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Abstract

Background: The microbiota plays an essential role in host health, particularly through competition with
opportunistic pathogens. Changes in total bacterial load and microbiota structure can indicate early stages of
disease, and information on the composition of bacterial communities is essential to understanding fish health.
Although Red Snapper (Lutjanus campechanus) is an economically important species in recreational fisheries and a
primary aquaculture candidate, no information is available on the microbial communities of this species. The aim of
this study was to survey the microbiota of apparently healthy, wild-caught Red Snapper from the Gulf of Mexico.
Sampled Red Snapper showed no physical signs of disease. Tissues that are either primary entry routes for
pathogens (feces, gill) or essential to disease diagnosis (blood) were sampled. Bacteria were enumerated using
culture-based techniques and characterized by pyrosequencing.

Results: Aerobic counts of feces and gill samples were 10" and 10* CFU g™, respectively. All individuals had
positive blood cultures with counts up to 23 CFU g'. Gammaproteobacteria dominated the microbiota of all
sample types, including the genera Pseudoalteromonas and Photobacterium in feces and Pseudomonas in blood and
gill. Gill samples were also dominated by Vibrio while blood samples had high abundances of Nevskia. High
variability in microbiota composition was observed between individuals, with percent differences in community
composition ranging from 6 to 76 % in feces, 10 to 58 % in gill, and 52 to 64 % in blood.

Conclusions: This study provides the first characterization of the microbiota of the economically significant Red
Snapper via pyrosequencing. Its role in fish health highlights the importance of understanding microbiota
composition for future work on disease prevention using microbial manipulation.
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Background

In 2012, aquaculture operations produced over 66
million tonnes of food fish worth nearly $140 billion US
dollars, with total aquaculture production 14 times
higher than that of 1980 [1]. It is estimated that by 2030,
63 % of the world’s food fish will be produced in aqua-
culture [2], as a vast majority of wild fish stocks are fully
or overfished with no room for expansion of commercial
fishing efforts [1]. However, disease remains a significant
limitation to the growth of the aquaculture industry (3, 4]
and is responsible for losses valued at billions of dollars
each year [5]. Microbial communities, known as micro-
biota, play a large role in maintaining host health through
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increasing digestion efficiency and use of nutrients, boost-
ing the immune system, and preventing attachment and
proliferation of opportunistic pathogens [6, 7]. Interest in
manipulation of the microbiota to take advantage of these
benefits and to prevent disease in aquaculture has
increased dramatically [4, 8, 9]. However in many fish spe-
cies, the composition of the natural microbiota has not
been characterized and as a result, the dominant bacterial
players and their downstream influence on fish health are
unclear.

Documenting the bacteria present in healthy individ-
uals is an essential first step to understanding the im-
pacts of microbial manipulation in aquaculture systems.
As it pertains to disease resistance, the microbiota asso-
ciated with gill and intestine are of particular concern as
these are primary entry routes for opportunistic patho-
gens in fishes [10, 11]. The bacterial abundance and
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diversity at these sites can provide insight into the health
status of individuals as abundance of opportunistic path-
ogens increases and bacterial diversity decreases during
stress and times of disease [12, 13]. Monitoring blood is
also important as bacterial septicemia or bacteremia is
diagnosed when bacteria are recovered from internal or-
gans such as liver and anterior kidney [14]. Often, Koch’s
postulates are not performed and isolation of bacteria
from a diseased fish is deemed sufficient for diagnosis
[15]. However, the presence of bacteria from the blood
and/or internal organs of apparently healthy individuals
[16-26] challenges the notion that a positive blood cul-
ture is indicative of disease in fish.

Red Snapper Lutjanus campechanus (Poey, 1860) is an
economically and ecologically significant reef fish species
in the Gulf of Mexico, contributing to the $199 billion
of sales impacts generated by recreational and commer-
cial fisheries in the US [27]. The Red Snapper stock in
the US waters of the Gulf of Mexico was estimated to be
severely depleted by the 1980s; however, management
strategies implemented by the Gulf of Mexico Fishery
Management Council in mid 2000s are projected to re-
cover the stock above its biomass threshold by 2032
[28]. The economic value of Red Snapper as a food and
game fish as well as its wild stock status make this
species a primary aquaculture candidate [29]. As a result,
disease diagnosis in this species is relevant to the aquacul-
ture industry. There is very little information on the
microbial communities associated with Red Snapper in-
cluding identification of potential pathogens for the spe-
cies. In a previous study [24], we showed that apparently
healthy Red Snapper harbored bacteria in their internal
organs and identified bacteria associated with Red
Snapper skin. However, we used culture-dependent
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methods which may underestimate bacterial diversity by
90-99 % [30]. No studies to date have investigated the
microbiota of Red Snapper using culture-independent
methods, including next-generation sequencing (NGS)
technologies which allow for thorough detection and
characterization of both dominant and rare members of
the microbiota [31].

Due to the relevance of the microbiota in fish
health and the interest in microbial manipulation to
control diseases in aquaculture systems, this study
aimed to thoroughly characterize microbiota associ-
ated with gill, intestine, and blood of wild, healthy
Red Snapper, a primary aquaculture candidate. We
used culture-based methods to determine bacterial
load and NGS techniques to identify dominant bacter-
ial taxa, providing essential information on healthy
bacterial community structure for future investiga-
tions into microbiota functions, pathogen identifica-
tion, and health monitoring in this economically
significant fish species.

Results

Site conditions and fish sampled

Average environmental conditions at the sampled sites
(Table 1) were as follows: depth — 28 m, salinity — 34
psu, temperature — 26 °C, DO — 6.3 mg L', fluores-
cence — 0.14 mg (m®)~%, turbidity — 89.6 %. A total of six
male and four female Red Snapper were sampled with a
mean weight of 1.3+1.6 kg and mean total length of
434 + 114 mm.

Aerobic heterotrophic counts
After 1 week incubation on MA at 30 °C, CFU g™* of
feces ranged from 5.33 x 10* to 8.73 x 107 (Fig. 1a) while

Table 1 Sampling locations, environmental conditions, and Red Snapper characteristics

Site 1 Site 2 Site 3 Site 4 Site 5
Coordinates 30°00' N 30°09'N 30°02'N 30°02'N 30°02'N
87°42' W 87° 09" W 87°39' W 87°34'W 87° 34" W
Sampling date 26-Sep 30-Sep 17-Oct 13-Nov 13-Nov
Environmental conditions Depth (m) 309 26.5 269 279 285
Salinity (psu) 336 331 34.1 345 345
Temperature (°C) 286 288 272 227 227
Dissolved oxygen (mg L™ 4.77 6.02 6.18 6.68 7.71
Fluorescence (mg (m?)™") 0.134 0.135 0089 0.187 0.178
Turbidity (% saturation) 88.2 915 90.1 894 88.7
Fish collected Snapper 1D 1 2 3 4 5 6 7 8 9 10
Sex F M F F M M M F M M
Mass (kg) 1.13 0.56 0.83 6.1 046 046 152 0.64 0.74 0.86
Length (mm) 440 405 405 752 335 338 487 389 395 395

Environmental conditions were recorded on a Seabird 19+ CTD. Two Red Snapper were caught from each site
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CFU g™ of gill samples ranged from 8.67 x 10% to 1.71 x
10° (Fig. 1b). Blood samples plated on MA and BA and
incubated at 30 °C ranged from 0 to 28 CFU mL ™" and 0
to 19 CFU mL ™", respectively (Fig. 1c). All blood samples
were culture-positive on at least one media after 7 d of
incubation. Of all the isolates counted from blood,
43.8 % were present after 2 d, suggesting a majority of
growth occurred following the 2 d mark. A majority of
isolates from gill and feces samples were present after 2
d (87.3 and 82.3 %, respectively). There were no signifi-
cant differences in CFUs between growth media, incuba-
tion temperatures, or incubation times within a sample

type.

Sequencing

Sequencing was successful for 19 of 30 samples includ-
ing: six feces samples, nine gill samples, and four blood
samples (Table 2). Inhibitor removal failed to improve
sequencing efforts. Number of sequences from individ-
ual samples ranged from 950 to 11,888 with 543 total
OTUs. Following random sequence selection to
standardize sampling effort across samples, number of
OTUs decreased to 453. Good’s coverage indicated >98 %
sample coverage across all samples (Fig. 2). Sample types
differed in terms of expected OTUs (Fy16=4.02, p=
0.038) with feces having a significantly higher number
than blood samples, indicating higher bacterial species
richness. Shannon evenness indices were not statistically
different between sample types.

ANOSIM analysis of OTU abundances indicated sig-
nificant differences in the bacterial communities be-
tween the three sample types (Table 3) with relatively
high overlap. Blood microbiota was not significantly

different from gill microbiota and these sample types
shared 23.9 % of OTUs. Blood and feces samples were
statistically separated as indicated by the relatively high
R value (R=0.444) and low number of shared OTUs
(13.5 %). As indicated by the slightly lower R value be-
tween gill and feces samples (R = 0.364), the microbiota
of these sample types shared a slightly higher number of
OTUs (16.8 %), but they were still significantly different
from one another. The four blood samples clustered to-
gether with a similarity of 55.2 %, while individuals
showed much lower similarity within gill and feces sam-
ples (20 %). Feces and gill samples were mixed together
in cluster analysis (Fig. 3). Within the total OTUs for
each sample type (271, 458, and 321 for blood, gill, and
feces, respectively), only 14.8 % of blood OTUs were
present in all individuals, and less than 5 % for gill and
feces samples. Therefore, there was a high level of vari-
ability between the microbiota of individuals within each
sample type.

Phylum level analysis of the microbiota (Fig. 4) indi-
cated that Proteobacteria dominated all sample types,
specifically the Gammaproteobacteria class. Feces sam-
ples contained a larger abundance of non-Proteobacteria
including relatively high abundances of Cyanobacteria,
Fusobacteria, and Planctomycetes as compared to the
other sample types. A majority of the sequences identi-
fied from blood that were not Proteobacteria were iden-
tified as either Actinobacteria or Bacteroidetes at an
abundance of 3 % total sequences each. These two phyla
were also present in gill samples, but at lower abun-
dances (1 and 2 %, respectively). Approximately 4 and
3.4 % of the sequences from gill and feces samples, re-
spectively, were identified as Firmicutes as compared to
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Table 2 Results of 454 pyrosequencing from each Red Snapper individual and sample type
Fish ID  Sample Original # Original # Final # Final # Expected # Good's Shannon evennness
type sequences OTUs sequences OTUs OTUs coverage index
01B Blood 2263 48 950 43 56 0.991 0.724
048 Blood 3019 83 950 64 103 0.98 0.735
08B Blood 950 49 950 49 99 0.991 0.712
10B Blood 2495 52 950 46 62 0.988 0.665
01G Gill 3055 74 950 59 103 0.984 0.599
02G Gill 2581 80 950 68 104 0.981 0.602
03G Gill 9276 91 950 51 102 0.984 0.533
04G Gill 3045 81 950 61 101 0.982 0455
05G Gill 11888 153 950 90 245 0.963 0.689
06G Gill 4000 134 950 90 170 0.973 0.762
07G Gill 4170 109 950 75 247 0.983 0816
08G Gill 3140 77 950 64 107 0.986 0.706
09G Gill 4355 76 950 54 121 0.986 0.649
05 F Feces 3859 109 950 74 147 0973 0.545
06 F Feces 3669 141 950 99 195 0.967 0.704
07 F Feces 4156 92 950 66 141 0.987 0.8
08 F Feces 4626 116 950 72 354 0.966 0.512
09 F Feces 2595 66 950 53 126 0.986 0.727
10F Feces 3154 107 950 80 251 0.968 0.591
Average Blood 2182 58 950 51 80 0.988 0.709
Gill 5057 97 950 68 144 0.98 0.646
Feces 3677 105 950 74 202 0.975 0.647

Averages for each sample type are included. Original sequences and # OTUs are from non-standardized data whereas final sequences and # OTUs are after standardizing

to 950 sequences per sample (sample 08B)

1 % from blood samples. Less abundant (<0.2 % of se-
quences) phyla included: Gemmatimonadetes, ws3, and
Tenericutes in gill; tm6 and Deinococcus in feces;
Nitrospirae and Verrucomicrobia in blood and gill; and
tm7 and Spirochaetes in gill and feces.

Dominant genera (at least 5 % of sequences in at least
one sample, Fig. 3) indicated high variability in genera
abundances between individuals and sample types. In gen-
eral, blood samples were predominantly Pseudomonas and
Nevskia with larger abundances of Methylobacterium and
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Fig. 2 Rarefaction curves for each sample type. Good's coverage indicated >98 % coverage for all sample types
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Table 3 Analysis of similarities (ANOSIM)

ANOSIM p value R value Shared OTUs
Global Test 0014 0.282 68

Blood vs gill 0171 - 174

Blood vs feces 0.019 0444 80

Gill vs feces 0.004 0.364 131

Results were calculated using Primer software and corresponding shared OTUs
shown were calculated using Mothur

Stenotrophomonas as compared to other sample types.
Microbiota of samples 03G and 04G were highly domi-
nated by Vibrio (81 %) and Acidithiobacillales (76 %), re-
spectively. Although Vibrio sequences were identified in a
majority of samples, Acidithiobacillales was absent from
all other samples but one (05G, < 0.5 % sequences). Vibrio
was the most common genus present in gill samples. Gill
samples also contained a higher abundance of Rhodocy-
clales, Clostridium, Burkholderia, Nitrosomonas, Aeromo-
nas, Shewanella and Psychrobacter than blood and feces
samples. The outgroup formed by samples 08 and 10 F
was in part due to high abundances of Pseudoalteromonas,
Umboniibacter, and Prochlorococcus as compared to other
samples and these numbers contributed to the high abun-
dances of these genera overall in feces samples. The genus
Balneatrix was only identified in feces samples. Overall
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Cetobacterium, and Photobacterium as compared to other
sample types. Genera shared by all individuals across all
sample types include Pseudomonas, Acidovorax, and Her-
baspirillum. Cloacibacterium, Acinetobacter, and Nevskia
were also present in a majority of samples.

Discussion

Increased bacterial loads can cause immune stress in fish,
potentially leading to invasion by environmental bacteria
[32]. Knowledge on the natural bacterial abundances of fish
tissues that are primary entry routes for pathogens is there-
fore an important aspect of fish health. Red Snapper had
similar bacterial loads in tissues susceptible to invasion as
other marine fish species, including other species of snap-
pers (genus Lutjanus). Feces aerobic heterotrophic counts
(average after 7 d=3.08x 10’ CFU g') were similar to
those seen in other studies on fish gut microbiota [33] and
wild marine fish species including Atlantic Cod Gadus mor-
hua [34], Daisy Parrotfish Chlorurus sordidus, Whitecheek
Surgeonfish Acanthurus nigricans and Two-Spot Red Snap-
per Lutjanus bohar [35]. Aerobic counts from gill (average
3.59 x 10%) were also within normal range for fishes [33],
including Atlantic Mackerel Scomber scombrus [36],
African Red Snapper L. agennes [37], and Blackspot
Snapper L. ehrenbergi [38]. Previous studies reporting bac-

feces had higher abundances of Prochlorococcus, terial isolation from fish blood did not report aerobic
<
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counts. Therefore, only composition of microbiota can be
compared with these studies, not abundance of bacteria.

Only 19 of 30 samples were successfully sequenced
using this study’s methods. Bile salts [39] and complex
polysaccharides [40] present in feces and hemoglobin
[41] in blood are known to inhibit PCR reactions; thus,
the loss of these samples may be due to the presence of
PCR inhibitors, although inhibitor removal did not in-
crease success. In blood samples, small sample size
(15 pL per extraction) for DNA extraction may not be
sufficient to detect bacteria present in small abundances.
Furthermore, the presence of large amounts of host
DNA may interfere with bacterial DNA amplification.
The number of studies that have detected bacteria in the
blood and internal organs of apparently healthy fish
[16-20, 2224, 33, 42, 43] suggest a need for a DNA ex-
traction method optimized for extraction of bacterial
DNA from fish blood.

Individual variability was highest in feces samples, with
differences of up to 97 % in bacterial community struc-
ture. These differences could not be attributed to environ-
mental conditions alone as replicates within the same
sample type rarely clustered by site (5 and 6 F only).
These differences may be attributable to diet [44], al-
though this was not examined in this study. Host genetics
are also known to play a role in shaping microbiota struc-
ture [45, 46] and as a result, high variability between individ-
uals is not uncommon in fish microbiota studies [46—49].

The phyla present in Red Snapper gut microbiota were
consistent with those reported for other fish species (for
a meta-analysis, see Sullam et al. [44]) including other
studies on snappers [24, 37, 50, 51] with a community

dominated by Proteobacteria, specifically Gammaproteo-
bacteria, and minor phyla including Fusobacteria, Firmi-
cutes, Actinobacteria, Bacteroidetes, and Planctomycetes.
Red Snapper had a relatively high abundance of Cyano-
bacteria (6.6 % of sequences). This phylum is present in
the gut of a number of marine fish species [35, 52, 53] in-
cluding Mangrove Red Snapper L. argentimaculatus [51]
but its presence is believed to be due to ingestion of food
[54] or extraction of chloroplast DNA [52]. Abundant
genera previously reported in association with the gut of
marine fish include Pseudoalteromonas [55-58], Cetobac-
terium [52, 59], and Photobacterium [35, 60—62]. Two
individuals had relatively high abundances of Umbonii-
bacter, Pseudoalteromonas, and Prochlorococcus, and these
two were highly separated from the rest of the feces
samples. These individuals were caught on the same day
but at two different sites. As these two sites were nearly
identical in terms of environmental conditions, this se-
paration may be due to dietary or genetic differences. A
majority of sequences from Mangrove Red Snapper identi-
fied as Vibrio [51], whereas sequences from Emperor Red
Snapper L. sebae were Vibrio, Stenotrophomonas, and
Photobacterium [50]. All of these genera were present in
Red Snapper feces with Photobacterium being the most
abundant. Sequences in this genera were primarily identi-
fied as Photobacterium damselae. P. damselae is a known
fish pathogen [63] with high adhesion capability to fish in-
testinal cells [64], and its presence in apparently healthy
fish supports previous reports of P. damselae as an oppor-
tunistic pathogen [65].

Gammaproteobacteria are often identified as a main
component of the fish gill microbiota [66—68],
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accompanied by Firmicutes [68, 69], Actinobacteria [66, 68]
and Bacteroidetes [67]. Many of the common genera identi-
fied in Red Snapper gill samples are similar to those of
other fish species including Acinetobacter, Aeromonas,
Psychrobacter, Photobacterium, Pseudomonas and Vibrio
[21, 36, 66—70], providing support for these genera being
common members of the fish gill microbiota. Some genera
reported in the gill of African Red Snapper L. agennes were
also found in this study including Staphylococcus, Bacillus,
Alcaligenes, and Escherichia [37], but on average all these
genera represented less than 1 % of sequences in Red Snap-
per. Other genera not found in Red Snapper included Kleb-
siella, Proteus, and Micrococcus, supporting previous
evidence that fish share some members of the microbiota,
while other members are species-specific [71]. Relatively
high abundances of unidentified sequences from the orders
Acidithiobacillales and Rhodocyclales were present in gill
samples. These sequences shared 85-90 % homology with
known sequences, and may represent new genera or species
within these orders. Members of Acidithiobacillales are
rarely reported from fish [72] and presence and abundance
of Rhodocyclales seems to vary based on time of year and
location [13, 47, 72, 73]. Thus members of these orders
may be transient members of the gill microbiota of fishes.
Large abundances of Nevskia were mainly attributable to
sequences closely related to Nevskia ramosa and were
present in blood samples as well. To our knowledge, in fish,
this genus has only been reported from the skin community
of brook charr [13, 46].

All presumably healthy individuals sampled in this study
displayed positive blood culture growth after 7 d. The high
percentage of culture-positive individuals may be a result of
a larger sample volume and longer incubation time as com-
pared to previous studies. Cultures in this study were made
from 2 mL samples whereas a majority of studies used 10—
100 pL [19, 20, 24]. In this study, over 50 % of the isolates
grew after 2 d. Similarly, Mylniczenko et al. [23] determined
most growth in elasmobranch blood samples occurred after
72 h. Studies on the blood and internal organs of freshwater
bony fish stopped incubation after 5 d at most [16, 17, 19,
20], whereas previous studies on marine fish stopped incu-
bation after 2—-3 d [22, 24]. Low sample size (ten individ-
uals) may also have influenced our results, as other studies
on marine fish have seen positive blood cultures in 25—
52 % of fishes with much larger sampling efforts [22—24,
26]. It is important to note that a majority of the bacterial
genera identified in the blood of wild Red Snapper have
previously been reported as contaminants [74—78] and the
high similarity between blood and gill samples may indicate
contamination from skin-associated bacteria. Further, fish
were caught using rod and reel and skin bacteria could po-
tentially enter the bloodstream through the hook wound.
Future studies should investigate bacteremia using appro-
priate negative controls to rule out contamination.
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Many similarities exist between the microbiota found in
the blood and internal organs of apparently healthy fish spe-
cies across studies. All studies that characterized isolates to
the genus level in both marine and freshwater species re-
ported members of the genus Pseudomonas [18-20, 2224,
26, 72]. Members of this genus 1) may be permanent resi-
dents of the blood microbiota, 2) may be better equipped to
penetrate the epithelium of the fish to enter the bloodstream,
or 3) may indicate sample contamination. The presence of
Pseudomonas in multiple fish species across studies makes
this genus an interesting target for future investigations.
Other genera that are commonly identified in the blood and
internal organs of fish include Achromobacter, Aeromonas,
Bacillus, Enterobacter, Micrococcus, Photobacterium, Strepto-
coccus, Staphylococcus, Stenotrophomonas, and Vibrio
[18-20, 2226, 72]. All of these genera, with the exception of
Achromobacter and Stenotrophomonas, contain species that
have been identified as fish pathogens [15]. In this study, se-
quences from all of these genera were identified in apparently
healthy Red Snapper blood with the exception of Streptococ-
cus. It is possible that fish blood contains a wide diversity of
bacteria and/or bacterial DNA that cannot be detected using
culture-based techniques. However as previously mentioned,
many of these genera are also commonly reported as con-
taminants in sequencing-based studies. It is interesting that
many of the same bacterial genera have been isolated from a
wide variety of fish species using culture-dependent tech-
niques. As this is the first study to use sequencing to survey
bacteria in marine fish blood, more studies should be done
to determine the true nature of these bacteria.

Conclusions

This study provides the first characterization of feces, gill,
and blood microbiota of Red Snapper from the Gulf of
Mexico via pyrosequencing. High individual variability
was detected in the gut, gill, and blood microbiota, but all
sample types were dominated by Gammaproteobacteria.
Many of the identified genera have been isolated from
other fish species, including a number of opportunistic
bacterial pathogens. Red Snapper is a desirable candidate
for aquaculture and knowledge of the natural microbiota
structure is essential for understanding the health and
disease susceptibility of these fish in captivity. A healthy
microbiota provides protection against opportunistic path-
ogens and this study describes these communities on
tissues that are known to be primary entry routes for
pathogens. Its role in fish health highlights the importance
of understanding microbiota composition for future work
on disease prevention using microbial manipulation.

Methods

Sample collection

Red Snapper were collected from different sites on differ-
ent dates to account for variations in bacterial diversity
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due to geographical location and environmental condi-
tions [71]. A total of ten individuals were collected and
sampled to account for inter-individual microbiota vari-
ability [46, 48, 49]. Five artificial reef sites (Table 1) were
sampled for Red Snapper in the fall of 2013 approximately
15-30 km south of Orange Beach, AL and Pensacola, FL.
Hydrographic parameters (depth (m), salinity (psu),
temperature (°C), dissolved oxygen (mg L), fluorescence
(mg (m®™) and turbidity (% saturation)) were measured
at each site using a Seabird 19plus V2 SeaCAT Profiler
CTD (Sea-Bird Electronics, Inc., Bellevue, Washington,
USA). Two Red Snapper were caught from each site on
hook and line using cut squid as bait. Fish were measured
(total length, mm) and weighed (kg). Fish were killed by
pithing and a muscle sample was removed from one side
with a sterilized filet knife. Exposed muscle tissue was
dried and sprayed with 70 % ethanol to prevent external
contamination and 2 mL of blood was taken from the cau-
dal vein using a sterile needle and syringe. Triplicate sam-
ples of 15 puL were placed into sterile microcentrifuge
tubes and the remaining sample was preserved on ice for
aerobic heterotrophic counts. Total plate counts were per-
formed on marine agar (all sample types) and blood agar
(blood samples only) in order to determine total bacterial
load of primary pathogen entry routes. Following blood
extraction, the outer surface of the operculum was dried
and cleaned using 70 % ethanol. The operculum was pulled
back to reveal the gill arches and the anterior gill arch was
removed using aseptic techniques. To obtain intestinal con-
tents, the ventral surface of the fish was cleaned with 70 %
ethanol and opened to reveal the intestine. The lower third
of the intestine was removed using clamps to prevent re-
lease of fecal material. Feces were extracted and placed into
a sterile centrifuge tube. All samples were kept on ice until
arrival at the laboratory (approximately 6 h). Samples were
labeled according to individual (01-10) and sample type
(B =blood, G =gill, F =feces).

DNA extraction and sequencing

Upon arrival at the laboratory, triplicate 25 mg samples
were taken from each gill clip and feces sample. Tripli-
cate gill, feces, and blood samples were taken from each
individual to obtain maximum bacterial diversity. Sam-
ples were then subjected to DNA extraction with the
DNeasy Blood & Tissue Kit (Qiagen, Valencia, CA) ac-
cording to manufacturer instructions, including pretreat-
ment for Gram-positive bacteria at 37 °C overnight
(15 h), proteinase K digestion for one hour, and diges-
tion of RNA using RNase A. DNA was quantified using
a spectrophotometer and triplicates were combined in
equimolecular amounts to obtain one sample for each
sample type from each fish. Roche titanium 454 sequen-
cing was performed using barcoding and primer 27 F
(5'-AGRGTTTGATCMTGGCTCAG-3") to amplify the
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variable V1-V3 region of the 16S rRNA gene. PCR con-
ditions included an initial denaturation at 94 °C for
3 min followed by 30 cycles of 94 °C for 30 s, 53 °C for
40 s, and 72 °C for 1 min, concluded with a final elong-
ation at 72 °C for 5 min. Sequences were processed
using an exclusive analysis pipeline (MR DNA, Shallo-
water, TX). Barcodes and primers, short sequences
(<200 bp), and sequences with a base call error rate of
less than 0.3 % (Q < 25), ambiguous base calls, and long
(>6 bp) stretches of identical bases were removed. Fol-
lowing denoising and chimera and singleton sequence
removal, operational taxonomic units (OTUs) were de-
fined and identified using BLASTn against the Green-
genes database [79] at <3 % sequence agreement
according to the current accepted prokaryotic species
concept [80]. Rarefaction curves, diversity indices (num-
ber of OTUs, number of predicted OTUs using the
catchall command, Good’s coverage, and Shannon even-
ness index), and shared OTUs were calculated using
Mothur v.1.33.3 [81].

Aerobic heterotrophic counts

Remaining blood, gill, and feces samples were weighed
and diluted 1:1 with sterile phosphate buffered saline
(PBS). After homogenization, subsequent 1/10 dilutions
were made and plated in six replicates onto Marine Agar
2216 (MA; Difco Laboratory, Detroit, Michigan, USA)
and 5 % sheep blood agar (BA; Hardy Diagnostics, Santa
Maria, CA). Three of each plate were incubated at 18
and 30 °C for 1 week. Colony forming units (CFUs) were
counted after 2 and 7 days.

Data analysis

Resulting DNA sequences were randomly selected from
each sample in order to standardize sampling effort to that
of the sample that returned the least number of sequences
(950 sequences, sample 08B). Following standardization,
ANOVAs were run on number of expected OTUs and
Shannon evenness index to determine differences among
sample types. Original sequence data in the form of OTU
tables was uploaded in Primer v6 (Primer-E Ltd,
Plymouth, UK). After standardization (transforming raw
OTU abundances to percentages), cluster analysis was
used to visualize similarities between samples and analysis
of similarities (ANOSIM) was performed between sample
types (blood, gill, feces). A genera percent abundance table
was loaded into Primer for similarity percentages
(SIMPER) analysis to determine the genera responsible for
differences between sample types.
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