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Identification of key genes in human
airway epithelial cells in response to
respiratory pathogens using microarray
analysis
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Abstract

Background: Airway epithelium is the primary target for pathogens. It functions not only as a mechanical barrier,
but also as an important sentinel of the innate immune system. However, the interactions and processes between
host airway epithelium and pathogens are not fully understood.

Results: In this study, we identified responses of the human airway epithelium cells to respiratory pathogen
infection. We retrieved three mRNA expression microarray datasets from the Gene Expression Omnibus database,
and identified 116 differentially expressed genes common to all three datasets. Gene functional annotations were
performed using Gene Ontology and pathway analyses. Using protein-protein interaction network analysis and text
mining, we identified a subset of genes functioned as a group and associated with infection, inflammation, tissue
adhesion, and receptor internalization in infected epithelial cells. These genes were further identified in BESE-2B
cells in response to Talaromyces marneffei by Real-Time quantitative PCR (qRT-PCR). In addition, we performed an in
silico prediction of microRNA-target interactions and examined our findings.

Conclusions: Using bioinformatics analysis, we identified several genes that may serve as biomarkers for the
diagnosis or the surveillance of early respiratory tract infection, and identified additional genes and miRNAs that
warrant further fundamental experimental research.

Keywords: Microarray analysis, Bioinformatics analysis, Respiratory pathogen, Human airway epithelial cell,
Biomarker

Background
Respiratory tract infections are common diseases caused
by a number of diverse pathogens. These diseases are
serious public health concerns globally and pose signifi-
cant challenges for the World Health Organization. Al-
though treatment using potent anti-infection drugs and
effective vaccines has greatly reduced mortality world-
wide, respiratory tract infections remain a leading cause
of death, in particular, for developing countries [1]. In
2015, there were 17.2 billion cases of upper respiratory
infections [2]. A respiratory tract infection is a major

risk to patients with chronic respiratory diseases, such as
asthma, chronic obstructive pulmonary diseases, and
bronchiectasis. Infections caused by viral and/or bacter-
ial pathogens exacerbate chronic respiratory diseases [3].
The airway epithelium is an extremely important bar-

rier against respiratory pathogens. It covers a large sur-
face area and is the primary target for respiratory
pathogens [4]. In addition to acting as a natural barrier,
recent studies found that airway epithelium functions as
an important sentinel of the innate immune system
against pathogens [5]. Interactions between epithelial
cells and pathogens are inherently complex and encompass
many different factors, including adhesion, internalization,
and induction of the immune response [6]. In addition to
being able to invade epithelial cells, some pathogens are
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capable of reproducing within infected cells, and in avoid-
ing detection by the host immune system [7]. Therefore,
prevention of pathogens from invading airway epithelial
cells is crucial for the prophylaxis and treatment of respira-
tory infections. In the present study, we investigated inter-
actions between airway epithelium cells and respiratory
pathogens to better understand the underlying pathogen-
esis. Our findings may provide improved prophylaxis, sur-
veillance, earlier accurate diagnosis, and better treatments.
Currently, high-throughput technologies such as micro-

arrays and next-generation sequencing combined with
bioinformatics analysis enable the generation and analysis
of very large datasets, including mRNA, miRNA, and long
non-coding RNA expression profiles, and DNA methyla-
tion. Such datasets are available in public archives such as
the Gene Expression Omnibus (GEO). In this study, we
retrieved three datasets of mRNA expression microarrays
from GEO, and using bioinformatics analysis, we identi-
fied a group of genes as biomarkers in airway epithelial
cells response to infection by respiratory pathogens, and
we also identified several candidate targets for further fun-
damental experimental research.

Results
Microarray datasets
The mRNA expression profile datasets GSE3397
(Additional file 1), GSE6802 (Additional file 2), and
GSE48466 (Additional file 3) were generated using the
GPL570, GPL571 and GPL570 microarray platform at
Duke University Medical Center, the Technical University
Munich, and the University of Louisville, respectively.
Thirty-five samples were used consisting of 10 samples of
normal human bronchial epithelial cells and 25 samples
of human bronchial epithelial cells exposed to the
H1N1 influenza virus, the respiratory syncytial virus,
Staphylococcus aureus, and Pseudomonas aeruginosa
(Table 1).

Differentially expressed genes
Using GEO2R, we identified 2033, 1241, and 12,950 differ-
entially expressed genes (DEGs) between normal and in-
fected airway epithelial cells from the GSE3397, GSE6802,
and GSE48466 datasets, respectively. We found that 116

genes were differentially expressed in all three datasets
(Fig. 1). This set of 116 genes underwent further evaluation.

Functional annotations
This subset of 116 genes was uploaded to DAVID data-
base for biological and functional assessments, and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis. Using Gene Ontology (GO) analysis,
we found that these DEGs were usually involved in one of
the following 10 biological processes: regulation of foam
cell differentiation, regulation of tyrosine phosphorylation
of the STAT protein, myeloid leukocyte differentiation,
regulation of the JAK-STAT cascade, response to cytokine
stimulus, myeloid cell differentiation, cAMP-mediated sig-
naling, anti-apoptosis, ectoderm development and tissue
morphogenesis (Table 2). We found that the most signifi-
cantly enriched pathways were the ubiquitin mediated
proteolytic pathway, NOD-like receptor (NLR) signal-
ing pathway, and the apoptosis pathway (Table 3).

Protein and protein network
Next, the 116 DEGs were analyzed using the STRING
database, and 71 protein-protein interactions (PPI) pairs
were derived (Fig. 2a), which then underwent analysis
using Cytoscape to construct PPI network. Using the
plugin DCOME, we identified three significant modules
consisting of the following 12 hub genes (Fig. 2b): CTSS,
NOTCH4, IL8, CREB1, TCF3, SERPINA1, PTGER3, RGS4,
OPRM1, MPP6, FGFR1, and NSUN3. We found using en-
richment analysis that the main roles of these hub genes
were in the inflammatory response.

Verification of hub genes
To verify the 12 hub genes, we used qRT-PCR to identify
the expression level of these differentially expressed
mRNAs in human bronchial epithelial cells infected with
Talaromyces marneffei (T.marneffei, Fig. 3). The results
of qRT-PCR showed that all hub genes, except for
OPRM1 were differentially expressed (P < 0.05, Table 4),
and were consistent with the three microarray datasets.
These suggest that the 12 hub genes may function as
a group, and have a role in the pathogens infection
to human bronchial epithelial cells.

Table 1 Microarray datasets of mRNA expression profiles

Dataset Organization Platform Sample (n) Pathogen time point
(hours)Normal Treated

GSE3397 Duke University
Medical Center

GPL570 4 8 Respiratory syncytial virus(Long strain/lot 15D) [16] 4 and 24

GSE6802 Technical University
Munich

GPL571 3 8 Respiratory syncytial virusstrain A2,Staphylococcus aureus(ATCC 29213),
and Pseudomonas aeruginosa(ATCC 27853) [17]

4

GSE48466 University of
Louisville

GPL570 3 9 H1N1 influenza virus(A/Kentucky/180/2010, A/Kentucky/136/2009,
and A/Brisbane/59/2007) [18]

36
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Text mining and prediction of miRNA
To demonstrate further the relationship between the hub
genes and respiratory tract infection, text mining was per-
formed using COREMINE. Co-occurrence analysis of the
literature was conducted using “gene symbols”, “receptor
internalization”, “tissue adhesion”, “inflammation”, and “in-
fection” as search terms. We found that 10 genes (CTSS,
NOTCH4, IL8, CREB1, TCF3, SERPINA1, PTGER3, RGS4,
OPRM1, and FGFR1) were identified in the text-mining
searches. Although all 10 of these genes were related
to both inflammation and infection in the literature,
we also found that two of these genes IL8 and SER-
PINA1 were associated with tissue adhesion, whereas
six genes IL8, CREB1, RGS4, PTGER3, OPRM1, and

FGFR1 were associated with and receptor internaliza-
tion (Fig. 4).
Searching the miRWalk, miRanda, miRDB, RNA22,

and Targetscan databases, we predicted miRNAs for the
12 hub genes previously identified. Although eight
miRNAs (hsa-miR-762, hsa-miR-93-5p, hsa-miR-20a-5p,
hsa-miR-3192-5p, hsa-miR-1294, hsa-miR-1972, hsa-miR-
106b-5p and hsa-miR-526b-3p) were predicted by all 5 da-
tabases, we found that only one gene (TCF3) has a
miRNA-target interaction. In addition, we found that
hsa-miR-762 was associated with pathogen infection [8].
There was no evidence in the literature regarding the
remaining miRNAs and an association with infectious
diseases.

Discussion
The GEO database includes high-throughput gene ex-
pression datasets and other functional genomics data
[9]. The online tool, GEO2R is based on the R program-
ming language and performs statistical analysis enabling
users to access and analyze practically any GEO Series,
regardless of data type [10]. This tool was used to
analyze published microarray data in the GEO database.
However, because the scope of microarray analysis in in-
dependent studies may have been limited, and that dif-
ferent experiments may identify different gene or mRNA
targets, the robustness and reliability of these previous
findings may be limited. To address this potential limita-
tion in the present study, we used three independent
microarray datasets of gene expression from airway epi-
thelial cells responding to infection by respiratory patho-
gens, and collectively analyzed and evaluated all three
datasets in our study. Therefore, our identification of
genes that are significantly dysregulated in airway epi-
thelial cells exposed to pathogens was identified using
the collective data from three different microarray ex-
pression studies.
In the present study, we found 116 DEGs in our ana-

lysis of three independent microarray datasets. We used

Fig. 1 DEGs in three mRNA microarray datasets identified using
GEO2R (P < 0.05). DEGs between normal and infected airway
epithelial cells from the GSE3397 (n = 2033), GSE6802 (n = 1241), and
GSE48466 (n = 12,950) datasets were identified, and 116 genes were
differentially expressed in all three datasets

Table 2 Top 10 enrichment biological processes of the 116 DEGs

ID Function Gene P-value

GO:0010743 regulation of foam cell differentiation CSF2, CSF1, NFKBIA 0.01

GO:0042509 regulation of tyrosine phosphorylation of STAT protein CSF2, NF2, IL6ST 0.02

GO:0002573 myeloid leukocyte differentiation CSF2, CSF1, CASP8 0.02

GO:0046425 regulation of JAK-STAT cascade CSF2, NF2, IL6ST 0.02

GO:0034097 response to cytokine stimulus IL6ST, CASP8, PML, SERPINA1 0.01

GO:0030099 myeloid cell differentiation CSF2, CSF1, CASP8, PML 0.02

GO:0019933 cAMP-mediated signaling OPRM1, EIF4EBP2, PTGER3, NPR3 0.02

GO:0006916 anti-apoptosis CSF2, SQSTM1, TNFRSF10D, TNFAIP8, SKP2, NFKBIA, TNFAIP3, BIRC3 < 0.01

GO:0007398 ectoderm development TXNIP, NF2, FOXE1, TFAP2A, EMP1, KLF4 < 0.01

GO:0048729 tissue morphogenesis NF2, CASP8, FOXE1, TFAP2A, KLF4 0.02
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GO enrichment to understand better the underlying
biological processes that are associated with these
genes. GO is a major bioinformatics initiative to unify
the characterization of gene and gene product attri-
butes in all organisms [11]. For the present study, GO
terms may identify the putative role that our set of
genes may have in the process of the pathogen infection
of airway epithelial cells. Our analysis of biological pro-
cesses and signaling pathways demonstrated that these
116 genes were mainly involved in myeloid cell differ-
entiation, cytokine stimulus, regulation of tyrosine
phosphorylation of the STAT protein, regulation of the
JAK-STAT cascade, and the NLR signaling pathway.
These findings indicate that the functions of these
genes are closely related to the immune response. For
example, the JAK-STAT cascade is a major intracellular
signaling response elicited by class I cytokine receptors,
the activation of which results in direct and rapid changes
in gene expression upon cytokine stimulation [12]. In
addition, The NLR family pyrin domain containing 3

(NLRP3) inflammasome is a multiprotein complex that
orchestrates innate immune responses to infection and cell
stress through activation of caspase-1 (CASP1) and matur-
ation of the inflammatory cytokines pro-interleukin-1β
(pro-IL-1β) and pro-IL-18 [13].
To examine further the interrelationships between the

DEGs, we constructed a PPI network and identified the fol-
lowing 12 hub genes: CTSS, NOTCH4, IL8, CREB1, TCF3,
SERPINA1, PTGER3, RGS4, OPRM1, MPP6, FGFR1, and
NSUN3. We found that these hub genes may function as a
group and have an important role in viruses or bacteria in-
fection. In order to investigate whether the group of hub
genes is altered by particular pathogen, we further identified
these hub genes by qRT-PCR in BEAS-2B cells infected by
T.marneffei, a thermal dimorphic pathogenic fungus, which
is able to cause fatal systemic infections in human. Our re-
sults showed that these hub genes involved in human bron-
chial epithelial cell in response to T.marneffei. So we posit
that these genes may have clinical applications serve as bio-
markers for early respiratory tract infection. In addition, we

Table 3 Pathway enrichment of the 116 DEGs

ID Definition Gene P-value

hsa04120 Ubiquitin mediated proteolysis CUL3, SKP2, PML, NEDD4L, RCHY1, BIRC3 < 0.01

hsa04621 NOD-like receptor signaling pathway CASP8, NFKBIA, TNFAIP3, BIRC3 0.01

hsa04210 Apoptosis TNFRSF10D, CASP8, NFKBIA, BIRC3 0.03

Fig. 2 The differential expressed protein–protein interaction network and network modules. a Protein and protein interaction (PPI) pairs of the
116 DEGs were constructed using the STRING database, and 71 PPI pairs were derived. b Modules of the PPI network were analyzed using
Cytoscape plugin DCOME. Three significant modules containing 12 hub genes were identified. Module 1 comprise CTSS, NOTCH4, IL8, CREB1,
TCF3, and SERPINA1, module 2 comprise PTGER3, RGS4, and OPRM1, and module 3 comprise MPP6, FGFR1, and NSUN3
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found using enrichment analysis that these hub genes were
also associated with inflammation.
Text mining indicated that the majority of these hub

genes were related to tissue adhesion, receptor internal-
ization, inflammation, and infection. For example, hu-
man epithelial cells infected with Chlamydia secrete IL8,
which is known to be activated by p42/44 MAPK cascade
[14]. Aronoff et al. demonstrated that the prostaglandin E
receptors 2 and 3 (PTGER2-PTGER3) axis has important
roles in the prevention and treatment of infectious diseases
[15]. In addition to the host defense response, adhesion,
receptor internalization, and inflammatory responses
are intrinsic to pathogen invasion. Of the 12 hub genes

identified, we found that two genes were associated
with tissue adhesion, six genes were associated with re-
ceptor internalization, and 10 genes were associated
with inflammation. This finding demonstrates that
these genes may have key roles in the process of pathogen
infection in airway epithelial cells. Adhesion, receptor in-
ternalization and inflammatory response were intimately
related to the invasion of pathogens and host defense
against pathogens [6]. However, because there are no prior
reports in the literature regarding the two hub genes
MPP6 and NSUN3, and their potential role in airway epi-
thelial cell infection, further studies to investigate their
functions are warranted.
To provide additional targets for further research, we

also preformed miRNA prediction of these hub genes.
We found that a single gene (TCF3) has a miRNA-target
interaction. Whereas among the eight candidate targets
of microRNAs, hsa-miR-762 was previously reported to
be associated with Pseudomonas aeruginosa infection
[8], we did not find any prior investigations with the
remaining seven in silico predicted miRNAs and infec-
tion. However, based on our findings, these miRNAs
may warrant future study.

Conclusions
In summary, by integrating the data from 3 independent
microarray studies, and though an extensive functional
assessment including evaluation of signaling pathways,
annotation of biological processes, determination of
protein-protein interactions, text mining, and identifica-
tion of miRNA-target interactions, we identified a robust

Fig. 3 Relative expression level of hub genes in BEAS-2B cells in response to Talaromyces marneffei. The expression level of mRNAs was
performed using qRT-PCR. Results were shown as mean ± SD, * P < 0.05

Table 4 Relative expression level of 12 hub genes in
Talaromyces marneffei infected BEAS-2B cells

Gene Up/down regulation Fold change (mean ± SD) P-value

CTSS up 47.734 ± 1.16 P < 0.05

NOTCH4 up 7435.900 ± 186.712 P < 0.05

IL8 down 0.263 ± 0.009 P < 0.05

CREB1 down 0.746 ± 0.013 P < 0.05

TCF3 up 2.180 ± 0.108 P < 0.05

SERPINA1 down 0.044 ± 0.002 P < 0.05

PTGER3 up 7.941 ± 0.888 P < 0.05

RGS4 up 6.743 ± 0.118 P < 0.05

MPP6 up 8.605 ± 0.532 P < 0.05

FGFR1 up 2.475 ± 0.080 P < 0.05

NSUN3 up 1.532 ± 0.102 P < 0.05

OPRM1 – – P>0.05
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set of DEGs associated with airway epithelial cell re-
sponse to pathogen infection. This group of genes may
be tested in the sputum or bronchoalveolar lavage fluid
samples as biomarkers for the diagnosis or the surveil-
lance of early respiratory tract infections. In addition, we
identified several genes and miRNAs as intriguing tar-
gets for further research. Understanding the pathogen-
esis will not only lead to improving prognosis and
diagnosis, but also better therapeutic strategies and
treatments to prevent respiratory tract infections.

Methods
Data collection and identification of DEGs
Three mRNA microarray expression profile datasets
GSE3397 [16], GSE6802 [17] and GSE48466 [18] were re-
trieved from the GEO database (http://www.ncbi.nlm.nih.
gov/geo/, accession numbers: GSE3397, GSE6802, and
GSE48466) [9]. DEGs were screened using GEO2R, which
is an interface web tool available in GEO. The identifica-
tion of DEGs between human airway epithelial cells ex-
posed to respiratory pathogens and normal cells was
statistically filtered using a P-value < 0.05.

Bioinformatics analysis
GO and KEGG Pathway enrichment analyses were per-
formed using the online tool DAVID version 6.8 (https://
david.ncifcrf.gov/) [19]. A P < 0.05 was considered statisti-
cally significant. Protein and protein interaction networks
were constructed using STRING version 10.0 (http://
string-db.org/) [20]. The STRING database enables a crit-
ical assessment and integration of PPI, including physical
as well as functional associations [20]. DEGs were mapped

into the protein search, the organism was defined as
Homo sapiens, and the genes were queried in the inter-
action networks. The Molecular Complex Detection
(DCOME) in Cytoscape was used to analyze the modules
of the PPI network. A score greater than three was identi-
fied as hub nodes and edges. Text mining for prediction
of gene function was performed using COREMINE
(http://www.coremine.com/medical/) [21]. To predict
miRNA-target interactions in the 3′-UTR region of genes,
we used the miRWalk, miRanda, miRDB, RNA22 and
Targetscan databases (http://zmf.umm.uni-heidelberg.de/
apps/zmf/mirwalk2/) [22].

T.marneffei strain and conidia preparation
T.marneffei strain was isolated from the sputum of a
patient suffering from disseminated T. marneffei infec-
tion at the first affiliated hospital of Guangxi Medical
University. T.marneffei was isolated as part of standard
care of the patient, and was cultured on potato dextrose
agar (PDA) medium (Beijing Luqiao Technology) at
25 °C for 7–10 days. Colonies were washed with sterile
phosphate buffed saline (PBS), and then conidia were
collected by centrifugation.

Cell line culture and fungal infection
The human bronchial epithelial cell line BEAS-2B
(ATCC® CRL-9609™) was stocked at the Experimental
Center of Guangxi Medical University. Cells were cultured
in RPMI1640 medium mixed with 10% fetal bovine serum
(Invitrogen) at 37 °C. The test group was infected
with conidia of T.marneffei for 4 hours.

Fig. 4 The linear relationship between the hub genes retrieved using COREMINE. Ten hub genes were associated with tissue adhesion, receptor
internalization, inflammation and infection. The thicker the line, the closer the connection between the two ends

Li et al. BMC Microbiology  (2018) 18:58 Page 6 of 8

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://string-db.org/
http://string-db.org/
http://www.coremine.com/medical/
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/


RNA extraction and qRT-PCR
Cells of both control and test groups were used to ex-
tract total RNA with TRIzol reagent (Invitrogen), follow-
ing the manufacturer’s instructions. RNA quality and
quantity were measured by Nucleic Acid Protein De-
tector. Total RNA was used for synthesis of cDNA with
the First Strand cDNA Synthesis Kit (TaKaRa). The
qRT-PCR were run using the following program: 1 cycle
at 95 °C for 30 s, 40 cycles at 95 °C for 3 s, and an exten-
sion step at 60 °C for 30 s. The relative expression level
of mRNAs was performed by using 2−ΔΔCT analysis
method [23].The primers used are as follows (Table 5).
GAPDH expression served as internal control.

Statistical analysis
Results are shown as mean ± standard deviation (SD) for
three repeated independent experiments for each group.
Statistical comparisons were conducted by using SPSS20.0
and significance was assessed by two-tailed Student’s

t-test. Results with p < 0.05 were considered statistically
significant.

Additional files

Additional file 1: The GSE3397 mRNA expression profile dataset. 2033
DEGs between normal and infected airway epithelial cells were identified.
(XLSX 158 kb)

Additional file 2: The GSE6802 mRNA expression profile dataset. 1241
DEGs between normal and infected airway epithelial cells were identified.
(XLSX 101 kb)

Additional file 3: The GSE48466 mRNA expression profile dataset. 12950
DEGs between normal and infected airway epithelial cells were identified.
(XLSX 964 kb)
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