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Abstract

Background: Phylogenetically closely related strains of maternally inherited endosymbiotic bacteria are often found
in phylogenetically divergent, and geographically distant insect host species. The interspecies transfer of the
symbiont Wolbachia has been thought to have occurred repeatedly, facilitating its observed global pandemic. Few
ecological interactions have been proposed as potential routes for the horizontal transfer of Wolbachia within
natural insect communities. These routes are however likely to act only at the local scale, but how they may
support the global distribution of some Wolbachia strains remains unclear.

Results: Here, we characterize the Wolbachia diversity in butterflies from the tropical forest regions of central Africa
to discuss transfer at both local and global scales. We show that numerous species from both the Mylothris (family
Pieridae) and Bicyclus (family Nymphalidae) butterfly genera are infected with similar Wolbachia strains, despite only

habitats, or even ecoregions.

hosts, as well as across environmental scales.

minor interclade contacts across the life cycles of the species within their partially overlapping ecological niches.
The phylogenetic distance and differences in resource use between these genera rule out the role of ancestry,
hybridization, and shared host-plants in the interspecies transfer of the symbiont. Furthermore, we could not
identify any shared ecological factors to explain the presence of the strains in other arthropod species from other

Conclusion: Only the systematic surveys of the Wolbachia strains from entire species communities may offer the
material currently lacking for understanding how Wolbachia may transfer between highly different and unrelated
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Background

The maternally inherited endosymbiont Wolbachia is
present in more than 20% of all insect species, making
this bacterium one of the most successful organisms on
Earth [1-3]. Although host-Wolbachia co-divergence is
relatively common between Nematode hosts and their
Wolbachia strains, similar examples of co-divergence
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between insect hosts and their Wolbachia strains remain
scarce ([4, 5], but see [6]). These patterns thus suggest
that Wolbachia may have jumped horizontally between
host species throughout the ~400 million years of the
symbiont evolutionary history [5, 7-10]. Hybridization
events, followed by introgression between closely related
species have been shown to support the interspecies
transfer of various genetic entities, including Wolbachia
[11-13]. Although recent common ancestry is an obvi-
ous reason to why two species can carry the same sym-
bionts, studies have shown that it is not the only one

(Fig. 1).
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Fig. 1 The micro-habitat of the Mylothris and Bicyclus butterflies in an African tropical forest habitat, and the diverse potential routes of transfer of
Wolbachia between and within the butterfly species. In orange the routes that remain to be fully tested, with unlikely routes in dashed lines. (M):
Mistletoe, the host-plant of Mylothris butterflies, and (G): Grass, the host-plant of Bicyclus butterflies. Butterfly images modified from pictures by

authors HWG and RT

Various ecological interactions between hosts appear
to support the horizontal transfer (HT) of Wolbachia
between highly divergent species. Through the study of
Diptera associated with fleshy mushrooms, Stahlhut
et al. [14] suggested that the HT through species
hybridization occurs between species of this community,
but that shared food-resources may also provide an effi-
cient support for the horizontal movement of the bacter-
ium between divergent host species. Similar conclusions
were drawn from the study of an insect community feed-
ing on pumpkin plants [15]. Analogously, an investiga-
tion of the Wolbachia infection status of parasitoid
wasps showed that the wasps can act as both vectors
and hosts for Wolbachia, as the parasitoids were found
to carry similar Wolbachia strains as those found in
their hosts [16, 17], and as those found in the other
parasitoid species feeding on the same hosts [7].
Although exploring each potential transfer route inde-
pendently is informative [9, 18, 19], the distribution of
Wolbachia in the host phylogeny is likely to be the result
of a combination of both the host cladogenesis, and di-
verse horizontal transfer events between host species,
the mechanisms of which yet remain to be characterized.
Investigating horizontal movements of the endosymbiont
between a wider diversity of host species, including spe-
cies sharing micro or macro-niches, will increase our

understanding of the diverse routes used for the HT of
Wolbachia, and thus broaden our understanding of this
symbiont’s global success.

Butterflies in the genera Mylothris and Bicyclus seem
to be an ideal model for studying of the inter-clade
transfer of Wolbachia. The two genera (belonging to the
families Pieridae and Nymphalidae, respectively) have di-
verged from each other about 97 My ago [20]. They rep-
resent two of the most species-rich genera of African
butterflies, each including about 100 species [21, 22].
Both Mylothris and Bicyclus butterflies share similar
geographical distributions, covering the Afrotropical re-
gion [23-25]. They include specialists for the same types
of macro-habitats, from primary forests to forest edges
and savannah grasslands [26, 27]. However, despite the
syntopic occurrence of many species, the two genera
mostly differ in the micro-habitat use. Most distinctively,
they inhabit different vertical layers of the habitat [27].
The Mylothris species often prefer higher strata [27],
where their larval host-plants (mistletoes mostly from
Loranthaceae and Santalaceae families) occur [28-30],
while the Bicyclus species occur predominantly in the
undergrowth of the habitat [27], around their grassy lar-
val host-plants (mostly Poaceae family, but sometimes
Marantaceae or Zingiberaceae) [31, 32]. The two clades
differ also in their adult food resources. Whilst Mylothris
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butterflies are commonly nectaring on various plant spe-
cies (Tropek, unpublished data), Bicyclus are mostly
fruit-feeders and sap-suckers and are observed on
flowers only occasionally [33, 34]. On the other hand,
species from both clades are observed mud-puddling,
during which they could interact.

Prior to this study, Mylothris agathina was possibly
the only Mylothris species to be known to carry Wolba-
chia [35, 36]. Earlier, Poulton [37] described an all-
female brood in a species he referred to as M. spica, in
Cameroon. This particular phenotype could be suggest-
ive of an infection with a sex-ratio distorting Wolbachia
strain, similar to the ones infecting Acraea encedon, A.
encedana [13], or Hypolimnas bolina [38], but this has
yet to be fully tested. In contrast, a recent study showed
that at least 19 Bicyclus species carry Wolbachia [39].
Many of the strains characterized in the divergent Bicy-
clus species shown high genetic similarity [39], and were
also similar to strains described earlier in various insects,
including Lepidoptera, from other geographic regions [9,
19, 40]. These patterns are suggestive of the horizontal
acquisition of the bacterium between Bicyclus species,
though the mechanisms of the transfers remained
unclear.

We predicted that butterflies belonging to the same
genus could share similar strains of Wolbachia due to
recent common ancestry, and the possibility of HT by
the means of hybridization events and shared larval
host-plants. We did not expect the same to be true be-
tween the two host genera, as the hybridization between
individuals of different families is impossible, and as the
two genera studied here do not share micro-habitats (as
stated above). To further looked at the potential role of
geographic distribution and habitat on any particular
ecological routes to the transfer of the symbiont between
species, we included Wolbachia strains previously char-
acterized from any Lepidoptera, any Hymenoptera
(many of which could be parasitoid species of Lepidop-
teran larvae), and any other African arthropods, to the
analyses. Finally, we call upon the investigation of more
insect communities across the globe, and upon the revi-
sion of the current MLST-based Wolbachia strain and
strain-type (ST) characterization method.

Results

Wolbachia screening and strain diversity

Out of the 225 Mpylothris butterflies screened, 70
specimens (31%) were found infected with Wolbachia,
representing 23 of the 53 species (43%) included in the
study. Similarly, 15 out of the 63 Bicyclus specimens
(24%), representing 10 out of 21 species (47.5%)
screened, were infected with Wolbachia. This brings the
total number of Bicyclus species known to carry Wolba-
chia to 23 (19 described by [39], and four new ones in
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the present study). One of the two Aphysoneura scapuli-
fascia specimens included in this study was also found
to host Wolbachia, while the three Brakefieldia peitho
specimens were uninfected. We successfully sequenced
between three and six Wolbachia markers for 66 of the
86 butterflies (77%) found infected with the symbiont.

There was a higher detectable diversity of B-
supergroup than A-supergroup Wolbachia strains in the
Mylothris and also in the Bicyclus butterflies (Fig. 2, S1,
and S2, and Table S1, Table S2). Most of the infected
specimens were infected with B-supergroup Wolbachia
(NMylothris =57; NBicyclus =13; NAphysoneura =1, or 81.5, 87
and 100% respectively), while the other infected speci-
mens carried A-supergroup Wolbachia. Our analyses
suggested that the strains clustered within two divergent
A-supergroup strains (Al and A2), and four B-
supergroup strains (B1-B4), some belonging to the
Strain-Type ST-19, ST-40, ST-108, ST-187, and ST-423
(Fig. 2) [39], and other STs not yet characterized in the
pubMLST-Wolbachia. However, the Bicyclus and
Mylothris species studied here did not carry any strain of
the ST-41, which was previously suggested as highly
common in Lepidoptera [9, 40]. The host species M.
uniformis, M. yulei, and M. asphodelus were found to
carry two infections, each as single infection (i.e. differ-
ent specimens of the same species carry different Wolba-
chia strains); and we suggest multiple infections in five
butterflies (2x M. agathina and 3x M. bernice), as double
peaks in the chromatogrammes from these specimens
were observed, even after repeating sequencing on inde-
pendent PCR products. Finally, the sequencing failed for
two Wolbachia-infected samples (HWG1_176: M.
crawshayi, and HWG1_211: M. asphodelus; Table S1),
which has not allowed us to conclude on the identity of
the infection in these specimens.

Wolbachia host specificity
From our dataset, there was no effect of cladogenesis on
whether two species carry similar Wolbachia strains,
with no pattern of co-evolution between the butterflies
and their respective infections (Fig. 2). For example, The
Wolbachia strain variants ‘B4’ (Fig. 2) are found in spe-
cies from at least five divergent Bicyclus species-groups,
including the evadne-group, the saussurei-group, the
angulosa-group, the trilophus-group and the hewitsoni-
group [41]. Additionally, many of the Wolbachia strains
characterized in the Mpylothris butterflies (family Pieri-
dae, in blue in Fig. 2) were similar to those from the
Bicyclus butterflies (family Nymphalidae, in blue in Fig.
2) [39] (Table S3), and to some from other Lepidoptera,
or other insects (Figure S3).

Finally, we could not detect any clustering of the
strains based on their host habitats (i.e. open savannah
versus forest) (Fig. 2, S1, and S2), nor based on their
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Fig. 2 Phylogenetic tree of the Wolbachia strains and strain variants characterized from the Mylothris and Bicyclus butterflies, with habitat type
inhabited by the host species, with bootstrap values. The tree was built using the concatenated sequences of the Wolbachia MLST and wsp
markers. Additional Wolbachia strains characterized from Brugya malayi nematode (D-supergroup strain) and Opistophthalmus scorpions (F-
supergroup strains) were added as outgroup. Strain variants A1, A2, and B1 to 4, including characterized Strain-Types, are shown on the right side

B2 (ST40/ST423)

__ B3 (ST108)

— B4 (ST187)

host ecoregions (e.g. Afrotropics versus Oceania) (Figure
S3). Strong biases however occur in the dataset used for
the present study. There were for example very few
Wolbachia strains characterized from host species
evolving in certain ecoregions available in the
PubMLST-Wolbachia database, especially from the
Neotropics or the Nearctics. Additionally, the dataset is
incomplete (i.e. missing data about habitats of the
Hymenoptera species).

Discussion

We predicted that butterflies belonging to the same
genus would share similar strains of Wolbachia due to
recent common ancestry, and the possibility of HT by
the means of hybridization events, and/or shared re-
sources. We did not expect the same to be true between
genera as any hybridization is impossible, and the
butterflies of the two genera considered in this study
only share similar macro-habitats (i.e. forest and open
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savannah), but not micro-habitats (i.e. larval host-plant).
Our data did not support co-cladogenesis of Wolbachia
in the African butterflies, but still partially supported the
first prediction. Within each genus, many species carry
similar strains to the one found in congeneric species,
but not always. However, the same was also true
between genera, which contrasts with our second predic-
tion. The occurrence of similar Wolbachia strains in
both of the two Lepidoptera families (Pieridae and
Nymphalidae) is unlikely to occur through shared ances-
try, nor through horizontal transfer via the larval host-
plants. This is in a clear contrast with the insect com-
munities associated with fleshy mushrooms [14], and
pumpkin plants [15]. These results suggest that factors
other than the larval host-plants must support the trans-
fer of Wolbachia between host species. The study of the
horizontal transfer of Wolbachia between host species
might however be currently skewed by (1) our restricted
knowledge of the ecology of each species within insect
communities, (2) the strong biases associated with the
available Wolbachia strain diversity dataset, and (3) the
way we characterize the different strains of the bacterium.

As it is the case for many species, especially in the
Afrotropics, many aspects of the ecology of the Mylo-
thris and Bicyclus butterflies remain unfortunately
poorly studied. To date, almost all ecological studies of
the Mylothris butterflies focus on their association at the
larval stage to mistletoe plants (e.g. Santalaceae family)
[28-30, 42] in their native Afrotropical range [23-25],
neglecting other aspects of their life history. There is
currently no available comprehensive record, or formal
study looking at the community of parasitoid wasps or
mite communities associated with any Mylothris or Bicy-
clus butterflies. To our knowledge, Gupta et al. [43] pro-
vided the only description of Cotesia pistrinariae as a
parasitoid wasp of M. chloris; but it remains unknown
whether C. pistrinariae could also parasitize any Bicyclus
species, or vector Wolbachia between insect hosts. Our
phylogenetic tree suggests several examples of parasitoid
wasps sharing similar infection to Bicyclus or Mylothris
butterflies, however in each case the direct contact be-
tween the Hymenoptera and the Lepidoptera species are
unlikely [9], due to geographical or ecological reasons,
or both. For example, despite sharing similar Wolbachia
strains, the braconid parasitoid wasp Apanteles chilonis,
an endoparasitoid of the rice stem borer Chilo suppres-
salis [44] in the Palearctic, is unlikely to parasitize B.
vulgaris or B. auricruda in the Afrotropics. Similarly,
Evania appendigaster, a parasitoid of cockroaches [45],
is also unlikely to predate on B. ignobilis or B. xeneas.
Only systematic surveys of the Wolbachia strains from
species communities, rather than individual species or
clades, could potentially offer the material currently
lacking for testing how a single strain of Wolbachia may

Page 5 of 9

occur in highly different hosts and environments. Inves-
tigating the Wolbachia infection status of the commu-
nity of endo- and ectoparasites associated with the
Bicyclus and Mylothris butterflies, should thus inform
whether these parasites can act as vectors of Wolbachia
among the two genera of butterflies, as it was previously
suggested in other insects, including flies, mosquitoes
and ants [7, 19, 46].

Wolbachia is known to survive in an extracellular
phase in the laboratory for up to a week [47]. Although
Mylothris and Bicyclus larvae use very different host-
plants and adult food resources [48, 49], the adult
butterflies of both genera have occasionally been ob-
served sucking from the same mud-pools or animal
feces. By potential being the only nutrient resources
shared by the two genera (Tropek, pers. comm.), mud-
pools and feces could thus represent suitable short-term
environments supporting the survival of Wolbachia until
its successful horizontal transfer to a new host niche.
This, however, remains to be tested.

Although the origin of Wolbachia supergroups A and
B is estimated to be 200 My ago (based on whole gen-
ome data, [50]), the divergence of the strains within each
supergroup is most likely much younger (e.g. estimated
around 28 My ago by Ahmed et al. [9] based on the
MLST markers only), and does not match the diver-
gence between Pieridae and Nymphalidae butterflies (97
My ago, [20]). This further support our claim that co-
cladogenesis is improbable, and strains have not been
passed down from their common ancestor or transferred
via hybridization events between the butterfly species.
Additionally, the ecological links described so far as po-
tential routes for the recent transfer of Wolbachia be-
tween species can only explain local HTs of the
bacterium. Nonetheless, Ahmed et al. [9] found that
strain type ST-41, a strain type commonly characterized
in butterflies [9, 40], was found in species from Africa
(i.e. Azanus mirza; Lycaenidae), Japan (i.e. Eurema
hecabe; Pieridae), Borneo (i.e. Nacaduba angusta; Lycae-
nidae) and North America (i.e. Celastrina argiolus;
Lycaenidae). Following these results, we show that Mylo-
thris and Bicyclus butterflies in Africa share similar Wol-
bachia strains to, for example, Lycaenidae from South
Africa (with ST-19) or Malaysia (with ST-40) [9], or
moths from the Pacific islands [51], and potentially to
many other species in between these two geographical
regions. None of the geographically distant host spe-
cies described in these two studies are likely to share
the same host-plants, parasitoids nor mite parasites.
Despite the lack of a clear understanding of ‘how’, the
research community however agrees that the ability of
Wolbachia to transfer horizontally has without a
doubt contributed to the global pandemic of the bac-
terium [52].
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A recent study by Detcharoen et al [53] estimated that,
to date, more than 99% of all existing Wolbachia strains
have yet to be characterized; worse: that strong biases
occur in the database. The PubMLST-Wolbachia data-
base [18] currently includes over 2000 strains. Out of
those, 370 are from Lepidoptera species (18.3%), which
is more than for the Coleoptera (92; 4.6%), the Hemip-
tera (297; 14.7%), and the Hymenoptera (359; 17.8%),
but less than the Diptera (473; 23.4%). Thus, strains
from particular insect orders, but also host families are
more represented. Furthermore, in Lepidoptera for
example, most of the Wolbachia strains were character-
ized from species inhabiting the Palearctic ecoregion
(N =107; 29%), while very few are from the Afrotropics
(N=18; 5%). And this pattern at the ecoregion level is
similarly found in the other insect orders, representing
another important bias in the PubMLST-Wolbachia
database. Although the present study brings new data
for the Afrotropic region, showing for example that the
ST-41 commonly found in Lepidoptera [9], is not found
in the Mpylothris and Bicyclus, many biases still remain,
and they will continue to impede the comprehensive
study of the diversity and geographical distribution of
Wolbachia strains, as well as our understanding of the
mechanisms behind their pandemic.

The commonly applied method to characterized
Wolbachia strains is based on the sequences of six
markers for a maximum length of about 3000 bp [18].
This molecular technique has recently been highly
criticized [54]. New studies are pushing towards the
use of whole genome data, which seems to more ac-
curately infer Wolbachia supergroup phylogeny and
origin [50, 55]. Although still rather expensive, whole
genome sequencing can not only provide the material
to improve our understanding of Wolbachia strain di-
versity, its diversification rates, and its HT, but can
also support the investigation of the ecology and evo-
lution of the bacterium, including for example its
ability to modify its host phenotype [56], and maybe,
one day, its ability to establish in a wide range of
host species.

The horizontal transfer of Wolbachia between insect
hosts was already suggested in the early 90’s [57, 58].
Our study contributes to the growing literature showing
that ecological links between species can act as platforms
to the between species transfer of the symbiont, however
no common understanding of this process and the rela-
tive importance of each transfer route has yet been pro-
posed. Furthermore, our study also re-enforces the idea
that biases in the dataset, and restrictions in the meth-
odological approaches associated with such study, will,
until solved, continue to impede our comprehensive
analyses and understanding of the global Wolbachia
pandemic.
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Methods

Material

All Mylothris specimens used in this study originated from
the private collections of Haydon Warren-Gash and
Robert Ducarme, and from the African Butterfly Research
Institute ‘ABRI" holding, which were collected under vari-
ous local collection permits. All Bicyclus, Aphysoneura
and Brakefieldia specimens were collected under research
permits from the Cameroonian government to Dr. Robert
Tropek. Tissue material from 225 adult butterflies from
53 Mpylothris species [22], 63 specimens from 21 Bicyclus
species, two specimens of Aphysoneura scapulifascia, and
three specimens of Brakefieldia peitho were included in
the present study. The sample size for each species, and
country of origin of each specimen can be found in the
document available from Zenodo (doi:https://doi.org/10.
5281/zen0do.3934112).

Habitats and ecoregions

The world’s terrestrial lands have been divided in eight
biogeographic realms, which delineations do not follow
countries boundaries, but are defined by the evolution-
ary history of the organisms they contain [59, 60]. The
eight biogeographic realms, here called ecoregions for
simplicity, are (1) Afrotropic (Trans-Saharan Africa and
Arabia), (2) Antarctic, (3) Australasia (Australia,
NewGuinea, and New Zealand), (4) Indo-Malay (Indian
subcontinent Southeast Asia and Southern China), (5)
Nearctic (North America), (6) Neotropic (South and
Central America and the Caribbean), (7) Oceania (South
Pacific islands), and (8) Palearctic (Eurasia and North
Africa) [60]. Each of these ecoregion covers a wide diver-
sity of biomes, or habitats. The Mylothris and Bicyclus
butterflies evolve only within the Afrotropical region
[23-25], but different species are found from either
dense primary forests (i.e. forest habitat), forest edges
(i.e. mixed habitat), or open savannah grassland habitats
(i.e. open habitat) (Fig. 2) [61].

Molecular work

DNA was extracted from legs from each butterfly
following the protocol of a Qiagen DNeasy Blood & Tis-
sue Extraction Kit (Qiagen, USA). We screened all speci-
mens for Wolbachia, using Wolbachia specific primers
amplifying the wsp gene (81F/691R, [62]), and three to
five of the Wolbachia Multi Locus Sequence Typing
markers (MLSTs, [18]). All sequences were aligned and
manually curated in Geneious R11.0 (http://www.ge-
neious.com, [63]), and submitted to GenBank under the
accession codes: MT669957-70007 & MT782897-3039.

Genetic data from additional Wolbachia strains
In order to (I) identify whether the sequences from the
Wolbachia characterized from our butterfly samples
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were unique or not to their host species, and (II)
characterize any potential route of transfer of the strains
between species (Fig. 1), we fished out the sequences of
the wsp and MLST markers, from all Lepidoptera, all
Hymenoptera, and all other African arthropods that
were available from the PubMLST-Wolbachia database
by December 2019 [18]. Many of the records from this
database were from specimens of the same species and
the same population, we thus randomly deleted some of
the duplicates to keep a maximum of three of each type.
Additionally, we included all wsp and MLSTs sequences
from Wolbachia strains previously characterized from
Bicyclus species [39] (GenBank IDs: KY658538-52,
KY658652, KY658655, and KY658572-90), and those
from Malagasy dung beetles [11] (GenBank IDs:
MK636654—66), that are not present in the PubMLST-
Wolbachia database. The full list of specimens and se-
quences included in this study can be retrieved from
Zenodo (doi: https://doi.org/10.5281/zenodo.3934112).

Phylogenetic analyses

The sequences of the six Wolbachia markers were
concatenated in the following order: coxA, fbpA, fisZ, gatB,
hepA, and wsp, for a maximum alignment of 3149 bp.
Each tree was built in CIPRES [64] using RAXML-XSEDE
[65] with the Gamma+I parameter. Tree visualization and
figures were done with FigTree (http://tree.bio.ed.ac.uk/
software/figtree/) and ITOL [66, 67] using the bipartitions
output trees produced by RAxML.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512866-020-02011-2.

Additional file 1: Table S1: Divergence rate (%) of the wsp marker
between the 11 Wolbachia strains and strain variants characterized from
Mylothris butterfly species. A-supergroup Wolbachia strains are shown in
pink, B-Wolbachia in blue. Inside cell colors vary in accordance with de-
gree of similarity (white: less than 75% similarity, gray: between 75 & 97%
similarity, dark-gray: more than 97% similarity). Table S2: Divergence rate
(%) of the wsp marker between the 14 Wolbachia strains and strain vari-
ants characterized from Bicyclus butterfly species (as characterized in this
study and by (Duplouy and Brattstrom [39])). A-supergroup strains are
shown in pink, B-Wolbachia in blue. All variants share the same color. In-
side cell colors vary and in accordance with degree of similarity (white:
less than 75% similarity, gray: between 75 & 97% similarity, dark-gray:
more than 97% similarity). Table S3: Divergence rate (%) between the
Wolbachia strains and strain variants characterized from the Mylothris
butterflies and the Bicyclus butterflies (as characterized in this study and
by (Duplouy and Brattstrom [39])). Central cells colored in accordance
with degree of similarity between strains (white: less than 75% similarity,
gray: between 75 and 97% similarity, dark-gray: more than 97% similarity).
Figure S1: Rooted phylogenetic relationships of the concatenated MLST
and wsp genes sequences from the different Wolbachia characterized
from the Mylothris butterflies, with bootstrap values. Additional Wolbachia
strains characterized from Brugya malayi (D-supergroup strain) and from
Opistophthalmus scorpions (F-supergroup strains) were added as out-
group. Habitat of the host is shown in right-circle. Figure S2: Rooted
phylogenetic relationships of the concatenated MLST and wsp genes se-
quences from the Bicyclus butterflies, with bootstrap values. Additional
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Wolbachia strains characterized from Brugya malayi (D-supergroup strain)
and from Opistophthalmus scorpions (F-supergroup strains) were added
as outgroup. Habitat of the host is shown in right-circle. Figure S3:
Phylogenetic tree of all available Wolbachia strains and strain variants
characterized from Lepidoptera, Hymenoptera, and all other African ar-
thropods. The tree was built using the concatenated sequences of the
Wolbachia MLST and wsp markers. Colored squares, circles and triangles
on the right provide the family, ecoregion and habitat of the hosts, re-
spectively. Dataset includes strains described in the present study, as well
as strains from Bicyclus butterflies as in [39], from Malagasy Nanos dung-
beetles as in [11], and all pubMLST-registered strains from Lepidoptera,
Hymenoptera and African arthropods [18]. Wolbachia strains characterized
from Brugya malayi nematode (D-supergroup strain) and from Opis-
tophthalmus scorpions (F-supergroup strains) were used as outgroup.

Abbreviation
ST: Strain Type
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