet.

Results: Forty-three isolates from 21 neonatal patients were collected in this study. The proportion of carbapenem
resistance was 62.8%. There were 12 patients (12/21, 57.4%) whose antibiotic resistance phenotypes, genotypes, and
ST types (STs) were concordant. Six sequence types were detected using MLST, with ST37 and ST54 being the
dominant types. The results of MLST were consist with the results of PFGE.

Conclusions: These data showed that there might be a close homologous relationship between extraintestinal K.
pneumoniae (EXKP) and enteral K. pneumoniae (EKP) in neonates, indicating that the K. pneumoniae from the GI
tract is possibly to be a significant reservoir for causing extraintestinal infections.

Keywords: Klebsiella pneumoniae, Gastrointestinal colonization, Multiple locus sequence typing, Endogenic
infection, Antibiotic resistance

Background
Klebsiella pneumoniae is part of the healthy human
microbiome, providing a potential reservoir for infec-
tions. It is known that K. pneumoniae could asymptom-
atically colonize the skin, mouth, respiratory, and
gastrointestinal tracts (GI). K. pneumoniae was detected
in approximately 10% of Human Microbiome Project
samples collecting from the mouth, nasal cavity, and
skin, with an addition of 3.8% stool samples [1]. A 2010
study investigated nasopharyngeal colonization rates for
adults and children in Indonesian were 15 and 7%, re-
spectively [2], while another study reported that in the
Vietnamese adults, the nasopharyngeal and pharynx

colonization rates were 2.7 and 14%, respectively [3].
However, among body sites, GI colonization is likely to
be a common and significant reservoir in terms of trans-
mission and infection [4]. In addition, it was reported
that K. pneumoniae GI colonization rates in hospitalized
patients were estimated to be 20 to 38% [5–8]. Further-
more, among intensive care unit (ICU) patients, 48% of
screened patients with infection were positive for prior
GI colonization [9].
Moreover, K. pneumoniae has been recognized as one

of the most important opportunistic pathogens in the
human gut. Studies have demonstrated that trauma,
overuse of antibiotics, and inappropriate diet can destroy
the intestinal microecology and decrease probiotics in
the gut [10]. These factors could lead to the loss of
colonization resistance, allowing for the proliferation of
opportunistic pathogens such as K. pneumoniae and
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Pseudomonas aeruginosa (PA). These opportunistic bac-
teria can quickly increase in abundance and has the po-
tential to enter the blood, liver, and lungs, thus leading
to enterogenic infections [11, 12]. It was reported that
burn injury induces a dramatic dysbiosis of the intestinal
microbiome, consequently causing the overgrowth of
gram-negative aerobic bacteria, which have the potential
to translocate to the extraintestinal sites [13]. Accumu-
lating data [14–16] indicate that K. pneumoniae causing
late-onset blood infections are of gut origin. However, in
fact, we found that gut K. pneumoniae might be a reser-
voir for late-onset respiratory and blood infections.
Therefore, screening the characterization of the car-

riage K. pneumoniae isolates in high-risk patients, could
help us predict the probability of potential infections.
More importantly, the result of homology analysis of K.
pneumoniae will provide more evidence. As a result, our
study was designed to analyze the relationship between
infections and GI colonization among the neonates.

Results
Clinical characteristics of the patients
The clinical data of neonates was retrospectively
reviewed, and the details were partially shown in Table 1.
The 43 strains of different types of specimens were iso-
lated from 21 neonates: feces (n = 21, 48.8%), sputa (n =
19, 44.2%), and blood (n = 3, 7.0%). All patients were
treated with two or more antibiotics for a long time
(The usage of time of each antibiotic was shown in
Table 1), such as mezlocillin/sulbactam (MSU), moxa-
lactam (MOX), ceftazidime (CAZ), piperacillin /tazobac-
tam (TZP), cefotiam (CTF), and meropenem (MEM). All
neonates except neonate 1 were discharged after long-
stay treatments. Neonate 1 developed multiple organ
failure on account of the septicemia caused by K. pneu-
moniae. Considering the probability of the treatment
failure, the parents of neonate 1 gave up on further
treatments. Complete results were shown in Table 2.

Antibiotic sensitivity tests
The results of the antibiotic sensitivity tests in this study
showed that the isolates were resistant to different clas-
ses of antibiotics (Table 2). All the isolates (43/43) were
MDR (multiple drug-resistant) (MDR: Resistant to three
or more antimicrobial classes [17].). The proportion of
carbapenem resistance was 62.8% among all the isolates
(Table 2). In addition, we have compared the resistance
rates between the EKP and EXKP. Complete results were
shown in supplementary file 1.

Identification of β-lactamase genes and homology
analysis of strains
The β-lactamases were divided into four major classes
(A to D) by the Ambler scheme [18]. According to the

expression of β-lactamase genes, the genotypes were
classified into four types (I-IV) I: expressing class A and
B β-lactamases; II: expressing class A β-lactamases; III:
expressing class A and C β-lactamases; IV: expressing
class A and D β-lactamases. The drug resistant pheno-
types were divided into five types (A to E) according to
the antibiotic sensitive tests. A: resistant to penicillin,
penicillin/β-lactamase inhibitors and cephalosporins,
sensitive to monobactams and intermediate to
carbapenems; B: resistant to penicillin, penicillin/β-lacta-
mase inhibitors, cephalosporins, monobactams and
carbapenems; C: resistant to penicillin, penicillin/β-lacta-
mase inhibitors, cephalosporins and monobactams and
sensitive to carbapenems; D: resistant to penicillin, peni-
cillin/β-lactamase inhibitors, cephalosporins and carba-
penems and sensitive to monobactams; E: resistant to
penicillin and penicillin/β-lactamase inhibitors and
sensitive to cephalosporins, monobactams and carbapen-
ems. Detailed classifications were shown in Table
2.100% of the isolates (43/43) produced SHV (100%),
and most produced CTX-M-15 (79.1%, 34/43) and CTX-
M-1 (69.8%, 30/43). Three isolates were identified as
NDM-1 positive isolates. There were 12 patients (12/21,
57.1%) whose antibiotic resistance phenotypes, geno-
types and the ST types were concordant (When the anti-
biotic resistance phenotypes, genotypes, and the ST
types of the strains were concordant, the paired isolates
might be homologous.)Complete results were shown in
Table 2.
The STs of the isolates were determined and num-

bered using the international database of the Institute
Pasteur website, which showed an immense diversity
with the results presented in Table 2. The isolates were
distributed in six types of STs (ST37, 54,70, 29,1083,
1436), among which ST37 and ST54 were the most fre-
quently seen STs. Besides, our data indicated that the
ST37 was the main ST type in both the extraintestinal
and enteral isolates. The concatenated sequences of all
seven loci were used to draw a phylogenetic tree. The re-
sults showed that ST37 and ST1083 were homologous,
which belong to CC37 clone complex [19]. The result of
PFGE also demonstrated that ST37 and ST1083 were
homologous. Complete results were shown in Fig. 1 and
Fig. 2.

Pulsed-field gel electrophoresis analysis
Among five patients, the pulsed-field gel electrophoresis
analysis (PFGE) showed the paired isolates from patients
12,15 and 21 had identical and > 90% similarity in PFGE
patterns (Fig. 2).

Discussion
K. pneumoniae is known as the common cause of re-
spiratory tract infections, urinary tract infections (UTIs),
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and bloodstream infections (BSIs) [20]. K. pneumoniae
typically colonize human mucosal surfaces, including
nasopharynx and GI tract. The colonization rate varies
among different body sites, and also is different between
the community-acquired (CA) K. pneumoniae and the
hospital-acquired (HA) K. pneumoniae. It is estimated

that the rate of CA nasopharynx colonization was about
11%. The rate in adults is typically higher than that in
children [20]. However, the rate of HA nasopharynx
colonization is slightly higher, up to 19% [21]. Compared
to the nasopharynx, the CA GI colonization rate is esti-
mated to be around 3.9 ~ 5.9% [9]. Furthermore, the HA

Table 1 Clinical characteristics of the Klebsiella pneumoniae isolates

Case Sex Age Ward Diagnosis Antimicrobial
therapy

Use time of
antibiotic

Clinical
outcome

Isolates Sample

Patient 1 M 15 days Neonate Premature infant HIE MSU, MOX, MEM Unchanged K1 Blood

15 days K2 Sputum

K3 Feces

Patient 2 M 15 days Neonate Premature infant HIE MSU, CAZ, MOX 24 days Improvement K4 Sputum

K5 Feces

Patient 3 M 0 days Neonate Respiratory failure MSU, CAZ, MEM, MOX 50 days Improvement K6
K7

Sputum
Feces

Patient 4 F 4 days Neonate Neonatal pneumonia MSU, MOX, MEM 56 days Improvement K8
K9

Sputum
Feces

Patient 5 M 0 days Neonate Acute bronchopneumonia MSU, CAZ, MEM, TZP 75 days Improvement K10
K11

Sputum
Faces

Patient 6 M 0 days Neonate Neonatal encephalopathy MSU, CAZ, MEM 13 days Improvement K12
K13

Sputum
Feces

Patient 7 M 0 days Neonate Neonatal encephalopathy MSU, CTF, MEM 13 days Improvement K14
K15

Sputum
Feces

Patient 8 M 0 days Neonate Neonatal pneumonia MSU, TZP, MEM 16 days Improvement K16
K17

Blood
Feces

Patient 9 M 0 days Neonate Respiratory failure MSU, TZP, MEM 45 days Improvement K18
K19

Sputum
Feces

Patient10 M 0 days Neonate Neonatal encephalopathy MSU, TZP, CTF 42 days Improvement K20
K21

Sputum
Feces

Patient11 M 0 days Neonate Neonatal pneumonia MSU, TZP, CTF,
MEM, CAZ

42 days Improvement K22
K23

Sputum
Feces

Patient12 F 6 days Neonate Neonatal pneumonia MSU, TZP, CTF,
MEM

42 days Improvement K24
K25

Sputum
Feces

Patient13 M 10 days Neonate Neonatal pneumonia MSU, TZP, MEM 29 days Improvement K26
K27

Sputum
Feces

Patient14 M 5 days Neonate Neonatal pneumonia MSU, CTF, MEM 51 days Improvement K28
K29

Sputum
Feces

Patient15 F 25 days Neonate Neonatal pneumonia MSU, MOX, CAZ, MEM 41 days Improvement K30
K31

Sputum
Feces

Patient16 M 0 days Neonate Neonatal pneumonia MSU, TZP, MEM, MOX 51 days Improvement K32
K33

Sputum
Feces

Patient17 M 30 days Neonate Neonatal pneumonia MSU, CTF, MEM 24 days Improvement K34
K35

Sputum
Feces

Patient18 M 0 days Neonate Respiratory failure MSU, CAZ, TZP, MEM 31 days Improvement K36
K37

Sputum
Feces

Patient19 M 17 days Neonate Respiratory failure MSU, CAZ 48 days Improvement K38
K39

Sputum
Feces

Patient20 M 20 days Neonate Respiratory failure CAZ, TZP, SCF 48 days Improvement K40
K41

Sputum
Feces

Patient21 M 7 days Neonate Respiratory failure MSU, SCF 11 days Improvement K42
K43

Sputum
Feces

M male; F female; MSU mezlocillin/sulbactam; MOX moxalactam; MEM meropenem; CAZ ceftazidime; TZP piperacillin/tazobactam. CTF cefotiam;
SCF cefperazone/sulbactam
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GI colonization rate varies from 23 to 30% [22, 23]. It
was reported that the GI carriage of K. pneumoniae was
related to the subsequent HA infections [6]. In 2017, a
study which explored the association between GI
colonization and infections. Showed that the rate of K.
pneumoniae infections was much higher for the GI
colonization patients compared with the patients who
were culture-negative (16% vs 3%) [9]. However, for the
neonates, intestinal colonization occurred immediately
after birth [24]. When some pathogens colonize the gut,
it might result in the later subsequent infections. Com-
pared to the neonates who were non-colonized, the like-
lihood of the colonized-neonates developing subsequent
infections was remarkably higher (24.8% VS 1.9%). The
percentages of the nasopharynx and GI K. pneumoniae
colonization were respectively 29 and 36.8% in the hos-
pitalized neonates [25]. Furthermore, a study showed

that the GI K. pneumoniae could invade and penetrate
the intestinal epithelium, which indicated that GI K.
pneumoniae could cause extraintestinal infections. This
transcellular translocation mechanism is exploited by K.
pneumoniae strains from the gut caused systematic in-
fections by this transcellular mechanism [26]. Although
there was a close relationship between colonization and
infections, the homologous relationship between the GI
colonized isolates and extraintestinal isolates has not
been reported yet.
In our study, all the isolates (43/43) were MDR K.

pneumoniae, and 27 strains were resistant to carbapen-
ems with a drug resistance rate of 62.8%. The proportion
was moderately higher than 54% in adult that published
by World Health Organization [27], while considerably
higher than the proportions of 24.7 and 29.8% found in
previous studies in the neonates [28, 29].

Fig. 1 The UMPGA dendrogram, sequence types (STs), and genotypes of 43 Klebsiella pneumoniae isolates from 21 patients. The tree shows that
ST37 and ST1083 were related. In our previous study, ST37 and ST1083 belong to the same clone complex CC37 [19]
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One hypothesis indicating that GI colonization was
likely to be a significant reservoir in terms of transmis-
sion and infections [4]. Furthermore, some drug-
resistant genes which were mediated by plasmids could
be acquired or lost during bacterial translocation [20].
Based on this hypothesis, the drug-resistant phenotypes
might be affected by the loss or acquisition of the β-
lactamase genes. In our study, the CTX-M-1, CTX-M-
14, CTX-M-15, and TEM-1 were expressed differently
between feces and other samples. These genes belong to
plasmid-mediated ESBLs [18]. In this case, the drug
resistant genotypes and phenotypes were divided into
different groups as per the antibiotic sensitivity tests and
the expressions of the β-lactamase genes. The results
showed that there were 12 patients (12/21, 57.1%) whose
paired isolates might be homologous. The data demon-
strated that the GI tract might be a significant reservoir
for causing extraintestinal infections.
The majority of the isolates were resistant to β-lactam

antibiotics. The resistance observed in the present study
might be attributed to the expression of resistance genes
such as β-lactamase genes. NDM-1 appeared in 7% of
isolates, which was first identified in 2006. After it was
first identified, it was predominantly found in K. pneu-
moniae and E. coli. Since 2010, the bacteria producing
NDM-1 had been reported worldwide. In China, NDM-
1 producing K. pneumoniae has been frequently
reported in neonates [30, 31]. The STs of blaNDM-1-
producing K. pneumoniae mainly included ST11, ST16,
ST20, ST37, ST70, ST147, and ST1419 [32–35]. But our
data indicated that the ST54 was the only NDM-1 pro-
ducing type. In most cases, bacteria with NDM-1 were
resistant to almost all antibiotics. Moreover, the dissem-
ination has been facilitated by horizontal gene transfer.
That being so, reliable detection and surveillance are of
great importance in preventing the clonal outbreaks.

Although these isolates showed high drug resistance
and high rates of resistance genes, just one neonate
(patient 1) acquired a poor prognosis upon treatment
with antibiotics.
To confirm whether the isolate pairs were homologous

or not, a UMPGA tree was drawn by employing
MEGAX to further analyze the homology among the dif-
ferent isolates from the same patients. Excluding the
completely concordant strains, the analysis of the hom-
ology among ST37 and ST1083 should be confirmed.
According to the analyses, ST37 and ST1083 were in the
same cluster (two alleles of the 7 housekeeping genes
differed), concluding that the two were closely related
and the results validated a great deal of our previous re-
search [19]. The PFGE also indicated that ST37 and
ST1083 were homologous. Moreover, our data indicated
that ST37 were the main epidemic clones in the Neonate
Ward, which showed consistency with what found in
other studies [19, 30]. It is discovered that ST37 are pre-
sumably to be a potential high-risk MDR K. pneumoniae
clonal lineage [36]. In our study, the results of MLST
were consist with PFGE. Furthermore, it is reported that
carriage of carbapenem-resistant K. pneumoniae (CRKP)
in the GI tract may precede and possibly serve as a
source for subsequent clinical infections in approxi-
mately 9% of carriers [37, 38]. And these carriers may
act as a significant reservoir for the dissemination of
CRKP in the healthcare facilities [39–41]. Combined
with our study, active surveillance for detecting CRKP
colonization is critical for preventing the CRKP from
spreading. Besides, according to the guidance of CDC
for control of Carbapenem-Resistant Enterobacteriaceae
(CRE), screening rectal cultures of CRE is an important
strategy for CRE prevention [42].
The main strength of our study is the use of multiple

approaches to characterize the isolates and their

Fig. 2 Dendrogram comparing PFGE profile of K. pneumoniae (patients 12, 15 and 21) together with the results of MLST. The PFGE shows that
the paired isolates from patients 12, 15 and 21 had identical and > 90% similarity in PFGE patterns
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similarity to one another in the neonates. However,
there are several limitations. First, neonatal cases are dif-
ficult to collect, only 21 neonatal patients were collected
for analyzing. Second, because of the limitation of ex-
perimental conditions, only 10 paired strains from 5 pa-
tients were selected randomly for PFGE.

Conclusion
In this study, we found there was an apparently close
phylogenetic relationship between the extraintestinal
and enteral strains. This conclusion is a reminder that K.
pneumoniae which colonizes in the intestine can also in-
duce infections in other parts of the body. Once the
Amp C, KPC, and NDM-1 genes are successfully trans-
ferred, acquired resistance will potentially cause severe
infections. Therefore, the hospital should screen the
CRKP which colonized in the gut to limit and prevent
current and future outbreaks.

Methods
Bacterial strains and clinical characteristic
Samples isolated from the feces, sputa, and blood were
collected from the neonates infected with K. pneumo-
niae. All the sputum samples were collected from the
neonates who were diagnosed with neonatal pneumonia,
acute bronchopneumonia, and bronchitis. Diagnoses
were made based on both clinical and radiologic find-
ings. The strains isolated from the same patient were
paired. Forty-three isolates of K. pneumoniae were col-
lected from feces, sputa, and blood of 21 neonates. All
the neonates were admitted to the Second Xiangya Hos-
pital of Central South University, China, from July 2014
to April 2015. All the data of the neonates were col-
lected by chart review from the hospital’s unified elec-
tronic database. These isolates were identified by using
the BD Phoenix 100 Automated Microbiology System
(BD Diagnostic Systems, MD, USA). Escherichia coli

Table 3 Primers used in this study

Primers Primers sequence (5′-3′) Annealing
temperature (°C)

Length of products
(bp)

Ref.

NDM-1 Sense: 5′-CCGCAACCATCCCCTCTT-3′
Anti: 5′-CAGCACACTTCCTATCTC-3′

53 888 This study

KPC-2 Sense: 5′-GGCACTTTTCGTTCCA-3′
Anti: 5′-ATGATTTTCAGAGCCTTACT-3′

52 1003 This study

OXA-1 Sense: 5′-CTGTTGTTTGGGTTTCGCAAG-3′
Anti: 5′-CTTGGCTTTTATGCTTGATG-3′

55 440 This study

OXA-2 Sense: 5′-TAAGCAACACCGACAGG-3′
Anti: 5′-TCGTGATGAGTTCCAGAT-3′

51.2 879 This study

OXA-9 Sense: 5′-ACAGCGGAGCAATGAAG-3′
Anti: 5′-CGACAAAGCGTAGAAGAAAC-3′

52.6 549 This study

OXA-48 Sense: 5′-TTTTCCTGTTTGAGCACT-3′
Anti: 5′-TACCCGCATCTACCTTT-3’

50 586 This study

OXA-181 Sense: 5’-5CGTTATGCGTGTATTAGC-3′
Anti: 5′-CACTTCTTTTGTGATGGC-3’

51 775 This study

CTX-M-1 Sense: 5’-CAGCGCTTTTGCCGTCTAAG-3′
Anti: 5′-GGCCCATGGTTAAAAAATCACTGC-3’

60 945 [44]

CTX-M-2 Sense: 5’-CTCAGAGCATTCGCCGCTCA-3′
Anti: 5′-CCGCCGCAGCCAGAATATCC-3’

61.5 843 [44]

CTX-M-8 Sense: 5’-ACTTCAGCCACACGGATTCA-3′
Anti: 5′-CGAGTACGTCACGACGACTT-3’

52.5 1024 [44]

CTX-M-14 Sense: 5’-GCAGATAATACGCAGGTG-3′
Anti: 5′-GCTGGGTAAAATAGGTCAC −3’

55.1 640 This study

CTX-M-15 Sense: 5’-ATTAGAGCGGCAGTCGG-3′
Anti: 5′-AAGGAGAACCAGGAACCAC-3’

55.1 883 This study

CMY-4 Sense: 5’-GCCGTTGCCGTTATCTAC-3′
Anti: 5′-CCAATGCCACTTTGCTGT-3’

55.2 796 [45]

CMY-8 Sense: 5’-AGCGGTAAACGAGTGAG-3′
Anti: 5′-AGTAATGCCCTTTGTGG-3′

52 1042 [45]

TEM-1 Sense: 5′-TTCGTGTCGCCCTTATTC-3′
Anti: 5′-ACGCTCGTCGTTTGGTAT-3′

55 512 This study

SHV Sense: 5′-GCCTTTATCGGCCTTCACTCAAG-3′
Anti: 5′-TTAGCGTTGCCAGTGCTCGATCA-3′

60 898 [44]
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ATCC 25922 and K. pneumoniae ATCC 700603 were
used as quality control strains.

Antibiotic susceptibility testing
All bacterial isolates were subjected to antibiotic sensi-
tivity tests using the agar dilution method following the
standard antibiotic susceptibility test chart from the
CLSI guidelines [43]. The results were interpreted by
measuring the minimum inhibitory concentrations
(MICs) which were determined as the lowest concentra-
tion of antibiotics at which the strains showed no visible
growth after overnight incubation at 37 °C. The isolates
resistant to carbapenems were verified with the Kirby-
Bauer/disk diffusion method following the CLSI guide-
lines [43].

PCR and sequencing for resistant genes
Genomic DNA from the isolates was prepared for PCR
and genetic analyses using the TIAN amp Bacterial
DNA Kit (Tian Gen Biotech, Beijing, Co., Ltd.). The β-
lactamase antibiotic resistance genes which were preva-
lent in K. pneumoniae were mainly detected (including
NDM-1, KPC-2, OXA-1, OXA-2, OXA-9, OXA-48,
OXA-181, CTX-M-1, CTX-M-2, CTX-M-8, CTX-M-14,
CTX-M-15, CMY-4, CMY-8, TEM-1, and SHV; Table 3).
These resistance genes were screened through PCR as-
says, and the PCR products were sent to Sangon Biotech
(Shanghai)Co., Ltd. for sequencing analysis. The entire
sequence of each gene was compared to the sequences
in the Gen-Bank nucleotide database at http://www.ncbi.
nlm.nih.gov/blast/.

Multiple locus sequence typing
The MLST assay was performed as previously described
[43]. Briefly, seven K. pneumoniae housekeeping genes
(infB, tonB, pgi, gapA, phoE, rpoB, and mdh) were ampli-
fied and sequenced. Alleles and STs were assigned using
the K. pneumoniae MLST database (http://bigsdb.web.
pasteur.fr/klebsiella/klebsiella.html).

Phylogenetic relationship
The products of the housekeeping genes were compared
and analyzed by utilizing the program BLAST. To ex-
plore the phylogenetic relationship among the isolates,
the seven loci (rpoB, gapA, mdh, pgi, infB, phoE, and
tonB) of each isolate were concatenated and aligned
using the Clustal X program. An evolutionary tree for
the data set was formed by the UMPGA tree using the
software MEGA X. The stability of the phylogenetic rela-
tionship was evaluated by bootstrap analysis based on
1000 replicates [46]. The tree was drawn to scale, with
branch lengths in the same units as those of the evolu-
tionary distances used to infer the phylogenetic tree [47].

PFGE
We performed PFGE analysis using Bio-Rad syste m[48].
First, bacterial suspension was prepared, and then the
restriction enzyme XbaI was used. Second, the electro-
phoretic gel was imprinted, and stained with ethidium
bromide. Finally, electrophoretic images were analyzed
with the software BioNumerics (Applied Maths, Inc.). A
similarity coefficient > 80% was selected to define a
major cluster.

Statistical analysis
All data were analyzed with SPSS 19.0 statistical soft-
ware. Categorical variables were evaluated by the Fisher’s
exact test. Values were presented as percentages of the
group from which they were derived (categorical vari-
ables). A p value of < 0.05 was considered statistically
significant. Bio Numerics 5.10 software was used for
PFGE.
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