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Short-term increase in prevalence of
nasopharyngeal carriage of macrolide-
resistant Staphylococcus aureus following
mass drug administration with
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Abstract

Background: Mass drug administration (MDA) with azithromycin is a corner-stone of trachoma control however it
may drive the emergence of antimicrobial resistance. In a cluster-randomized trial (Clinical trial gov NCT00792922),
we compared the reduction in the prevalence of active trachoma in communities that received three annual rounds
of MDA to that in communities that received a single treatment round. We used the framework of this trial to carry
out an opportunistic study to investigate if the increased rounds of treatment resulted in increased prevalence of
nasopharyngeal carriage of macrolide-resistant Staphylococcus aureus. Three cross-sectional surveys were conducted in
two villages receiving three annual rounds of MDA (3 × treatment arm). Surveys were conducted immediately before
the third round of MDA (CSS-1) and at one (CSS-2) and six (CSS-3) months after MDA. The final survey also included
six villages that had received only one round of MDA 30 months previously (1 × treatment arm).

Results: In the 3 × treatment arm, a short-term increase in prevalence of S. aureus carriage was seen following MDA
from 24.6% at CSS-1 to 38.6% at CSS-2 (p < 0.001). Prevalence fell to 8.8% at CSS-3 (p < 0.001). A transient increase was
also seen in prevalence of carriage of azithromycin resistant (AzmR) strains from 8.9% at CSS-1 to 34.1% (p < 0.001) in
CSS-2 and down to 7.3% (p = 0.417) in CSS-3. A similar trend was observed for prevalence of carriage of macrolide-
inducible-clindamycin resistant (iMLSB) strains. In CSS-3, prevalence of carriage of resistant strains was higher in the
3 × treatment arm than in the 1 × treatment (AzmR 7.3% vs. 1.6%, p = 0.010; iMLSB 5.8% vs. 0.8%, p < 0.001). Macrolide
resistance was attributed to the presence of msr and erm genes.

Conclusions: Three annual rounds of MDA with azithromycin were associated with a short-term increase in both the
prevalence of nasopharyngeal carriage of S. aureus and prevalence of carriage of AzmR and iMLSB S. aureus.

Trial registration: This study was ancillary to the Partnership for the Rapid Elimination of Trachoma, ClinicalTrials.gov
NCT00792922, registration date November 17, 2008.
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Background
Trachoma, caused by ocular infection with the intracellular
bacterium Chlamydia trachomatis, is the leading infectious
cause of blindness worldwide. Mass drug administration
(MDA) with the broad-spectrum antibiotic azithromycin is
an important part of the World Health Organization’s
integrated strategy for trachoma control [1, 2]. This treat-
ment serves to decrease the reservoir of infection, thereby
reducing transmission.
There has been increased interest in MDA with azithro-

mycin following the publication of studies conducted in
Ethiopia suggesting treatment is associated with a signifi-
cant reduction in childhood mortality [3, 4]. Calls to expand
azithromycin distribution beyond trachoma-endemic coun-
tries [5] and a large-scale clinical trial to evaluate the effect
of treatment on mortality that is underway in three African
countries [6] bring a greater need to document unintended
effects of treatment, including the emergence of antimicro-
bial resistance, which is a global public health concern.
There is, as yet, no evidence to suggest MDA of azi-

thromycin at the community-level leads to increased
azithromycin resistance in ocular Chlamydia trachoma-
tis infection [7–9]. However, there are data supporting
an association of MDA with the emergence of
macrolide-resistant Streptococcus pneumoniae isolated
from the nasopahrnyx, at least in some settings. While
studies carried out in Tanzania, Nepal and The Gambia
have shown no evidence of such resistance following a
single treatment round [10–12], other studies in
Tanzania, Nepal and Australia suggest resistance does
emerge after just one or two annual rounds of mass
treatment [13–15]. Further studies in Ethiopia have
documented increased macrolide resistant pneumococci
isolated following four rounds of MDA given at 3 month
intervals [16] and following six biannual rounds over a
period of 3 years [17]. To date, little work has been car-
ried out to assess the effect of MDA with azithromycin
on other bacterial pathogens.
Staphylococcus aureus colonization is a risk factor for

many conditions ranging from skin and soft tissue infec-
tions in children to invasive disease such as neonatal
sepsis, bacteraemia and endocarditis [18–22]. In West
Africa, it has been shown to be a significant cause of in-
vasive disease in young children [23, 24]. However, the
potential effect of azithromycin MDA on prevalence of
carriage of S. aureus including macrolide resistant
strains has not yet been explored. In the present study,
we used the framework of a clinical trial, which com-
pared the prevalence of active trachoma in Gambian
communities that received three annual rounds of
azithromycin MDA to that of communities that received
a single MDA round [25, 26] to explore whether three
rounds of MDA drove increased nasopharyngeal carriage
of azithromycin resistant S. aureus.

Methods
Study design
The Partnership for the Rapid Elimination of Trachoma
(PRET) study (ClinicalTrials.gov NCT00792922) was a
cluster randomized controlled trial, the design of which
has been described elsewhere [25, 26]. Briefly, the study
compared the effectiveness of three versus one round of
azithromycin MDA in reducing the prevalence of active
trachoma and ocular C. trachomatis infection. Treatment
was a single oral dose of 20 mg azithromycin per kg to a
maximum of 1 g and height was used as a proxy for
weight. A pneumococcal carriage study was nested within
PRET [12] and was carried out in eight villages that were
a part of the larger trial. This included two villages that
had been randomized, by the underlying PRET trial, to
three annual rounds of MDA (3 × treatment arm) and six
villages that received a single treatment round (1 × treat-
ment arm) (Figs. 1 and 2). All villages had also participated
in a trial of pneumococcal conjugate vaccine and were
part of that study’s control arm, where children under
5 years of age received PCV-7 [27].
Three cross-sectional surveys (CSS) were conducted in

the 3 × treatment arm: CSS-1, 1 month prior to the third
round of MDA; CSS-2, 1 month following the third
round of MDA; and CSS-3, 6 months following the third
round (Figs. 1 and 2). CSS-3 also included villages in the
1 × treatment arm that had received one round of MDA
30 months previously (Figs. 1 and 2).
Census data were gathered in the week before CSS-1.

All censused children under the age of 15 years and
present at the time of sampling were invited to
participate. For individuals 15 years of age or older, 150
individuals were randomly selected at each of CSS-1 and
CSS-2 and in both treatment arms in CSS-3. Random
selection was independent at each CSS.

Fig. 1 Time-line of treatment and sample collection. MDA with
azithromycin is depicted by black arrows; NPS sample collection is
depicted by red arrows
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In the 3 × treatment arm, participation in CSS-2 and 3
was restricted to those who were documented to have re-
ceived azithromycin during the third round of MDA in
July 2010. At each CSS, a nasopharyngeal swab (NPS) was
collected from each participant and a questionnaire, per-
taining to demographic characteristics, socioeconomic sta-
tus and recent antibiotic use (within the last 30 days), was
conducted. In the present study, we analysed all NPS sam-
ples collected as a part of the pneumococcal carriage study
[12] to determine the prevalence of S. aureus carriage,
including carriage of macrolide resistant strains.

Specimen collection
NPS samples were collected using calcium alginate
swabs and inoculated into sterile vials containing skim-
milk-tryptone-glucose glycerol transport medium, which
has been shown to preserve the viability of respiratory
pathogens for up to 12 years when stored at −70 °C [28].
Samples were kept on wet-ice in the field, transferred to
a 4 °C refrigerator within 8 h of collection and moved to
long-term storage at −80 °C within 24 h of collection.
Samples remained in long-term storage at −80 °C with
back-up power and twice daily temperature monitoring
for 18 months before being cultured for S. aureus.

Laboratory methods
NPS samples were thawed at room temperature and 10 μl
transport medium was inoculated onto Mannitol Salt
Agar (Oxoid Ltd, Basingstoke, UK) and incubated for 18–
24 h at 35 °C. Presumptive S. aureus colonies were sub-
cultured for purity on a Blood Agar Base No. 2 (Oxoid
Ltd, Basingstoke, UK) supplemented with 5% sheep blood
(TCS Biosciences Ltd., Botolph Clayton, UK) and incu-
bated under the same conditions. A coagulase agglutin-
ation test was performed on well-isolated colonies to
confirm the identification of S. aureus using the SLIDEX
Staph-kit (Biomerieux UK Limited, Basingstoke, UK).

Well-isolated S. aureus colonies were suspended in
nutrient broth (Oxoid Ltd, Basingstoke, UK) to a 0.5
McFarland standard and plated on Mueller-Hinton Agar
(Oxoid Ltd, Basingstoke, UK). Azithromycin (15 μg),
erythromycin (15 μg) and clindamycin (2 μg) discs
(Oxoid Ltd, Basingstoke, UK) were placed aseptically on
each plate with the erythromycin and clindamycin discs
spaced 15 mm apart from edge-to-edge. The plates were
incubated for 18–24 h at 35 °C.
Sensitivity results were interpreted according to the

Clinical and Laboratory Standards Institute guidelines [29].
Azithromycin resistance (AzmR) was defined by a zone size
≤13 mm. Macrolide-inducible-clindamycin resistance, also
referred to as the inducible Macrolide-Lincosamide-
Streptogramin B (iMLSB) phenotype, was defined as flatten-
ing of the circular zone of inhibition around the clindamy-
cin disc on the side facing the erythromycin disc (D-test)
[30]. Constitutive clindamycin resistance (CliR) was defined
as a circular zone of inhibition ≤ 14 mm.
Twenty-three S. aureus isolates obtained from the 3 ×

treatment arm at CSS-1 and CSS-2 were randomly se-
lected for analysis of the presence of 117 of the most
prevalent and transferable antibiotic resistance determi-
nants found in Gram-positive bacteria using micro-array,
as previously described [31].
Laboratory technicians were blind to the treatment

arm and the timing of sample collection.

Data management and statistical analysis
Data were double-entered into an OpenClinica database
and the validated data imported into Stata version 12
(StataCorp LP, College Station, Texas, USA) for statistical
analyses. Proportions of overall carriage and carriage of
antimicrobial resistant S. aureus were compared using Chi-
Square or Fisher’s exact tests. Logistic regression analyses
were further used to identify risk factors for carriage, con-
trol for confounders and test for interactions, reporting

Fig. 2 Study profile
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odds ratios with 95% confidence intervals (CI). CIs and p-
values were estimated using clustered robust standard er-
rors to account for within village correlation of participants.
Analysis included overall prevalence of nasopharyngeal car-
riage, prevalence of carriage of AzmR and iMLSB strains
and proportions of AzmR and iMLSB strains isolated.

Ethical review
This study was ancillary to the PRET trial and was ap-
proved by The Gambia Government/Medical Research
Council Unit, The Gambia Joint Ethics Committee. Writ-
ten, informed consent was obtained from all participants of
the PRET trial and additional written consent was obtained
for this ancillary study. In the case of minors, informed
consent was obtained from the parent or guardian.

Results
Study participants
In the 3 × treatment arm, NPS were collected from 415,
417 and 343 individuals at CSS-1, CSS-2 and CSS-3, re-
spectively. Four hundred participants in the 1 × treatment

arm were also sampled at CSS-3. Overall, 25 NPS from
the 1 × treatment arm (6.2% of 400 samples) had insuffi-
cient volume remaining to conduct the laboratory assays
and were excluded from the analysis. Demographic and
epidemiological characteristics of the participants, includ-
ing S. pneumoniae carriage [12], are given in Table 1.

Prevalence of S. aureus carriage
Prevalence of nasopharyngeal S. aureus carriage at CSS-1
was 24.6% (102/414 participants) (Table 2). One month
following MDA, prevalence of carriage in the same study
villages increased to 38.6% (161/417; p < 0.001) then fell to
8.8% at CSS-3, 6 months following MDA (30/343; p <
0.001) (Table 2). In the 1 × treatment arm, prevalence of S.
aureus at CSS-3 was similar to the 3 × treatment arm
(6.7% versus 8.8%, p < 0.295) (Table 2).

Prevalence of antibiotic resistant S. aureus
In the 3 × treatment arm, prevalence of carriage of azithro-
mycin resistant (AzmR) strains at CSS-1 was 8.9% (37/414)
(Table 3). This rose significantly to 34.1% at CSS-2, 1 month

Table 1 Demographic characteristics of study participants at each cross-sectional survey

Surveya

CCS-1 CCS-2 CCS-3 CCS-3

Arm

1 × treatment – – 375 (100.0%) 0 (0.0%)

3 × treatment 414 (100.0%) 417 (100.0%) 0 (0.0%) 343 (100.0%)

Age group

< 10 y 205 (49.5%) 173 (41.5%) 157 (41.9%) 182 (53.1%)

≥ 10 y 209 (50.5%) 244 (58.5%) 218 (58.1%) 161 (46.9%)

Gender (males) 218 (52.7%) 209 (50.1%) 198 (52.8%) 158 (46.1%)

Ethnicity (Jola) 408 (98.6%) 407 (97.6%) 346 (92.3%) 333 (97.1%)

Occupation

None 185 (45.2%) 162 (39.0%) 135 (38.1%) 169 (50.0%)

Student 148 (36.2%) 149 (35.9%) 128 (36.2%) 90 (26.6%)

Agriculture 76 (18.6%) 104 (25.1%) 91 (25.7%) 79 (23.4%)

Schooling years

0 260 (62.8%) 258 (61.9%) 240 (64.0%) 242 (71.8%)

(1–3) 72 (17.4%) 67 (16.1%) 58 (15.5%) 36 (10.7%)

(4–6) 51 (12.3%) 48 (11.5%) 11 (2.9%) 25 (7.4%)

> 6 31 (7.5%) 44 (10.6%) 66 (17.6%) 34 (10.1%)

Able to read (yes) 155 (37.4%) 158 (37.9%) 76 (20.3%) 56 (16.3%)

Able to write (yes) 154 (37.2%) 158 (37.9%) 92 (24.5%) 63 (18.4%)

Recentb health centre visit (yes) 14 (3.4%) 12 (2.9%) 18 (4.8%) 30 (8.8%)

Recentb antibiotic use (yes) 2 (0.5%) 2 (0.5%) 6 (1.6%) 4 (1.2%)

Smoker in the household (yes) 264 (63.8%) 273 (65.5%) 113 (30.2%) 166 (48.7%)

S. pneumoniae carriage (yes) 180 (43.5%) 80 (19.2%) 182 (48.5%) 157 (45.8%)
aSurveys were conducted immediately before the third round of MDA (CSS-1) and at one (CSS-2) and six (CSS-3) months after MDA
bWithin the last 30 days

Bojang et al. BMC Microbiology  (2017) 17:75 Page 4 of 10



post MDA, (142/417; p < 0.001) then fell back to previous
levels (7.3%, 30/343) at CSS-3, 6 months post MDA (p =
0.471, in comparison to CSS-1). There was no evidence of
constitutive clindamycin resistance (constitutive Macrolide-
Lincosamide-Streptogramin B or cMLSB phenotype) in the
3 × treatment arm at either CSS-1 or CSS-2. A single CliR

isolate was found at CSS-3. Prevalence of carriage of iMLSB
S. aureus was 5.8% (24/414) at CSS-1 (Table 3), increased
to 30.7% (128/417) at CSS-2 (p < 0.001) and fell back to pre-
vious levels (5.8%, 20/343) at CSS-3 (p = 0.673) (Table 3).
At CSS-3, prevalence of carriage of AzmR and iMLSB

S. aureus strains in the 3 × treatment arm was signifi-
cantly higher than that in the 1 × treatment arm (7.3%
versus 1.6% AzmR, p = 0.010; 5.8% versus 0.8% iMLSB, p
< 0.005) (Table 3).

Proportion of antibiotic resistant S. aureus isolates
When analysed in terms of the proportion of isolates dis-
playing AzmR, the results indicate 36.3% (37/102) of S.
aureus isolates were resistant at CSS-1. This increased to
88.2% (142/161; p < 0.001) at CSS-2 and remained high at
CSS-3 with 83.3% of isolates (25/30) displaying resistance
(p = 0.047) (Table 3). The proportion of S. aureus isolates
displaying the iMLSB phenotype was 23.5% (24/102),
79.5% (128/161) and 66.7% (20/30) at CSS-1, CSS-2 and
CSS-3 respectively (Table 4), suggesting a significant in-
crease following treatment (p < 0.001).
Arm comparison at CSS-3 indicated a significantly higher

proportion of AzmR (83.3% versus 24.0%, p = 0.009) and
iMLSB (66.7% versus 12.0%, p < 0.001) S. aureus strains in
the 3 × treatment arm (Table 4).

Table 2 Prevalence of S. aureus carriage over time and between treatment arms

Arm Survey N n (%) Crude OR (95% CI) p-value Adjusted ORa (95% CI) p-value

Over time

3× CSS-1 414 102 (24.6) 1 1

3× CSS-2 417 161 (38.6) 1.92 (1.66–2.23) <0.001 1.94 (1.68–2.24) <0.001

3× CSS-3 343 30 (8.8) 0.29 (0.24–0.36) <0.001 0.30 (0.25–0.35) <0.001

Between treatment arms

1× CSS-3 375 25 (6.7) 1 1

3× CSS-3 343 30 (8.8) 1.34 (0.66–2.74) 0.419 1.47 (0.72–3.00) 0.286
aadjusted for age and gender

Table 3 Prevalence of azithromycin-resistant (AzmR) and macrolide-inducible clindamycin resistant (iMLSB) S. aureus isolates over
time and between treatment arms

Survey Total Resistant (%) Crude OR (95% CI) p-value Adjusted ORa (95% CI) p-value

Overtime

AzmR

CSS-1 414 37 (8.9) 1 1

CSS-2 417 142 (34.1) 5.26 (4.95–5.59) <0.001 5.28 (4.95–5.64) <0.001

CSS-3 343 25 (7.3) 0.80 (0.45–1.42) 0.447 0.82 (0.47–1.42) 0.471

iMLSB

CSS-1 414 24 (5.8) 1 1

CSS-2 417 128 (30.7) 7.20 (3.77–13.76) <0.001 7.24 (3.72–14.1) <0.001

CSS-3 343 20 (5.8) 1.01 (0.87–1.16) 0.933 1.03 (0.90–1.17) 0.673

Between treatment arms

AzmR

1× 375 6 (1.6) 1 1

3× 434 25 (7.3) 4.83 (1.46–16.06) 0.010 5.22 (1.49–18.34) 0.010

iMLSB

1× 375 3 (0.8) 1 1

3× 434 20 (5.8) 7.68 (1.80–32.84) 0.006 8.37 (1.89–37.14) 0.005
aadjusted for age and gender
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Antibiotic resistance determinants
In a subset of S. aureus isolates (N = 23), the presence of
antibiotic resistance determinants was assayed using a
DNA microarray [31]. Results are shown in Table 5. No
macrolide resistant determinants were found in six isolates
that were sensitive to both azithromycin and clindamycin.
Of five isolates displaying resistance to azithromycin but
sensitivity to clindamycin, all were positive for the msr
gene, which conveys resistance to macrolides and strepto-
gramin B. Twelve isolates were azithromycin resistant and
had the iMLSB phenotype and all of these carried erm
genes [11 erm(C) and 1 erm(T)], confirming their resist-
ance to the MLSB antibiotics.
Other antimicrobial resistance determinants identified in-

cluded the beta-lactamase gene blaZ in 21 of isolates
screened (91%), the trimethoprim resistance gene dfr(G) in
7 isolates (30%) and tetracycline resistance genes in 2 iso-
lates (9%) [1 tet(M) and 2 tet(K)]. The norA gene, which
confers resistance to norfloxacin if overexpressed, was
detected in all 23 isolates (100%). The Panton-Valentine
leukocidin gene, luk-PV, was found in 10 (43%) of the
isolates screened.

Risk factors for S. aureus carriage following MDA
One month following MDA in the 3 × treatment arm,
pneumococcal carriage (OR = 0.58, 95% CI 0.46–0.72, p
< 0.001), a recent visit to a health centre (OR = 0.48, 95%
CI 0.45–0.52, p < 0.001), an occupation in agriculture
(OR = 0.2, 95% CI 0.1–0.38, p < 0.001) and female gender
(OR = 0.75, 95% CI 0.57–1.0, p = 0.050) were inversely

associated with S. aureus carriage at CSS-2 according to
the adjusted analysis (Table 6).

Discussion
In order to explore the effect of repeated MDA with azi-
thromycin on the prevalence of carriage of macrolide-
resistant S. aureus and the proportion of resistant strains,
we compared communities receiving one or three annual
treatment rounds. Our results indicate that MDA was as-
sociated with a significant increase in the prevalence of
carriage of AzmR and iMLSB S. aureus strains immediately
following treatment, which returned to lower levels
6 months later. When comparing treatment arms at CSS-
3, the prevalence of carriage of resistant S. aureus and pro-
portion of resistant strains were higher in those communi-
ties that received three rounds of MDA as compared to a
single treatment round.
The observation that the prevalence of resistant strains,

in the 3 × treatment arm, decreased between CSS-2 and
CSS-3 is consistent with research of macrolide resistant
Streptococcus pneumoniae following azithromycin MDA
that has demonstrated resistant phenotypes have decreased
fitness when antibiotic pressure is relieved [32, 33]. It may
be that, had we collected additional samples at longer time
points following treatment, the prevalence in the 3 × treat-
ment arm may have eventually reached that seen in villages
that received only a single round of treatment.
When we examine our results as the proportion of S.

aureus isolates that display macrolide resistance, rather
than the prevalence of carriage of resistant strains,

Table 4 Proportion of azithromycin-resistant (AzmR) and macrolide-inducible clindamycin resistant (iMLSB) S. aureus isolates over
time and between treatment arms

Survey Total Resistant (%) Crude OR (95% CI) p-value Adjusted ORa (95% CI) p-value

Overtime

AzmR

CSS-1 102 37 (36.3) 1 1

CSS-2 161 142 (88.2) 13.13 (7.67–22.48) <0.001 13.01 (7.77–21.80) <0.001

CSS-3 30 25 (83.3) 8.78 (1.11–69.25) 0.039 8.56 (1.03–71.34) 0.047

iMLSB

CSS-1 102 24 (23.5) 1 1

CSS-2 161 128 (79.5) 12.61 (8.33–19.09) <0.001 12.52 (7.90–19.85) <0.001

CSS-3 30 20 (66.7) 6.50 (3.14–13.44) <0.001 6.39 (3.22–12.66) <0.001

Between treatment arms

AzmR

1× 25 6 (24.0) 1 1

3× 30 25 (83.3) 15.83 (1.97–127.01) 0.009 15.88 (1.99–126.54) 0.009

iMLSB

1× 25 3 (12.0) 1 1

3× 30 20 (66.7) 14.67 (2.43–88.41) 0.003 18.83 (3.22–110.05) 0.001
aadjusted for age and gender
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resistance remains high 6 months following the last round
of MDA (83.3%) suggesting it takes longer for resistance to
wane. However, it is difficult to interpret these results as
the overall prevalence of S. aureus carriage, in both study
arms, at CSS-3 was unexpectedly low. While the absolute
numbers of resistant isolates were small, so too were the
total number of people found to carry S. aureus at that time
point. Seasonality may explain, at least in part, the differ-
ence in carriage between CSS-2 and CSS-3; increased
prevalence of S. aureus carriage has been reported in a
number of populations during the hot, humid summer
months [34, 35] and this is consistent with the timing of
our surveys (CSS-1 and CSS2 were conducted in the wet
season while CSS-3 was conducted in the dry season).
However, other external factors may also have played a role.
For example, conducting surveys in the wet season while
crops are being planted may result in under representation
of able-bodied adults amongst those surveyed.
As the proportion of isolates displaying antimicrobial re-

sistance was high, we chose to validate our findings on a
subset of isolates using a microarray designed to detect
antimicrobial resistance determinants common to Gram–
positive bacteria [31]. The results confirmed the presence
of determinants encoding resistance to macrolide, lincosa-
mide and streptogramin B antibiotics. While macrolides
are not first-line therapy for S. aureus infection in Gambia
(treatment would usually be cloxacillin or chlorampheni-
col), their use is indicated in respiratory disease in the case
of penicillin allergy and recurrent skin infection, also in
the case of penicillin allergy [36]. They would also be con-
sidered in the case of suspected atypical pneumonia. The
presence of macrolide resistance therefore, while not a
cause for immediate concern, is worth monitoring, espe-
cially as 91% of the isolates examined by microarray also
carried the blaZ gene, suggesting concurrent resistance to
penicillins in the population.
The majority of the resistance to macrolides was attrib-

uted to the presence of either msr or erm(C) genes how-
ever, one strain contained an erm(T) gene. To date,
erm(T) has been primarily reported in Streptococcus spe-
cies [37–39] and has rarely been identified in S. aureus
isolates [40, 41] suggesting it may have been acquired
under selective pressure. The trimethoprim resistance
gene dfr(G), which was detected in one third of our iso-
lates is reported to be widespread among S. aureus isolates
in Africa [42]. Almost half of the isolates that were tested

by microarray carried the gene encoding Panton-Valentine
leukocidin, a pore-forming cytotoxin that has been
associated with skin and soft tissue infections and with
community-acquired, necrotising haemorrhagic pneumo-
nia [43, 44].
S. pneumoniae colonization in the nasopharynx is

thought, by many, to be negatively associated with S.
aureus colonization and interventions to reduce
pneumococcal carriage have been associated with an in-
crease in S. aureus carriage and disease in some popu-
lations [45, 46]. Plausible molecular mechanisms
driving competition between the two bacteria are the
pneumococcal pilus, which may allow better adherence
of S. pneumoniae [47] and hydrogen peroxidase pro-
duction by S. pneumoniae, which inhibits S. aureus
growth [48]. In our study, S. aureus carriage was in-
versely associated with pneumococcal carriage at CSS-
2, 1 month following MDA. One possible explanation
for this is that the decrease in S. pneumoniae carriage
immediately following MDA (Table 1) provided S. aur-
eus the opportunity to expand its presence in the naso-
pharyngeal niche.
This was an opportunistic study that utilised the

framework of the PRET trial [25, 26] and the pneumo-
coccal carriage study that was nested within PRET [12]
to explore associations between carriage of macrolide-
resistant S. aureus and azithromycin MDA. As such, it
has a number of limitations that could have been
avoided had this been a prospective study of S. aureus
carriage. One of these is the lack of baseline data, col-
lected before any MDA. In communities that received
just a single round of MDA (1 × treatment arm), 24%
of strains isolated were resistant to azithromycin
30 months following treatment (at CSS-3). Data on
carriage of macrolide resistant S. aureus in The
Gambia are scarce, however, samples collected in
2003–2004 from the same region of country as our
study (Western Division, now named Brikama Local
Government Area) showed 64% erythromycin suscepti-
bility [49, 50]. This suggests macrolide resistance was
no higher in our 1 × treatment arm at CSS-3 that it
was in the region prior to azithromycin MDA. A sur-
vey of school-going children in Cameroon has also re-
ported 75% susceptibility to erythromycin [51]
suggesting our results are similar to levels of resistance
in other West African countries.

Table 5 Antimicrobial resistance determinants detected in a random sample of S. aureus isolates, given by phenotype

Phenotype Total Resistance gene(s) detected luk-PV

msr erm(C) erm(T) tet(M) tet(K) dfr(G) norA blaZ

AziR, iMLSB 12 11 1 1 2 12 10 4

AziR, CliS 5 5 2 5 5 2

AziS, CliS 6 1 1 3 6 6 4
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Another limitation was the use of nasopharyngeal
swabs, rather than oropharyngeal or nasal swabs, which
may have yielded higher numbers of S. aureus. However,

there is no evidence to suggest the dynamics of macrolide
resistance would differ between these respiratory sites.
Sampling at additional time points post-MDA would also

Table 6 Risk factors for S. aureus carriage at CSS-2

Characteristic N n (%) Crude OR (95% CI) p-value Adjusted ORa (95% CI) p-value

Pneumococcal carriage

No 337 135 (40.1) 1 1

Yes 80 26 (32.5) 0.72 (0.67–0.77) <0.001 0.58 (0.46–0.72) <0.001

Age group

< 10y 173 72 (41.6)

≥ 10y 244 89 (36.5) 0.81 (0.54–1.2) 0.289 1.24 (0.74–2.07) 0.418

Gender

Male 209 90 (43.1) 1 1

Female 208 71 (34.1) 0.69 (0.47–0.99) 0.044 0.75 (0.57–1.0) 0.050

Occupation

None 162 67 (41.4) 1 1

Student 149 77 (51.7) 1.52 (1.32–1.74) <0.001 1.12 (0.73–1.71) 0.613

Agriculture 104 17 (16.4) 0.28 (0.10–0.80) 0.017 0.2 (0.1–0.38) <0.001

Schooling (years)

0 258 82 (31.8) 1

1–3 67 36 (53.7) 2.49 (1.62–3.84) <0.001

4–6 48 23 (47.9) 1.97 (0.65–6.02) 0.232

> 6 44 20 (45.5) 1.79 (1.51–2.12) <0.001

Ability to read

No 259 83 (32.1) 1

Yes 158 78 (49.3) 2.07 (1.20–3.56) 0.009

Ability to write

No 259 83 (32.1) 1

Yes 158 78 (49.4) 2.07 (1.20–3.56) 0.009

Recentb health visit

No 405 159 (39.3) 1 1

Yes 12 2 (16.7) 0.31 (0.22–0.43) <0.001 0.48 (0.45–0.52) <0.001

Recentb antibiotic use

No 415 160 (38.6) 1

Yes 2 1 (50.0) 1.59 (0.04–59.03) 0.800

Ethnicity (Jola)

No 10 3 (30) 1 1

Yes 407 158 (38.8) 1.48 (1.04–2.10) 0.028 1.5 (1.09–2.08) 0.014

Active smoker

No 405 159 (39.3) 1

Yes 12 2 (16.7) 0.31 (0.03–3.14)

Smoker in household

No 144 51 (35.4) 1

Yes 273 110 (40.3) 1.23 (0.63–2.42) 0.548
aMutually adjusted for pneumococcal carriage, age, gender, occupation and recent health care facility visit
bWithin the last 30 days
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have helped us determine for how long the prevalence
and proportion of resistant strains is maintained within
communities following three rounds of treatment.

Conclusions
Three rounds of MDA for trachoma control were associ-
ated an increase in the prevalence of carriage of AzmR

and iMLSB S. aureus and in the proportion of isolated
strains that were resistant to these antibiotics. While the
increase in prevalence of carriage of resistant strains was
transient, the increase in proportion of resistant strains
was maintained for at least 6 months following the final
round of MDA. Both the prevalence and the proportion
of resistant strains was higher in the 3 × treatment arm
than in the 1 × treatment arm. These findings highlight
the need for continued antimicrobial resistance monitor-
ing in communities receiving azithromycin treatment at
the community-level.
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