
RESEARCH ARTICLE Open Access

Proteomic analysis of enterotoxigenic
Escherichia coli (ETEC) in neutral and
alkaline conditions
Lucia Gonzales-Siles1*, Roger Karlsson2, Diarmuid Kenny3, Anders Karlsson2 and Åsa Sjöling4

Abstract

Background: Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in children and travelers to
endemic areas. Secretion of the heat labile AB5 toxin (LT) is induced by alkaline conditions. In this study, we
determined the surface proteome of ETEC exposed to alkaline conditions (pH 9) as compared to neutral conditions
(pH 7) using a LPI Hexalane FlowCell combined with quantitative proteomics. Relative quantitation with isobaric
labeling (TMT) was used to compare peptide abundance and their corresponding proteins in multiple samples at
MS/MS level. For protein identification and quantification samples were analyzed using either a 1D-LCMS or a
2D-LCMS approach.

Results: Strong up-regulation of the ATP synthase operon encoding F1Fo ATP synthase and down-regulation of
proton pumping proteins NuoF, NuoG, Ndh and WrbA were detected among proteins involved in regulating the
proton and electron transport under alkaline conditions. Reduced expression of proteins involved in osmotic stress
was found at alkaline conditions while the Sec-dependent transport over the inner membrane and outer
membrane protein proteins such as OmpA and the β-Barrel Assembly Machinery (BAM) complex were up-
regulated.

Conclusions: ETEC exposed to alkaline environments express a specific proteome profile characterized by up-
regulation of membrane proteins and secretion of LT toxin. Alkaline microenvironments have been reported close
to the intestinal epithelium and the alkaline proteome may hence represent a better view of ETEC during infection.
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Background
Enterotoxigenic Escherichia coli (ETEC) remains to be
one of the major causes of childhood diarrhea and is a
global health problem [1]. ETEC cause disease by adher-
ing to the epithelium of the small intestine by means of
different colonization factors [2]. The two major ETEC
toxins, heat labile toxin (LT) and heat stable toxin (ST),
binds to enteric receptors on the epithelium and ultim-
ately cause de-regulation of the chloride channel CFTR,
which leads to increased secretion of chloride ions, bicar-
bonate and electrolytes [3]. LT is an AB5 toxin encoded by
the eltA and eltB genes in one operon. The LTA and LTB
peptides are secreted through sec dependent mechanisms

to the periplasm and assembled by DsbA [4]. Secretion
through the outer membrane occurs via the Type II secre-
tion system (T2SS) [5]. Secretion of LT has been reported
to vary between ETEC isolates, ranging from being com-
pletely retained in the periplasm [6], to secretion of up to
50% of the produced LT holotoxin in LB media [7–9]. The
ST toxin is also transported in a Sec-dependent manner
through the inner membrane but is released through TolC
[10]. The small ST peptide is cleaved and folded in the
process and the mature peptide is secreted to the outer
environment.
ETEC encounter different environments in the human

gastrointestinal tract before reaching optimal conditions
for infection in the small intestine and environmental
cues, such as bile, oxygen and pH affect secretion of
toxins and virulence of ETEC [7, 11, 12]. Passage
through the stomach exposes infecting pathogens to
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acidic conditions, while entry into the duodenum is
characterized by a rise of pH due to release of bile and
bicarbonate [13, 14]. Further down in the anaerobic gut
the pH is expected to drop to acidic levels again but
close to the small intestinal epithelium alkaline condi-
tions can occur due to release of bicarbonate. Alkaline
surface microclimates in the small intestine have been
described previously [15]. ETEC toxins ST and LT both
enhance secretion of bicarbonate through activation of
the CFTR ion channel, which might create an extremely
alkaline microenvironment close to the infecting bac-
teria. Interestingly, similar to the highly homologous
cholera toxin (CT) the assembly of LT seems to be
dependent on an alkaline environment [7, 16, 17]. We
have previously shown that secretion of LT toxin is
favored under alkaline conditions and inhibited under
acidic conditions [7]. Hence our results support the hy-
pothesis that ETEC toxin secretion is induced at alkaline
conditions at the site of infection. In this study we

analyzed the proteome of ETEC exposed to alkaline con-
ditions (pH 9) as compared to neutral conditions (pH 7)
in order to further determine the effect of highly alkaline
conditions on ETEC.

Methods
Overview of methodology
Clinical isolate ETEC E2863 was cultured in either pH 7
or pH 9 LBK media at three separate occasions to pro-
duce three biological replicates. For each biological repli-
cate, we include three technical replicates. The bacteria
culture for each pH condition was immobilized and
digested in three separate LPI Hexalane channels gener-
ating three separate peptide samples (Fig. 1). Peptide
samples generated for both pH conditions were labelled
with the TMT (6-plex) kit and combined into one set.
The set was then split into two aliquots for analysis with
either 1D-LC or 2D-LC fractionation followed by MS
analysis (Fig. 1). Following MS analysis and database

Fig. 1 Overall workflow of the methodology applied in the study. Three independent TMT sets were analyzed from three biological replicates,
grown and analyzed at different time points
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matching relative quantification was performed. Proteins
displaying more than 20% variation between the three
samples from the individual LPI channels at each condi-
tion were removed. This was done by calculation the
ratio of the separate TMT-labels in a group, and the
average of the combined channels e.g. 126/(average 126 +
127 + 128). Proteins with rations between 0.8 and 1.2 were
included in the protein list. For comparison of the two
conditions, fold changes were calculated and a statistical
analysis Welch’s t-test was used for multiple comparisons.
Only proteins passing the statistical filter (p < 0.05) were
accepted. Additionally, all three biological replicates, were
statistically evaluated as described above resulting in three
separate lists of quantified proteins considering a fold
change of at least 1.5 as a threshold for considering rele-
vant up or down regulation. Finally, the proteins accepted
for the biological interpretation were quantified in at least
two of the three TMT-sets and biological replicates.

Culture conditions
The ETEC clinical isolate E2863 was used in the study.
E2863 was grown in LBK media (10 g Tryptone, 5 g yeast
extract, 6.4 g KCl) buffered to pH 7 using piperazine-N,
N9-bis-(2-ethanesulfonic acid) (PIPES) or pH 9 using 3-
[(1,1-dimethyl-2-hydroxyethyl)amino]-2-hydroxypropane-
sulfonic acid (AMPSO) at 100 mM. Media were adjusted
for pH with KOH, to avoid high concentrations of sodium
ions, which inhibit growth at high pH. These buffers help
cultures to maintain a constant pH throughout growth.
All cultures were grown for 3 h since the highest secretion
levels of LT toxin has been reported to occur at this time
[7], pH 7 cultures reached an OD600 of 1.2 whereas pH 9
cultures reached an OD600 of 0.4.

Trypsin digestion of bacteria in LPI HexaLane FlowCell
and TMT (tandem mass tags) labeling
The bacterial biomass was washed with PBS three con-
secutive times by centrifugation of the samples for 5 min
at 10.000 rpm, followed by discarding the supernatant and
then resuspending the pellet in 1 ml PBS. The washed bac-
terial suspension was injected into the LPI Hexalane Flow-
Cell (Nanoxis Consulting AB, www.nanoxisconsulting.com)
by adding 100 μL to fill the FlowCell channel (with a
volume of ∼ 30 μL) using a pipette. The excess of bacterial
suspension was removed from the inlet and outlet ports.
The immobilized bacteria were incubated for 1 h, at room
temperature, to allow bacterial cell attachment, and the
FlowCell channels were washed subsequently with 1.0 mL
of TEAB (Triethylammonium bicarbonate) using a syringe
pump, with a flow rate of 100 μL/min. Enzymatic digestion
of the bacterial proteins was performed by injecting 100 μL
of trypsin (20 μg/mL in 200 mM TEAB, pH ~8) into the
FlowCell channels and incubating for 30 min at room
temperature. The generated peptides were eluted by

injecting 200 μl TEAB (200 mM, pH ~8) into the FlowCell
channels at a flow rate of 100 μL/min. The eluted peptides
were collected at the outlet ports, using a pipette, and
transferred into Axygen tubes (2 ml). The peptide solutions
were incubated at room temperature overnight, to
allow for complete digestion, and subsequently frozen
at −20 °C. As described above, each of the three bio-
logical replicates at both conditions were analyzed
using triplicate samples of pH 7 and pH 9 (technical
replicates) in order to allow for technical variation and
to give statistical support for the t-test analysis.
The digested samples were concentrated to 30 μl and

70 μl of 0.5 M TEAB (Triethylammonium Bicarbonate)
was added to each tube prior to labeling with the TMT®
according to the manufacturer’s instructions (Thermo
Scientific). In a set, each sample was labeled with a unique
tag from a TMT 6plex isobaric mass tag labeling kit. After
TMT labeling, the samples in a set were pooled resulting
in three independent sets in total to cover all samples.

LC-MS/MS Analysis on LTQ-Orbitrap Velos and Q-Exactive
Each set was divided in two equal volumes into two
separate samples (sample 1 and sample 2) that were
either subjected to LCMS-analysis directly (1D-LC) or
further purified and fractionated by Strong Cation Ex-
change Chromatography (SCX) followed by LCMS-analysis
(2D-LC). Sample 1, analyzed according to the 1D-LC
approach, was desalted using PepClean C18 spin columns
(Thermo Fisher Scientific) according to the manufacturer’s
guidelines prior to LCMS-analysis. The second sample
(sample 2) was fractionated using SCX spin columns
(Thermo Fisher Scientific) into 8 fractions according to the
manufacturer’s guidelines followed by a desalting step of
each fraction.
Samples were reconstituted with 15 μl of 0.1% formic

acid (Sigma Aldrich) in 3% acetonitrile (Sigma Aldrich)
and analyzed on either an LTQ-Orbitrap Velos or Q-
exactive (Thermo Fisher Scientific, Inc., Waltham, MA,
USA) mass spectrometer interfaced to an Easy-nLC II
(Thermo Fisher Scientific). Peptides (2 μL injection vol-
ume) were separated using an in-house constructed ana-
lytical column (200 × 0.075 mm I.D.) packed with 3 μm
Reprosil-Pur C18-AQ particles (Dr. Maisch, Germany).
Solvent A was 0.2% formic acid in water and solvent B
was 0.2% formic acid in acetonitrile. The following
gradient was run at 200 nL/min; 5–30% B over 75 min,
30–80% B over 5 min, with a final hold at 80% B for
10 min. Ions were injected into the mass spectrometer
under a spray voltage of 1.6 kV in positive ion mode.
The MS scans was performed at 30 000 and 70 000 reso-
lution (at m/z 200) with a mass range of m/z 400–1800
for the Velos and Q-exactive, respectively. MS/MS
analysis was performed in a data-dependent mode, with
the top ten most abundant doubly or multiply charged

Gonzales-Siles et al. BMC Microbiology  (2017) 17:11 Page 3 of 17

http://www.nanoxisconsulting.com/


precursor ions in each MS scan selected for fragmenta-
tion (MS/MS) by stepped high energy collision dissoci-
ation (stepped HCD) of NCE-value of 25, 35 and 45. For
MS/MS scans the resolution was 7 500 and 35,000 (at
m/z 200) for the Velos and Q-exactive with a mass range
of m/z 100–2000. The isolation window was set to
1.2 Da, intensity threshold of 1.1e4 and a dynamic exclu-
sion of 30 s, enabling most of the co-eluting precursors
to be selected for MS/MS. Samples analyzed according
to the 1D-LC approach were re-analyzed twice with
exclusion lists generated after database searching of
previous LCMS runs (see below).

Database search for protein TMT quantification
For relative quantification and identification the MS raw
data files for each TMT set were merged in the search
using Proteome Discoverer version 1.4 (Thermo Fisher
Scientific). For the 1D-LC and 2D-LC approaches, the trip-
licate injections and the SCX fraction were combined, re-
spectively. A database search for each set was performed
with the Mascot search engine (Matrix Science LTD) using
species-specific databases downloaded from Uniprot. The
data was searched with MS peptide tolerance of 10 ppm
for Orbitrap Velos and 5 ppm for Q-Exactive runs and
MS/MS tolerance for identification of 100 millimass units
(mmu). Tryptic peptides were accepted with 1 missed
cleavage and variable modifications of methionine oxida-
tion, cysteine methylthiolation and fixed modifications of
N-terminal TMT6plex and lysine TMT6plex were se-
lected. The detected peptide threshold in the software was
set to 1% FDR (false discovery rate) for the experiments
performed on the QExactive, and 5% FDR for the experi-
ments performed on the Velos, by searching against a
reversed database. Identified proteins were grouped by
sharing the same sequences to minimize redundancy. For
the 1D-LC approach exclusion lists of m/z values of the
identified peptides with a two minutes retention time
window was generated from the search results.
For TMT quantification, the ratios of the TMT re-

porter ion intensities in MS/MS spectra (m/z 126–131)
from raw data sets were used to calculate fold changes
between samples. Ratios were derived by Proteome
Discoverer using the following criteria: fragment ion
tolerance as 80 ppm for the most confident centroid
peak and missing values are replaced with minimum
intensity. TMT reagent purity corrections factors are
used and missing values are replaced with minimum
intensity. Only peptides unique for a given protein were
considered for relative quantitation, excluding those
common to other isoforms or proteins of the same fam-
ily. The quantification was normalized using the protein
median. The results were then exported into MS Excel
(Microsoft, Redmond, WA) for manual data interpret-
ation and statistical analysis. Only peptides unique for a

given protein were considered for relative quantitation,
excluding those common to other isoforms or proteins
of the same family.

Statistical analysis
First, proteins displaying more than 20% variation between
the individual LPI channels for the three pH 7 and the
three pH 9 channels respectively were removed. This was
done by calculation the ratio of the separate TMT-labels
in a group, and the average of the combined channels e.g.
126/(average 126 + 127 + 128). Proteins with ratios be-
tween 0.8 and 1.2 were included in the protein list.
Second, a Welch’s t-test was performed (3 technical repli-
cates pH 7 vs 3 technical replicates pH 9) and only pro-
teins passing filter p < 0,05 was accepted. Third, a fold
change of at least 1.5 was set as a threshold to list proteins
that had a relevant up or down regulation. Fourth, the
proteins accepted for the biological interpretation had to
be quantified in at least two of the three TMT-sets
(biological replicates).

Results
Surface proteome analysis and protein annotation
To study the effect of alkaline pH on ETEC strain E2863
we used a MS-based quantitative proteomic strategy.
Three biological replicates of the experiments were per-
formed in pH 7 and pH 9, respectively. Tandem mass
tag (TMT) labeling was used for multiplexed relative
quantification of proteins in multiple samples [18]. Since
we were interested in the bacterial surface proteome
exposed to the environment during alkaline conditions
we used the LPI methodology for surface shaving of
bacteria to enrich for surface proteome [19].
The peptides generated by the LPI methodology were

analyzed with two different separation strategies prior MS
analysis to increase the number of detected proteins.
Therefore, after eluting peptides from the LPI flow cell the
combined sample was split into two equal parts (sample 1
and 2) and analyzed by either an one-dimensional (1D-
LC) approach or a two-dimensional (2D-LC) approach
including an offline strong cation exchange fractionation
step prior to MS-analysis. The overall workflow is
depicted in Fig. 1.
Since ETEC strain E2863 is not whole genome se-

quenced, a proteomic strain typing according to Karlsson
et al. was performed, to identify the most similar strain to
E2863 for peptide matching [19]. Strain identity typing
identified E. coli K011FL as the top ranking identity strain
and it was used for peptide matching. In order to pick up
ETEC specific genes, the ETEC reference strain H10407
was used. For each experiment the resulting protein
matches using both K011FL and H10407 were annotated
and finally all results obtained in the three independent
replicates were combined (Table 1).
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For comparison between the two pH conditions, fold-
changes were calculated and a p-value <0.05 was consid-
ered significant (Table 1). The distribution of proteins
with P < 0.05 among the three biological replicates for
both 1D-LC and 2D-LC is shown in Fig. 2a. In total, we
included 248 proteins found in at least two of the three
biological replicates for the biological interpretation. Out
of the 248 proteins, 104 were found in both the 1D-LC
and the 2D-LC analysis, whereas 81 were uniquely found
in the 1D-LC analysis and 63 were uniquely found in the
2D-LC analysis (Fig. 2b).

Growth in alkaline conditions induce specific changes in
the proteome
The identified proteins were analyzed for up- and down-
regulation. In general, equal numbers of proteins and

similar up- and down-regulation patterns were deter-
mined using both 1D-LC and 2D-LC. The identified
proteins were grouped according to functionality and
were divided into eight different categories: amino acid
catabolism and transport, biosynthesis, envelope and
periplasmic proteins, proton and electron transport,
ribosomal, stress response, sugar catabolism and TCA
cycle, and, transcription and translation. Sixty-three
proteins were not grouped since most of them belong to
putative or uncharacterized proteins.
We observed that identified proteins that could be

grouped into the categories transcription and translation,
ribosomal, proton and electron transport and periplasmic
proteins were generally up-regulated under alkaline condi-
tions compared to pH 7. In contrast most of the proteins
from sugar catabolism and TCA cycle, stress response,

Table 1 Protein matches to genomes used for matching peptides before and after t-test analysis (p < 0.05)

K011FL H10407

Total number of proteins Significant (p < 0.05) Total number of proteins Significant (p < 0.05)

1D-LC 2D-LC 1D-LC 2D-LC 1D-LC 2D-LC 1D-LC 2D-LC

Replicate 1 435 470 211 238 440 471 210 240

Replicate 2 579 455 272 200 574 447 264 188

Replicate 3 503 402 292 228 500 413 289 230

Fig. 2 Number of common proteins between 1D-LC and 2D-LC analysis. a Number of common proteins with P < 0.05 among different biological
replicates for both 1D-LC and 2D-LC analysis. b Number of common proteins with P < 0.05 between 1D-LC and 2D-LC analysis considering 248
proteins included in the study
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and amino acid catabolism were mainly down-regulated
under alkaline conditions (Fig. 3).
Among proteins with the highest fold changes, glutam-

ate decarboxylase A and B (GadAB), pyruvate oxidase
(PoxB), L-asparaginase (AnsB) and nitrate reductase
(NarH) were the most down-regulated proteins at pH 9
compared to pH 7; whereas proteins belonging to the ATP
synthase complex (AtpADFGH) were highly up-regulated.
Three uncharacterized proteins were among the most
down-regulated proteins at pH 9 (i.e. a hypothetical pro-
tein: E8YA36, a putative lipoprotein: E3PFR9, and a puta-
tive stress protein: E3PC10). In addition two hypothetical
proteins were among the most up-regulated (E8Y559, and
E3PLV3 where the latter is predicted to be an exported
protein). Although the function of these proteins is
unknown, our results suggest that they are involved in
alkaline pH responses in E. coli.

Proteins involved in proton and electron transport are
up-regulated at alkaline pH
We observed strong up-regulation of the ATP synthase
operon encoding F1Fo ATP synthase, which import H+

to the cytosol during oxidative respiration [20] in con-
trast to down-regulation of proteins involved in the
export of H+ from the cytosol such as NADH ubiquinine
oxireductase (NuoABCDEFGHI), nitrate reductase A
(NarH) and NAD(P)H dehydrogenase (quinone)(WrbA)
(Table 2) (Fig. 4). The protein subunit of nitrate reduc-
tase (NarH) and dimethyl sulfoxide reductase (DmsA/C)
involved in the anaerobic respiration pathway were also
down-regulated (Table 2). Furthermore, we observed an

increase of Phage shock protein A (PspA) (Table 6), which
helps maintain the proton motive force under stress
conditions as well as cellular growth during alkaline and
nutrient depleted environmental conditions [21]. The
proteome at pH 9 thus reflects that several membrane
and periplasmic proteins are involved in retaining protons
in the cytosol in order to keep a near-neutral pH in the
cytosol at alkaline external conditions (Table 2) (Fig. 4).

TCA cycle proteins are generally down-regulated at alka-
line pH while maltose sugar catabolism is favored
The first step in the metabolism of carbohydrates is the
transport of these molecules into the cytosol. Substrates
need to be transported into cells prior to their catabolic
breakdown or employment for anabolic purposes. In
bacteria, various carbohydrates are taken up by several
mechanisms [22]. The most important transport system
for carbohydrates, in particular glucose, is the phospho-
transferase system (PTS). All identified enzymes of the
PTS system (e.g. PtsI, PykF, Pps, PpsA and the Man
system) were down-regulated (Table 3). Contrary, the
proteins for maltose transport (MalEKMK) and trehalose-
specific transporter (TreB) were up-regulated. Expression
of genes involved in maltose or maltodextrine transport
peak at exponential phase and induction of the maltose
operon at alkaline pH has been reported in several studies
[23]. It is also known that E. coli growing on LB utilize
maltose as a preferred carbon source followed by e.g.
mannose, melibiose, galactose, fucose and rhamnose
[24]. In line with this the galactose/glucose import pro-
tein D-galactose-binding periplasmic protein (MglB), a

Fig. 3 Distribution of up- and down-regulated proteins among the different protein categories
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periplasmic binding component of the galactose ABC
transporter which is activated in response to low levels
of glucose, was up-regulated, implying transport of gal-
actose into the cell. The glucose molecule transported
by MglB system is phosphorylated and converted to
G6P fructose, which is then transferred and phosphory-
lated by the fructose PTS (EIIBCFru) system, which
was up-regulated at alkaline pH. However, other sugar
transport proteins like Glycerol kinase (GlpK), involved
in glycerol uptake, and UTP-glucose-1-phosphate uri-
dylyltransferase (GalU) for galactose transport were
down-regulated (Fig. 5).
The enzymes of the glycolytic pathway, the pentose

phosphate pathway and TCA cycle were generally down-
regulated under alkaline conditions (Fig. 5). Acetate for-
mation through pyruvate dehydrogenase (PoxB), and lac-
tate formation through D-lactate dehydrogenase (LdhA)
and phosphoenoloyruvate synthase (PpsA), which cata-
lyzes conversions from pyruvate to PEP, does not seem to
play a significant role under alkaline conditions since
these proteins were down-regulated. In contrast, glucose-
6-phosphate 1-dehydrogenase G6PDH (Zwf), which is a
key enzyme in central metabolism was up-regulated.
G6PDH is involved in the distribution of carbon between
glycolysis and the pentose phosphate pathway (PPP),
which provides a large portion of the NADPH needed for
anabolism. But G6PDH is also activated in response to
oxidative stress by the soxRS regulatory system [25, 26].

Most identified enzymes belonging to the pentose
phosphate pathway (e.g. Gnd, TktA) have previously
been found in lower amounts in cells growing under
alkaline conditions [27]. We observed down-regulation
of both transketolase A and B (TktA, TktB) involved in
the nonoxidative branch of the pentose phosphate path-
way in contrast to other studies where TktA and TktB
have been suggested to be regulated in opposite ways,
for instance the TktB gene is induced while TktA is
repressed by RpoS [28].

Periplasmic and outer membrane protein transport over
membranes is up-regulated at alkaline conditions
ETEC toxin secretion has been shown to be favored by
alkaline pH [7]. We hypothesized that alterations in the
composition of proteins at the membrane and periplas-
mic level allows for higher secretion of LT toxin. The
Sec machinery mediates translocation of LT toxin A and
B subunits across the inner membrane in a process that
is dependent on ATP and the proton motive force. In
line with this up-regulation of the Sec translocation
complex (SecD/F) was observed (Table 4), In addition
upregulation of YidC was also observed. YidC is an
integral membrane chaperone that interacts transi-
ently with membrane proteins during their biogenesis
and stimulates their correct assembly [29]. YidC inter-
acts with SecD and SecF to form a heterotetrameric
SecDFYajCYidC accessory complex [30].

Table 2 Proteins involved in proton and electron transport

Protein Description 1D-LC 2D-LC Regulation Run Matching

AtpA ATP synthase subunit alpha 1.93 2.14 UP All Both

AtpC ATP synthase epsilon chain 1.75 UP 2-3 Both

AtpD ATP synthase subunit beta 1.92 2.14 UP All Both

AtpF ATP synthase subunit b 2.45 3.65 UP 2-3 Both

AtpG ATP synthase gamma chain 2.12 2.82 UP All/1-2 Both

AtpH ATP synthase subunit delta 2.11 UP 2-3 Both

Cmk Cytidylate kinase 1.60 UP 1-3 Both

DmsA Anaerobic dimethyl sulfoxide reductase subunit A 0.29 DOWN 2-3 Both

DmsC Anaerobic dimethyl sulfoxide reductase chain A 0.29 DOWN 2-3 H10407

NarH Nitrate reductase, beta subunit 0.21 DOWN All Both

NirB Nitrite reductase (NAD(P)H), large subunit 1.69 UP 2-3 Both

NuoF NADH-quinone oxidoreductase subunit F 0.38 DOWN 2-3 Both

NuoG NADH-quinone oxidoreductase subunit G 0.63 0.52 DOWN 2-3 Both

SapE ABC transporter ATP-binding protein 1.67 UP 2-3 H10407

SapF ABC transporter, ATP-binding protein 1.73 UP 2-3 H10407

TrxA Thioredoxin 1.68 UP 1-2 H10407

TrxC Thioredoxin-like protein 1.56 UP 2-3 H10407

WrbA NAD(P)H dehydrogenase 0.23 0.37 DOWN All/2-3 Both

YhjA Cytochrome C peroxidase 0.55 DOWN 1-3 Both

Fold changes are listed under 1D-LC and 2D-LC columns
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In the periplasmic space the LT toxin is assembled in
a pH- and DsbA-dependent manner and secreted
through the general type II secretion pathway. Since we
observed up-regulation of DsbA it is possible that in-
creased assembly of LT holotoxin in the periplasm can
explain elevated levels of secretion of LT toxin at high
pH. The Gsp components of the type II secretion path-
way were however not significantly changed consistent
with other findings [31].
The β-Barrel Assembly Machinery complex (BamAD)

that is essential for insertion of outer membrane proteins
(OMPs) in the outer membrane of gram-negative bacteria
was up-regulated, in line with this the chaperone SurA
that escorts outer membrane proteins to the Bam complex
was induced (Table 6) as well as the outer membrane
protein OmpA (Table 4). Hence, alkaline conditions might
favor expression of outer membrane proteins and/or
secretion in general.

The osmotic stress responses are generally down-regulated
at alkaline pH
In response to pH stress E. coli respond with different
adaptive mechanisms including induction of pH
dependent chaperones and osmoprotectants. We
found that proteins involved in acidic stress response,
i.e. GadAB and the acid stress induced chaperone
HdeB were down-regulated as expected. In addition,
trehalose-6-phosphate synthase OtsA that synthesizes
the osmoprotectant trehalose under osmotic stress
was down-regulated (Table 5). Additionally, two os-
motically regulated permeases, ProP and ProU in-
volved in the uptake of osmoprotectant molecules
such as glycine betaine and proline were down-
regulated. The osmotically induced proteins OsmB/E/
Y were also down-regulated [32] (Table 5). Taken to-
gether this indicates that alkaline stress is reducing os-
motic stress responses in E. coli.

Fig. 4 Proton and electron transport system under alkaline conditions. In our system F1Fo ATP synthase, which import H+ (orange) to the cytosol
during oxidative respiration is up-regulated whereas proton pumping proteins NuoF, NuoG and Ndh are downregulated
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The heat shock response is one of the main global
regulatory networks in all organisms and involves an
increased cellular level of chaperones and proteases to
enable correct protein folding and balanced growth

under different stress conditions [33]. The heat shock
response in E. coli is mediated by σ32 [33]. Among
the heat shock proteins that passed our criteria for
changed expression we found that DnaK and ClpAB

Table 3 Proteins involved in sugar catabolism and TCA cycle

Protein Description 1D-LC 2D-LC Regulation Run Matching

AceE Pyruvate dehydrogenase E1 component 0.62 DOWN 2-3 Both

AceF Pyruvate dehydrogenase complex dihydrolipoamide acetyltransferase 1.64 1.65 UP 2-3/1-3 Both

AcnA Aconitate hydratase 0.44 DOWN All Both

Eno Enolase 0.60 DOWN 1-2 Both

FrdA Fumarate reductase flavoprotein subunit 0.39 0.35 DOWN All Both

FrdB Fumarate reductase iron-sulfur subunit 0.44 0.36 DOWN All/1-2 Both

FruB Bifunctional PTS system fructose-specific transporter subunit IIA/HPr protein 1.89 UP 2-3 Both

FumA Fumarate hydratase FumB 0.26 DOWN 2-3 Both

GalU UTP–glucose-1-phosphate uridylyltransferase subunit GalU 0.65 0.55 DOWN All Both

GapA Glyceraldehyde-3-phosphate dehydrogenase A 1.36 UP 1-2 H10407

GapC Glyceraldehyde-3-phosphate dehydrogenase 0.30 0.27 DOWN 2-3/All Both

GlpK Glycerol kinase 0.31 0.31 DOWN All Both

GltA Citrate synthase 1.62 1.74 UP 2-3/All Both

Gnd 6-phosphogluconate dehydrogenase, decarboxylating 0.43 0.52 DOWN 2-3 Both

GpmA 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase 1.70 1.78 UP 2-3 Both

Icd Isocitrate dehydrogenase [NADP] 0.87 DOWN All Top

MaeA NAD-dependent malic enzyme 0.62 DOWN All H10407

MaeB Bifunctional malic enzyme oxidoreductase/phosphotransacetylase 2.07 UP 2-3 Both

MalE Extracellular solute-binding protein family 1 2.03 2.50 UP All Both

MalK Maltose/maltodextrin transporter ATP-binding protein 2.03 UP 1-3 Both

MalM Maltose operon periplasmic 1.85 1.88 UP All/2-3 Top

MalX Maltose transport system, substrate-binding protein 2.03 2.50 UP All H10407

ManXYZ PTS system mannose-specific transporter subunits IIAB 0.69 DOWN 1-3 Top

MglB Methyl-galactoside ABC transporter galactose-binding periplasmic protein 3.70 UP 1-2 Both

PfkA 6-phosphofructokinase 0.48 0.41 DOWN All/2-3 Both

PflB Pyruvate formate lyase I 0.42 0.36 DOWN 1-2 Both

Pgm Phosphoglucomutase 0.43 DOWN 1-3 Both

PoxB Pyruvate dehydrogenase 0.28 0.08 DOWN All/2-3 Both

Pps Phosphoenolpyruvate synthase 0.62 0.60 DOWN All/1-2 Top

PpsA Phosphoenolpyruvate synthase 0.62 0.60 DOWN All/1-2 H10407

PtsI Phosphoenolpyruvate-protein phosphotransferase 0.95 DOWN All Both

PykF Pyruvate kinase 0.54 0.41 DOWN All Both

SucA Succinyl-CoA ligase [ADP-forming] subunit alpha 0.52 0.45 DOWN All H10407

SucC Succinyl-CoA ligase [ADP-forming] subunit beta 0.39 DOWN 2-3 Both

SucD Succinyl-CoA ligase [ADP-forming] subunit alpha 0.56 0.45 DOWN 1-2/All Top

TktA Transketolase 0.52 0.47 DOWN All Both

TktB Transketolase 0.52 0.49 DOWN 2-3/1-2 Both

TreB PTS system trehalose(Maltose)-specific transporter subunits IIBC 2.01 2.07 UP 2-3/All Both

Zwf Glucose-6-phosphate 1-dehydrogenase 2.23 2.54 UP 2-3 Both

Fold changes are listed under 1D-LC and 2D-LC columns
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were repressed in response to alkaline stress. These
results were in contrast with earlier findings that have
indicated that DnaK is induced by alkaline conditions
[34] but supported by findings of Maurer et al. [35].
We found that the heat shock protein GroEL was up-
regulated consistent with other reports [34]. We also

found that the cold shock protein E CspE was up-
regulated. Among proteases, DegP was up-regulated
and PepD was down-regulated. DegP degrades abnor-
mal proteins in the periplasm, including mutant pro-
teins, oxidatively damaged proteins and aggregated
proteins [36] (Table 5).

Fig. 5 Schematic representation of the sugar catabolism system and TCA cycle under alkaline conditions

Table 4 Envelop and periplasmic proteins

Protein Description 1D-LC 2D-LC Regulation Run Matching

AcrA Acriflavin resistance protein A 2.54 2.78 UP 2-3/1-3 Both

BamA Outer membrane protein assembly factor BamA 1.50 UP 1-2 H10407

BamD Outer membrane protein assembly factor BamD 1.55 UP All Both

CopA Copper exporting ATPase 0.44 DOWN 2-3 Both

DsbA Thiol:disulfide interchange protein 2.33 2.00 UP All/2-3 Both

HchA Molecular chaperone Hsp31 and glyoxalase 3 0.41 DOWN All Both

OmpA Outer membrane protein A 1.60 UP 2-3 Top

SecB Protein-export protein SecB 0.29 0.29 DOWN All Both

SecD Protein translocase subunit SecD 1.67 UP All Both

SecF Protein-export membrane protein SecF 1.77 UP 2-3 Both

SlyB Outer membrane lipoprotein SlyB 1.54 UP 1-2 Top

TraT Putative complement resistance protein TraT 0.52 DOWN 1-3 H10407

YbiT ABC transporter ATP-binding protein 1.67 UP 2-3 Top

YbjP Putative lipoprotein 0.52 0.46 DOWN 1-2/2-3 Top

YidC Membrane protein insertase YidC 2.04 1.86 UP All Both

YjjK ABC transporter related protein 1.34 UP All Top

YtfQ Periplasmic binding protein/LacI transcriptional regulator 0.38 DOWN 2-3 Top

Fold changes are listed under 1D-LC and 2D-LC columns
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Translation and transcription is induced at alkaline pH
Proteins involved in translation were mainly up-regulated
such as ribosomal proteins, ribosomal associated proteins,
elongation factors, peptide chain release factor PrfC, RNA
degradation protein Pnp and the initiation factor InfB.
InfB was been previously reported to be produced in
response to stress conditions since accumulation of InfB
seems to be correlated with a stop of protein synthesis in
E. coli [37]. These results suggest an increased production

of proteins in response to alkaline stress or alterna-
tively an increased re-localization of ribosomes to the
inner membrane.
Under alkaline stress, RNA polymerase proteins

RpoA/B/C were up-regulated suggesting that transcrip-
tion was favored. Among transcriptional factors, the
global regulators ArcA, IhfA/B and Crp were down-
regulated (Table 6). Proteins involved in ATP generation
in the absence of oxygen or other electron acceptors,

Table 5 Proteins involved in biosynthesis and stress response

Protein Description 1DLC 2DLC Regulation Run Matching

AccB Acetyl-CoA carboxylase biotin carboxyl carrier 1.83 UP 1-3 Both

AccD Acetyl-coenzyme A carboxylase carboxyl transferase 1.53 1.93 UP 2-3 Both

ClpA ATP-dependent Clp protease ATP-binding subunit 0.66 DOWN 1-2 H10407

ClpB ATP-dependent chaperone ClpB 0.50 0.48 DOWN 1-2/All Top

CspE Cold shock protein CspE 1.72 1.74 UP 2-3/1-2 Both

DdlA D-alanine–D-alanine ligase 0.44 DOWN 1-3 Both

DnaK Chaperone protein DnaK 0.63 0.59 DOWN All Both

ErfK ErfK/YbiS/YcfS/YnhG family protein 0.64 DOWN 2-3 Top

FabB 3-oxoacyl-(Acyl carrier protein) synthase I 0.59 0.49 DOWN All Both

FabF 3-oxoacyl-[acyl-carrier-protein] synthase 2 0.61 DOWN 2-3 Both

GadA Glutamate decarboxylase 0.18 0.06 DOWN 1-2/2-3 Both

GadB Glutamate decarboxylase beta subunit 0.08 0.04 DOWN All/2-3 H10407

GlmM Phosphoglucosamine mutase 0.64 DOWN 1-3 Top

GlmS Glutamine–fructose-6-phosphate aminotransferase 0.61 DOWN All Both

GlnS Glutamine–tRNA ligase 0.52 DOWN 2-3 Both

Gmk Guanylate kinase 0.42 DOWN 2-3 Both

GrcA Autonomous glycyl radical cofactor 0.41 0.32 DOWN All H10407

GroEL 60 kDa chaperonin 2.62 2.79 UP 2-3 Both

GshB Glutathione synthetase 0.46 DOWN 2-3 Both

HdeB Acid stress chaperone HdeB 0.22 DOWN 2-3 Both

HdhA 7-alpha-hydroxysteroid dehydrogenase 0.27 DOWN 2-3 Both

HtpB Chaperone protein HtpG 0.74 DOWN 1-3 Top

KatG Catalase-peroxidase 1.90 UP 2-3 Both

LpxA Acyl-UDP-N-acetylglucosamine O-acyltransferase 1.51 UP 2-3 Top

MsyB SecY/secA suppressor protein 0.58 DOWN 2-3 Both

NapA Periplasmic nitrate reductase 0.46 DOWN 1-3 Both

OsmB Osmotically inducible lipoprotein E 0.46 0.36 DOWN 1-3/All H10407

OsmE DNA-binding transcriptional activator OsmE 0.46 0.36 DOWN 1-3/All Top

OsmY Osmotically-inducible protein Y 0.28 0.26 DOWN All Both

OtsA Alpha,alpha-trehalose-phosphate synthase 0.67 DOWN 1-2 Both

Prs Ribose-phosphate pyrophosphokinase 1.60 UP 2-3 Top

PurA Adenylosuccinate synthetase 0.64 0.62 DOWN All/2-3 Both

Skp Chaperone protein skp 0.59 DOWN 2-3 Both

SspA Glutathione S-transferase domain protein 0.66 0.55 DOWN 1-3 Both

YbaY Glycoprotein/polysaccharide metabolism 0.21 DOWN 2-3 Top

Fold changes are listed under 1D-LC and 2D-LC columns
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Table 6 Proteins involved in transcription and translation mechanisms

Protein Description 1D-LC 2D-LC Regulation Run Matching

ArcA Aerobic respiration control protein 0.63 DOWN All Both

Crp Cyclic AMP receptor protein 0.65 DOWN 1-3 Both

DegP Protease Do 1.82 2.16 UP All Top

Dps DNA protection during starvation protein 0.39 0.28 DOWN 2-3 Both

GreA Transcription elongation factor GreA 1.89 UP 2-3 Both

HflC Modulator of FtsH protease HflC 2.01 1.89 UP 1-3/All H10407

HflK FtsH protease regulator HflK 1.60 2.27 UP 1-3/All Both

HflX GTPase HflX 1.60 2.27 UP 1-3/All H10407

IhfA Integration host factor subunit alpha 0.62 0.63 DOWN All/2-3 Both

LepA Elongation factor 4 1.65 UP All Both

LepB Signal peptidase I 1.68 UP 1-2 Both

NrdA Ribonucleoside-diphosphate reductase 0.53 0.57 DOWN 2-3/All Both

NrdD Anaerobic ribonucleoside triphosphate reductase 0.56 DOWN 2-3 Top

NusA NusA antitermination factor 0.63 DOWN 2-3 Top

PepD Aminoacyl-histidine dipeptidase 0.64 DOWN 1-2 Top

Pnp Polyribonucleotide nucleotidyltransferase 1.58 1.78 UP All Both

PolA DNA polymerase I 0.65 DOWN 1-2 Top

PrfC Peptide chain release factor 3 1.54 UP 1-2 Both

PspA Phage shock protein A 1.69 2.27 UP All/2-3 Both

RaiA Sigma 54 modulation protein/ribosomal 1.55 UP 2-3 Top

Rho Transcription elongation protein 0.63 DOWN 2-3 H10407

RlpK 50S ribosomal protein L11 1.54 1.78 UP 1-3 Both

Rph Ribonuclease PH 1.67 2.04 UP All/2-3 Both

RplC 50S ribosomal protein L3 1.54 1.64 UP All/1-3 Both

RplD 50S ribosomal protein L4 1.31 UP 1-3 Top

RplF 50S ribosomal protein L6 1.28 UP 1-3 Top

RplI 50S ribosomal protein L9 1.70 1.87 UP All/2-3 Both

RplK 50S ribosomal protein L11 1.53 1.78 UP 1-3 Top

RplO 50S ribosomal protein L15 1.87 UP 1-3 Both

RplT 50S ribosomal protein L20 1.73 1.86 UP All Both

RpmE 50S ribosomal protein L31 1.98 UP All Both

RpmG 50S ribosomal protein L33 1.95 UP 1-3 Both

RpoA DNA-directed RNA polymerase subunit alpha 1.66 UP 2-3 Both

RpoB DNA-directed RNA polymerase subunit beta 1.84 1.66 UP 2-3/All Both

RpoC DNA-directed RNA polymerase subunit beta’ 1.92 1.71 UP 2-3/All Both

RpsA 30S ribosomal protein S1 1.40 UP 1-3 H10407

RpsH 30S ribosomal protein S8 1.69 UP 2-3 Both

RpsJ 30S ribosomal protein S10 1.52 UP 1-3 Top

RpsK 30S ribosomal protein S11 2.53 UP All Both

RpsO 30S ribosomal protein S15 1.52 1.53 UP 2-3 H10407

Sra Stationary phase induced ribosome associated protein 0.55 DOWN 2-3 H10407

Ssb Single-stranded DNA-binding protein 1.80 1.95 UP 1-2/2-3 Both

SurA Chaperone SurA 1.82 UP 1-3 Both

UspF Universal stress protein F 0.43 0.42 DOWN 2-3/All Top

YgfZ tRNA-modifying protein YgfZ 0.52 DOWN 1-3 Both

Fold changes are listed under 1D-LC and 2D-LC columns
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which are positively regulated by the transcriptional regu-
lator ArcA, i.e. Ppc involved in succinate formation, and
PflB in the pyruvate dehydrogenase complex (PDHc),
were down-regulated, in contrast to up-regulation of the
AceE/F complex which encode α and β subunits of PDHc
and is negatively regulated by ArcA. These results were
consistent with the observed down-regulation of ArcA
itself and indicate that alkaline pH repress the ArcA regu-
lon. RpoS responsible of the expression of many genes
under stress conditions was not detected in our analysis.

Amino acid metabolism under alkaline conditions
High pH have been reported to induce enzymes involved
in generation of ammonia from amino acids including
TnaA, CysK and AstD which consume tryptophan,
serine, cysteine and arginine. Our results indicated a
down-regulation in amino acid metabolism. TnaA, tryp-
tophan deaminase, was down-regulated under alkaline
conditions (Table 7). This result does not match with
previous studies where TnaA was favored by alkaline pH
[23]. TnaA has been reported to act as an important
signaling molecule during alkaline conditions and to be
regulated by RpoS under different environmental or
growth conditions [38]. RpoS regulated proteins have a
more important role in extended periods of stationary
phase growth rather than at the onset of stationary
phase [39]. It is possible that TnaA was down-regulated
in our system, since the analysis of proteins was done
during exponential phase. Furthermore, PutA required
for the degradation of proline was up-regulated. In the
presence of proline, PutA is associated with the cytoplas-
mic membrane and acts a bifunctional enzyme catalyz-
ing both reactions of the proline degradation pathway:
the oxidation of proline by proline dehydrogenase and
subsequent oxidation to glutamate by pyrroline-5-
carboxylate (P5C) dehydrogenase.

Discussion
Our study highlights the effect of alkaline pH on the
expression of proteins compared to neutral pH in ETEC.
Since we hypothesize that infecting ETEC might en-
counter alkaline pH close to the epithelium the alkaline
surface proteome might provide a better view of ETEC
behavior at the site of infection and aid in identification
of e.g. novel vaccine targets. However, even if our study
is focused on ETEC, we have also identified general
mechanisms based on the MS results that could be
extrapolated to all E. coli subspecies.
The LC-MS/MS method used generated results for

3–400 proteins at each condition while E. coli is ex-
pected to express around 3000 genes of which most are
translated into proteins. In this study we tried to enrich
for the surface and membrane proteome, which is esti-
mated to comprise 40% of the bacterial total proteome

[40]. Each generated sample was split into two parts
and subsequently two different analysis approaches
were employed, here named 1D-LC and 2D-LC. This
was done in order to maximize the number of identi-
fied peptides generated by the enzymatic digestion. It
has been estimated that for highly complex samples,
containing 10,000–50,000 proteins in different concen-
tration ranges, theoretically it would be necessary to be
able to separate around 10% of the peptides prior to
MS analysis [41]. Normally, 1D-LC approaches are not
able to resolve this number of peptides, and thus multi-
dimensional separation strategies such as 2D-LC ana-
lysis was employed [42] to maximize the number of
peptides/protein identifications.
As we used the surface shaving approach, the samples

were less complex relative to a whole cell lysate, where
orthogonal fractionation would be necessary. The lower
complexity and the use of long separation gradients with
two exclusion lists enabled the 1D separation to perform
well. For a sample of low complexity, using the 2D ap-
proach will not always be beneficiary since there is a risk
that some peptides, particularly of low abundance, might
be lost in the first offline fractionation step. This might ex-
plain the reason for the data being complementary to each
other when comparing the 1D-LC vs 2D-LC approach.
The two methods employed generated slightly different

results. In previous shotgun proteomics studies, 1D-LC
with 2D-LC approaches have been compared [41, 43].
Concerning the performance on 2D-LC approaches, the
drawback of having to use offline fractionation (SCX or
RP) prior to a second online RP-LC injection of the frac-
tions, is balanced against a higher number of peptide/pro-
tein identifications. When comparing the methodologies
on the same sample, most of the identified proteins in a
1D-LC set-up are usually found also in the 2D-LC set-up
[41]. In our study, however, the employed 1D-LC (RP-LC)
set-up of three consecutive injections (with exclusion lists)
seemed to complement the 2D-LC set-up (eight SCX frac-
tions followed by RP-LC). The number of proteins found
in both set-ups was 104 whereas 81 proteins were
uniquely found in the 1D-LC set-up versus 63 proteins
uniquely found in the 2D-LC set-up. This might be due to
the methodology of generating the peptides, using the LPI
methodology to perform surface shaving of intact bacteria.
Also, it seems that hydrophobic peptides might be under-
represented when using SCX as the first dimension of
analysis [41]. Further studies would be needed to explain
why our approach showed that the 1D-LC and 2D-LC set-
ups provided complimentary data instead of having a
more overlapping character, this was however not the
scope of this analysis.
Growth at pH 9 poses a specific type of stress where

the bacteria needs to pump H+ into the cytosol to main-
tain a near neutral intracellular pH homeostasis, needed
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for normal function. Under pH stress conditions, E. coli
needs to maintain the cytoplasmic pH between 7.2 and
7.8 in order to preserve enzymatic activity and nucleic
acid and protein stability [44]. Under alkaline conditions
this is executed through active influx of protons and
restrained outflux of protons from the cytosol. At aer-
obic conditions, E. coli produce NADH and FADH2

through the TCA cycle, these reducing equivalents are
oxidized in the respiratory chain, and the electrons gen-
erated from the reducing equivalents are subsequently
transferred to cytochromes where O2 is converted to
H2O [27]. This process is coupled to the formation of a
proton motive force (PMF) over the cytoplasmic mem-
brane, which is utilized for ATP generation from ADP
and Pi through the ATP synthase complex. NADH is
oxidized in the respiratory chain via a coupled NADH

dehydrogenase NDH-1 encoded by Nuo and Ndh, which
export H+ to the periplasma while one electron is trans-
ported through the respiration system [45].
It is known that at high pH, NhaA, a sodium ion/proton

antiporter uses the proton electrochemical gradient to
expel sodium ions from the cytoplasm and functions pri-
marily in the adaptation to high salinity at alkaline pH
helps to maintain internal pH and to protect cells from
excess sodium [46]. However, the mechanisms of regula-
tion of internal pH when bacteria encounters stress condi-
tions and how these conditions are related with virulence
it is not well understood. Na+/H+ exchange would supply
intracellular bicarbonate by export of H+ formed on
hydration of CO2 to H+ and HCO3− [47]. In line with pre-
vious studies on E. coli, we confirmed that ETEC prefer
ATP synthase for import of protons when alkaline stress

Table 7 Proteins involved in amino acid catabolism and transport

Protein Description 1D-LC 2D-LC Regulation Run Matching

AlaS Alanine–tRNA ligase 0.65 DOWN 2-3 H10407

AnsB L-asparaginase II 0.20 DOWN 2-3 Top

AroK Shikimate kinase 1 1.70 UP 2-3 Both

AsnA Aspartate–ammonia ligase 0.54 DOWN 2-3 Both

AsnS Asparagine–tRNA ligase 0.63 0.63 DOWN 2-3/All Both

AspA Aspartate ammonia-lyase 0.52 0.50 DOWN All/1-3 Both

AspS Aspartate–tRNA ligase 1.56 2.28 UP All Both

CarA Carbamoyl-phosphate synthase small chain 2.53 UP 1-2 Both

CarB Carbamoyl-phosphate synthase large chain 3.00 4.01 UP 2-3/All Both

CysI Sulfite reductase hemoprotein beta-component 0.47 DOWN 1-3 Both

GabT 4-aminobutyrate aminotransferase 0.39 DOWN 2-3 Both

IleS Isoleucine–tRNA ligase 0.52 0.62 DOWN 2-3/All Both

IlvC Ketol-acid reductoisomerase 1.79 UP 1-2 Top

Klb 2-amino-3-ketobutyrate coenzyme A ligase 0.51 DOWN 1-2 Both

LeuS Leucine–tRNA ligase 0.46 DOWN 2-3 Both

LysS Lysine–tRNA ligase 0.44 0.40 DOWN All Both

LysU Lysine–tRNA ligase 0.47 0.38 DOWN All Both

MetG Methionine–tRNA ligase 0.71 DOWN 1-3 Top

MetK S-adenosylmethionine synthase 0.57 0.36 DOWN All Both

PheS Phenylalanine–tRNA ligase alpha subunit 1.50 UP 1-2 Both

ProP Metabolite/H+ symporter, major facilitator superfamily 0.40 0.38 DOWN 1-2 Both

ProQ ProP effector 1.87 UP Both

ProV Glycine betaine transporter ATP-binding subunit 0.55 0.63 DOWN 2-3 Both

PutA Delta-1-pyrroline-5-carboxylate dehydrogenase 1.61 UP 1-3 Both

SerS Serine–tRNA ligase 0.50 0.45 DOWN All/2-3 Both

Tdh L-threonine 3-dehydrogenase 0.57 DOWN 2-3 Both

TnaA Tryptophanase 0.34 DOWN 1-2 Both

TyrS Tyrosine–tRNA ligase 0.54 0.60 DOWN 1-2 Both

ValS Valine–tRNA ligase 0.66 DOWN 1-3 Top

Fold changes are listed under 1D-LC and 2D-LC columns
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occurs on cytoplasmic pH and prefers to minimize proton
export associated with NADH-I system including Nuo,
Ndh and WrbA proteins as shown in our suggested model
system in Fig. 4 [35].
Our findings are largely consistent with previous stud-

ies on alkaline conditions in E coli [35, 44, 48].
We found that alkaline conditions down-regulate osmotic

stress responses and these findings confirm the previously
suggested link between acid stress and oxidative stress [35].
Heat-shock inducible genes such as DnaK and ClpAB were
down-regulated at alkaline conditions consistent with
results by Maurer et al., [35], but we also found induc-
tion of GroEL expression. We were however not able to
identify alkaline tolerance proteins such us NhaA,
NhaB, ChaA, MdtM, and MdfA involved in the ex-
change of protons for other cations [44, 49], neither the
YqjA protein which has recently reported to have
proton-dependent transport activity [50].
The results indicate that proteins involved in osmotic

and heat-shock regulation were generally down-regulated
at alkaline conditions. Secretion of LT toxin has previously
been reported to be favored in the presence of salts (NaCl)
and high osmolarity (sucrose) [51]. It is possible that alka-
line conditions override the need for high osmolarity but
since we used buffered LBK media without NaCl in this
study, further studies are needed to elucidate the differ-
ence between Na+ and K+ and its impact on ETEC viru-
lence and secretion. In addition, since an acute infection
would lead to a massive efflux of Na+ and Cl− ions locally
from the infected cell analyses on the effect of the infec-
tious microenvironment on ETEC virulence would be very
interesting to pursue [11].
The surface proteome analysis of ETEC was performed

in order to observe changes in the outer membrane
proteome that could provide insight into the surface
expression at the site of infection. We were also inter-
ested to find an explanation to higher secretion level of
the LT toxin under alkaline conditions [7]. We found
evidence that alkaline conditions induce the secretome
of ETEC since the Sec pathway was up-regulated. Export
of LT subunits and several other proteins are targeted
through the signal recognition particle pathway to the
Sec translocon for transport peptides into the periplasm.
YidC interacts with SecYEG through the SecY subunit,
but also with SecD and SecF to form a heterotetrameric
SecDFYajCYidC accessory complex [29, 30]. Under
alkaline pH, YidC is a relatively abundant inner mem-
brane protein [29, 52]. In the Sec associated form, YidC
recognizes individual protein transmembrane domains
in the context of the Sec translocon early during bio-
genesis and facilitate their folding [29, 53]. It is hence
possible that YidC is involved in specific recognition of
peptides secreted during alkaline conditions but this
needs to be verified. We also found that the outer

membrane BAM complex as well as OmpA were up-
regulated under alkaline conditions.

Conclusions
Based on our results we hypothesize that ETEC adhesion
to the epithelium gradually induce the outer membrane
proteome and secretome including secretion of the LT
toxin due to the increase in local pH caused by bicar-
bonate secreted by the deregulated CFTR channels of
the infected epithelial cells. Our findings indicate that
ETEC likely respond to an alkaline microenvironment
close to the epithelium during infection by up-regulation
of Sec dependent translocation over the inner membrane
followed by increased assembly of a specific repertoire of
proteins that are secreted and/or associated to the outer
membrane. Additional studies are however needed to
define the secretome during infection of the human
gastrointestinal tract.
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