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Abstract

Background: Vibrio parahaemolyticus is a major foodborne pathogen, particularly in Asian countries. Increased
occurrence of outbreaks of V. parahaemolyticus gastroenteritis in China indicates the need to evaluation of the
prevalence of this pathogenic species. V. parahaemolyticus distribution in shellfish from the eastern coast of China
has been reported previously. However, to date, the prevalence of V. parahaemolyticus in retail aquatic products in
North China has not been determined. To investigate the prevalence of V. parahaemolyticus in aquatic products in
North China, 260 aquatic product samples were obtained from retail markets in 6 provinces of North China from
November to December in 2012 and July to August in 2013.

Results: V. parahaemolyticus was detected in 94 (36.2 %) of the samples by the most probable number method. The
density of V. parahaemolyticus ranged from 1.50 to 1100 MPN/g. V. parahaemolyticus was detected at a rate of 50.0 %
and 22.7 % in summer and in winter, respectively. The density of V. parahaemolyticus was significantly higher in
summer than in winter, with mean levels of 16.5 MPN/g and 5.0 MPN/g, respectively. Among 145 V. parahaemolyticus
isolates examined, none of the isolates possessed tdh and trh. In multiplex PCR-based O-antigen serotyping of these
145 isolates, all serotypes, other than O6, O7, and O9, were detected, and serotype O2 was found to be the most
prevalent (detected in 54 isolates). The 145 isolates were grouped into 7 clusters by enterobacterial repetitive
intergenic consensus-polymerase chain reaction (ERIC-PCR) at a similarity coefficient of 0.66. The antimicrobial
resistance patterns of these 145 isolates to 12 antimicrobial agents revealed that most of the isolates were resistant to
streptomycin (86.2 %), while fewer were resistant to ampicillin (49.6 %), cefazolin (43.5 %), cephalothin (35.9 %), and
kanamycin (22.1 %). All of the examined isolates were susceptible to azithromycin and chloramphenicol.

Conclusions: The findings of this study will help in defining appropriate monitoring programs, understanding of the
dissemination of antibiotic resistant strains, and providing information for the assessment of exposure to this
microorganism at the consumption level.
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Background
Vibrio parahaemolyticus is a human pathogen that has
been associated with gastroenteritis worldwide [1–4],
and outbreaks have been reported in many countries
such as the USA, France, and New Zealand [5–7]. More-
over, in recent years, V. parahaemolyticus has been re-
ported as a significant cause of foodborne bacterial
poisoning in China [8, 9].
V. parahaemolyticus has been isolated from samples of

a variety of aquatic products, including fish, shrimp, oys-
ter, and clam [10, 11], and it is among the most common
causative agents of aquatic product-associated gastro-
enteritis in the world [3, 12–16]. With the vigorous de-
velopment of the Chinese economy, there has been a
rapid increase in aquatic product consumption, not only
along the coast of China, but also in mainland China. V.
parahaemolyticus distribution in shellfish from the east-
ern coast of China has been reported previously [17].
Our previous studies have also shown that shrimp in
Chinese retail markets are contaminated with V. para-
haemolyticus [18]. However, to date, the presence of V.
parahaemolyticus in retail aquatic products in North
China has received less attention, and little information
is available on the prevalence and contamination levels
of V. parahaemolyticus in such aquatic products. Al-
though V. parahaemolyticus is frequently present in
aquatic products, most strains of this species are non-
pathogenic to humans [19]; however, virulent V. para-
haemolyticus strains are clearly a concern for aquatic
product safety.
Detection of pathogenic V. parahaemolyticus isolates

is typically based on molecular biological analysis that
amplify tdh and trh sequences [20, 21]. These 2 genes,
encoding the thermostable direct hemolysin (TDH) and
the homologous thermostable direct hemolysin-related
hemolysin (TRH), respectively, have been implicated in
V. parahaemolyticus virulence [22–26]. However, a re-
cent study showed that pathogenesis of V. parahaemoly-
ticus does not appear to rely solely on a given virulence
function; rather, virulence is a complex trait and different
strains may employ somewhat different strategies [1].
To date, on the basis of somatic (O) and capsular (K)

antigens, V. parahaemolyticus is classified into 13 O-
serogroups and 71 K-serogroups [27, 28]. Serotyping has
been widely used for identifying isolates in epidemio-
logical studies. Furthermore, certain V. parahaemolyti-
cus serotypes have been considered to be more virulent
than others [29, 30]. A multiplex PCR-based O-antigen
serotyping method for V. parahaemolyticus has been
successfully developed [31]. Therefore, PCR-based sero-
typing is considered a convenient method for the rapid
and accurate identification of a wide array of V. para-
haemolyticus isolates. However, serotyping offers limited
information about the genetic relatedness of strains.

In addition to serotyping, a variety of molecular typing
methods have been applied to characterization of V.
parahaemolyticus. Molecular typing of V. parahaemoly-
ticus was shown to be a useful tool for providing infor-
mation about the genetic relatedness of strains and for
detection of virulent strains [32]. In recent years, a num-
ber of typing methods such as pulsed-field gel electro-
phoresis (PFGE) [33], ribotyping [34], random amplified
polymorphic DNA (RAPD) analysis [35, 36], multi-locus
sequence typing (MLST) [37], and enterobacterial repeti-
tive intergenic consensus-polymerase chain reaction
(ERIC-PCR) [38, 39] have been applied in the typing of
V. parahaemolyticus. ERIC-PCR has previously proven
useful for subtyping V. parahaemolyticus [33, 38, 39],
and has been successfully used for genotyping different
bacterial pathogens in previous studies [40–42].
Antimicrobials are commonly used in the treatment of

infectious diseases in the aquaculture industry; however,
the extensive use of antimicrobials has led to the devel-
opment of antimicrobial resistance among pathogens in
aquatic products and has rendered many known antimi-
crobials ineffective. V. parahaemolyticus has been re-
ported to have resistance to ampicillin, streptomycin,
kanamycin, tetracycline, and ciprofloxacin [43–46]. Anti-
microbial resistance, particularly multi-drug resistance,
is among the most important public health concerns be-
cause it is directly related to disease management and
control [47, 48]. Therefore, it is necessary to establish a
monitoring system for the objective evaluation of the
antimicrobial-resistance profile.
Therefore, the objective of this study was to investigate

the seasonal prevalence and levels of V. parahaemolyti-
cus in retail aquatic products in North China. The viru-
lence, serological types, and ERIC types were focused
on, and the antibiotic resistance patterns of the isolated
strains were determined.

Results
V. parahaemolyticus in aquatic products
The prevalence of V. parahaemolyticus in the 260
aquatic product samples examined in this study is shown
in Table 1. V. parahaemolyticus was detected in 94
(36.2 %) of the 260 samples. Among the positive sam-
ples, the prevalence of V. parahaemolyticus were 23.4 %
(22/94) in fish samples and 43.4 % (72/166) in shrimp
samples. The density of V. parahaemolyticus varied from
1.50 to 1100 MPN/g. The mean levels of the pathogen
in fish and shrimp samples were 14.0 MPN/g and 8.7
MPN/g, respectively. Independent-samples t-test analysis
of V. parahaemolyticus levels versus 2 kinds of aquatic
product samples indicated no statistically significant dif-
ferences (P = 0.190).
In seasonal distribution, the maximum isolation rate of

V. parahaemolyticus in aquatic products was in summer,
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and reached 50.0 %, while it was 22.7 % in winter (Table 2).
The mean levels of V. parahaemolyticus in samples col-
lected during summer and winter were 16.5 MPN/g and
5.0 MPN/g, respectively, which was significantly different
(P = 0.040).

Detection of tdh and trh genes in V. parahaemolyticus
isolates
In total, 145V. parahaemolyticus isolates were confirmed
and tested for the presence of trh and tdh. None of the
isolates possessed these genes.

O-serogroup typing by multiplex PCR
With the exception of serotypes O6, O7, and O9, all other
serotypes were detected among the isolates. Serotype O2
was the most prevalent (54 isolates), followed by serotype
O1 (25 isolates). The results of the O-antigen sero-
typing for all 145 isolates are shown in Table 3 and
Additional file 4: Table S1.

ERIC-PCR
The results of ERIC-PCR analysis of the 145 isolates are
shown in Fig. 1. ERIC-PCR resulted in 4 – 10 amplifica-
tion bands, with a size ranging from 130 bp to about
6000 bp. Bands with molecular sizes of 500, 1500, and
2500 bp were common to most isolates (Additional file 1:
Figure S1, Additional file 2: Figure S2, and Additional file
3: Figure S3). Only 1 strain was represented in the figure if
more than 2 strains of the same isolate type were analyzed.
At a relative similarity coefficient of 0.66, the 145 isolates
were classified into 7 clusters (designated as A, B, C, D, E,
F, and G). Most isolates were distributed between the B
and E clusters. One isolate (NO. 109) and a reference
strain (ATCC 33847) were grouped into the same cluster;
and some isolates (NOs. 53, 88, and 192) and clinical

strains (NOs. SZ43, SZ53, and SZ51) were grouped into
the same cluster, respectively.

Antimicrobial susceptibility
Isolates of V. parahaemolyticus were tested for different
levels of antibiotic resistance. The isolates were most re-
sistant to streptomycin, with resistance and intermediate
rates of 86.2 % and 11.7 %, respectively. In addition, the
isolates exhibited relatively high resistance rates, of
49.6 %, 43.5 %, 35.9 %, and 22.1 %, for ampicillin, cefazo-
lin, cephalothin, and kanamycin, respectively. However,
it was surprising to note that strain 58, isolated from a
fish sample, was a multi-drug-resistant strain, which
showed resistance to 7 antibiotics: streptomycin, cephalo-
thin, ampicillin, tetracycline, kanamycin, trimethoprim-
sulfamethoxazole, and cefazolin. All of the examined
isolates were susceptible to azithromycin and chloram-
phenicol. Among the remaining tested antibiotics, the
next-highest susceptibility rates were observed for nali-
dixic acid (97.2 %), ciprofloxacin (91.7 %), tetracycline
(83.4 %), trimethoprim-sulfamethoxazole (75.2 %), and
gentamicin (62.8 %). The susceptibility, intermediate re-
sistance, and resistance rates of the 145 examined V. para-
haemolyticus isolates with respect to 12 antibiotics are
shown in Table 4 and Additional file 4: Table S1.

Discussion
In this study, we analyzed 260 aquatic product sam-
ples and detected V. parahaemolyticus contamination
in 94 samples. Thus, the overall prevalence of V.
parahaemolyticus in aquatic product samples was de-
termined to be 36.2 %, which was in accordance with
the results reported in a study from France [49] and
in our previous study [18]. Notably, the prevalence of
V. parahaemolyticus in summer (50.0 %) was higher
than that in winter (22.7 %), and the levels of V.

Table 2 Prevalence and levels of Vibrio parahaemolyticus in retail aquatic products from North China during different seasons

Season No. of samples
analyzed

No. of samples
positive (%)

No. of samples containing the pathogen (MPN/g)

3 to 10 >10 to 102 >102 to 103 >103

Winter 132 30 (22.7) 25 4 1 0

Spring 128 64 (50.0) 43 18 2 1

Total 260 94 (36.2) 68 22 3 1

Table 1 Prevalence and levels of Vibrio parahaemolyticus in retail aquatic products from North China

Aquatic products
samples

No. of samples
analyzed

No. of samples
positive (%)

No. of samples containing the pathogen (MPN/g)

3 to 10 >10 to 102 >102 to 103 >103

Fish 94 22 (23.4) 18 3 0 1

Shrimp 166 72 (43.4) 50 19 3 0

Total 260 94 (36.2) 68 22 3 1
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parahaemolyticus in the summer were significantly
different from those in the winter. These results may
be related to the differences in the average
temperature of the two seasons. These observations
were in agreement with the results of previous studies
that showed a seasonal variation in the occurrence of
this pathogen [50–52]. These results, which also con-
firm the conclusions of the WHO risk assessment for
V. parahaemolyticus [53], can be useful for defining effi-
cient monitoring programs in harvesting areas, based on
temperature values for control of V. parahaemolyticus.
As the presence of tdh- and/or trh-positive V. para-

haemolyticus strains in aquatic products represents a
public health risk, their detection would be of para-
mount importance. In the present study, tdh- and/or
trh-positive V. parahaemolyticus strains were not de-
tected in any of the aquatic product samples. This find-
ing is consistent with the findings of a previous study
reported in India [54]. However, it is in contrast to the
findings of other previous studies [55, 56]. The occur-
rence rate of these genes in pathogenic V. Parahaemoly-
ticus isolates is high, as has been proven for clinical
isolates. Isolates obtained from the environment and
food contain much less tdh or trh than clinical isolates
[55, 57]. However, it has also been shown recently that
some clinical V. parahaemolyticus isolates do not possess
tdh and trh. Even in the absence of these two hemolysins,
V. parahaemolyticus remains pathogenic, indicating the
existence of other virulence factors [29, 58].
As mentioned above, 13 O-serogroups and 71 K-sero-

groups have been identified in V. parahaemolyticus. The
pathogenicity of V. parahaemolyticus strains varies and
is associated with the serotype. Recently, a multiplex
PCR-based O-antigen serotyping method was developed
for detection and identification of V. parahaemolyticus
[31]. This assay can effectively distinguish all V.

parahaemolyticus O-serogroups, except O3 and O13. In
the present study, nine O-serogroups were detected
among the isolates. Our data indicated that serovar O2
was the predominant serotype among the strains isolated
from the aquatic product samples, a finding that was in
agreement with that of a study previously conducted by
our group [18]. However, our findings were in disagree-
ment with those of a previous study that identified the
O3 serotype as the predominant serotype from shellfish
from the eastern coast of China [17]. Previous study
demonstrated that most V. parahaemolyticus outbreaks
were caused by multiserovars of strains, mainly including
O3:K6, O1:KUT, and O4:K68 [29, 30]. O3:K6, O1:Kut,
O4:K8, and O2:K3 were also the dominant serovars of V.
parahaemolyticus, that caused outbreaks in China [16, 59].
The relationship of serotype between the food poisoning
isolates and the aquatic food isolates are of concern.
Recently, highly discriminatory molecular typing methods

such as PFGE and ERIC-PCR have been developed for dif-
ferentiation of pathogenic bacteria. ERIC-PCR is a rela-
tively simple, cost-effective method. It is easier to perform
than PFGE and is very useful for the analysis of large
numbers of strains [38]. Using this approach in this study,
the isolates were classified into 7 clusters, at 66 % similar-
ity. This result is similar to those of other studies, con-
firming the genetic diversity within V. parahaemolyticus
strains [60–62]. Some V. parahaemolyticus isolates were
of the same types as the clinical strains and a reference
strain, which may indicate that these strains are genetically
related.
Susceptibility tests revealed that the isolates were re-

sistant to some antibiotics. The highest resistance rate
(86.2 %) was observed for streptomycin, followed by
ampicillin (49.6 %), cefazolin (43.5 %), cephalothin (35.9 %),
and kanamycin (22.1 %). Similarly, previous studies have
shown that the occurrence of streptomycin- and ampicillin-
resistance in V. parahaemolyticus isolates is common [63].
In the present study, a small number of isolates showed
resistance to ciprofloxacin, gentamicin, nalidixic acid, and
tetracycline, while none of the isolates demonstrated re-
sistance to azithromycin, indicating that these antimicro-
bials were still highly effective against V. parahaemolyticus
isolates. Based on our findings, these antibiotics could be
prescribed by doctors for the treatments of V. parahaemo-
lyticus. In our study, half of the isolates were resistant to
more than three antibiotics. Increasingly, resistant strains
are being reported [63, 64], which may be explained as fol-
low: On one hand, along with the steady expansion of the
Asian aquaculture industry, aquaculture farmers use many
different antibiotics to prevent (prophylactic use) and treat
(therapeutic use) pathogenic bacterial infections in aquatic
produce [64, 65]. On the other hand, a wide range of anti-
biotics used in humans contaminate water, leading to
resistance in pathogenic bacteria. In general, infection

Table 3 Results of the PCR-based O-antigen serotyping of 145
Vibrio parahaemolyticus isolates

Serogroups Product sizes (bp) No. of isolates analyzed

Group 1 O1 474 25

O2 238 54

O4 671 5

O5 852 6

O10 343 2

Group 2 O3a 868 8

O8 680 11

O11 524 17

O12 256 6

Uncertain 11

Total 145
aO3 or O13
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emergence of microbial resistance to multiple drugs is a
serious clinical problem and can lead to an increase in fa-
tality rates [65].

Conclusions
This study showed that the levels of V. parahaemolyticus
in retail aquatic products were relatively low and that
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Fig 1 ERIC-PCR DNA fingerprint analysis of Vibrio parahaemolyticus isolates in retail aquatic products from North China

Xu et al. BMC Microbiology  (2016) 16:32 Page 5 of 9



none of the isolates possessed tdh and trh. Furthermore,
serotype O2 was found to be the most prevalent; the iso-
lates showed genetic diversity, as determined by ERIC-
PCR typing, and the antimicrobial-resistance patterns
showed that most of the isolates were resistant to strepto-
mycin (86.2 %). The findings provided in this study may
be useful in defining appropriate monitoring programs,
understanding of the dissemination of antibiotic-resistant
strains, and providing information for the assessment of
exposure to this microorganism at the consumption level.

Methods
Bacterial strains
Two V. parahaemolyticus reference strains (ATCC 33847
and ATCC 17802) were obtained from the American Type
Culture Collection (ATCC; Manassas, VA, USA). ATCC
33847 is tdh+, ATCC 17802 is trh+. Thirty-one clinical
isolates were gifted by the Nanshan Shenzhen Center for
Disease Control and Prevention (Shenzhen, China). All
strains mentioned above were grown on Tryptone Soy
Agar (TSA, Huankai Co. Ltd, Guangzhou, China)
supplemented with 3 % (w/v) NaCl and incubated at
37 °C for 18 h.

Sample collection of aquatic products
In total, 260 aquatic product samples, including 94 fish
samples and 166 shrimp samples were collected in retail
markets from 6 different cities in North China, belong-
ing to 6 provinces, i.e., Harbin (n = 22 [winter], n = 22
[summer]), Lanzhou (n = 23 [winter], n = 22 [summer]),
Xi’an (n = 22 [winter], n = 22 [summer]),Taiyuan (n = 22
[winter], n = 22 [summer]), Jinan (n = 21 [winter], n = 19

[summer]), and Beijing (n = 22 [winter], n = 21 [sum-
mer]). Samples were collected from November to De-
cember in 2012 and from July to August in 2013. In this
region, the climate is cold from November to December
(winter), and it is hot from July to August (summer).
The samples were placed in sterile sealed plastic bags
and transported to the laboratory in a cold box below 4 °C
and were analyzed immediately.

Most probable number (MPN) method for quantitative
analysis
In this study, the MPN method was conducted accord-
ance with the Bacteriological Analytical Manual standard
and our previously study [18, 66]. Briefly, samples weigh-
ing 25 g were homogenized and combined with 225 mL
of alkaline peptone water (APW) containing 3 % NaCl
(Huankai, Guangzhou, China). Serial 10-fold dilutions
were prepared up to a 1:103 dilution, and 3 x 1 mL por-
tions of each dilution were inoculated into 9 mL of
APW with 3 % NaCl. Dilutions were incubating at 37 °C
for 16–18 h. After incubation, the collected samples
were streaked onto thiosulfate-citrate-bile salts-sucrose
(TCBS) agar plates (Huankai, Guangzhou, China) with
an inoculation loop and incubated at 37 °C for 18–24 h.
Three to five (if have) presumptive V. parahaemolyticus
colonies (green or blue green colonies, 2–3 mm in diam-
eter) were selected from each plate, streaked onto Chro-
mogenic Vibrio Medium (Huankai, Guangzhou, China)
and incubated at 37 °C for 24 h. One (if have) mauve
colony from each Chromogenic Vibrio Medium plate
was selected for identification tests including halophi-
lism tests, oxidase activity assessment, gram staining, the
3.5 % NaCl triple-sugar-iron (TSI) test, and API 20E
diagnostic strips testings (BioMerieux Company, Marcy-
l’Étoile, France) test. The total numbers of V. parahae-
molyticus in samples were determined by converting the
numbers of culture tubes positive for V. parahaemolyti-
cus to MPN/g using an MPN table. The V. parahaemo-
lyticus isolates were confirmed by amplifying toxR, as
described previously [67].

Detection of tdh and trh genes
Detection of the V. parahaemolyticus tdh and trh genes
was performed by PCR, as described previously [68].

Multiplex serotyping PCR
The serotypes of V. parahaemolyticus isolates were iden-
tified using the PCR-based O-antigen serotyping tech-
nique. The primer concentrations and amplification
conditions used were as previously described [31].

ERIC-PCR analysis
Genomic DNA was extracted from V. parahaemolyticus
by using a commercial Universal DNA Extraction Kit

Table 4 Antimicrobial resistance profiles of 145 Vibrio
parahaemolyticus isolates from North China

Antimicrobial agent Vibrio parahaemolyticus (n = 145)

NO. (%) of
Ra

NO. (%) of
Ia

NO. (%) of
Sa

Ampicillin (AMP) 72 (49.6) 40 (27.6) 33 (22.8)

Azitromycin (AZM) 0 (0.0) 27 (18.6) 118 (81.4)

Cefazolin (KZ) 63 (43.5) 75 (51.7) 7 (4.8)

Cephalothin (KF) 52 (35.9) 81 (55.9) 12 (8.2)

Chloramphenicol (C) 0 (0.0) 6 (4.1) 139 (95.9)

Ciprofloxacin (CIP) 3 (2.1) 9 (6.2) 133 (91.7)

Gentamicin (CN) 1 (0.7) 53 (36.5) 91 (62.8)

Kanamycin (K) 32 (22.1) 108 (74.5) 5 (3.4)

Nalidixic acid (NA) 3 (2.1) 1 (0.7) 141 (97.2)

Streptomycin (S) 125 (86.2) 17 (11.7) 3 (2.1)

Trimethoprim-sulfamethoxazole
(SXT)

17 (11.7) 19 (13.1) 109 (75.2)

Tetracycline (TE) 2 (1.4) 22 (15.2) 121 (83.4)
aR; resistant, I; intermediate resistance, S; susceptibility
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(Sangon, Shanghai, China), according to the manufac-
turer’s instructions. Genomic DNA concentration was de-
termined at 260 nm using a Nano Drop®ND-1000UVeVis
Spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA). A pair of primers, ERIC 1R (5′-ATGTAA
GCTCCTGGGGATTCAC-3′) and ERIC 2 (5′-AAGTA
AGTGACTGGGGTGAGCG-3′) were used as previously
reported [69]. ERIC-PCR typing was performed on the V.
parahaemolyticus strains, using the protocol described
previously with some modification [38]. More specifically,
the reaction mixture (25 μL per reaction) consisted of
12.5 μL 2 × Long Taq Mix (Dongsheng Biotech, Guangzhou,
China), 0.6 μmol/L of each primer, and 100 ng of template
DNA. PCR was performed in a DNA thermocycler
(Applied Biosystems, Foster City, CA, USA) by using the
following cycling conditions: 1 cycle of denaturation at
95 °C for 5 min; followed by 35 cycles each consisting of
94 °C for 45 s, 52 °C for 1 min, and 72 °C for 3 min; and a
final extension at 72 °C for 10 min. The PCR products
were separated by electrophoresis in 2.0 % agarose gels,
following which, they were subjected to GoldView staining
(0.005 %, v/v) (SBS Genetech, Beijing, China) and photo-
graphed with a UV Imaging System (GE Healthcare,
Waukesha, WI, USA). The images were captured in TIFF
file format for further analysis.

Antimicrobial susceptibility
The susceptibility of the V. parahaemolyticus isolates to
antibiotics was examined by the disk-diffusion method,
according to the guidelines of the Clinical and Labora-
tory Standards Institute [70]. Muller −Hinton agar and a
panel of 12 antibiotics disks were selected for the resist-
ance tests. These 12 antibiotic disks (Oxoid, Hampshire,
UK) contained ampicillin (10 μg), azithromycin (15 μg),
cefazolin (30 μg), cephalothin (30 μg), chloramphenicol
(30 μg), ciprofloxacin (5 μg), gentamicin (10 μg), kanamy-
cin (30 μg), nalidixic acid (30 μg), streptomycin (10 μg),
trimethoprim − sulfamethoxazole (25 μg), or tetracycline
(30 μg). The results were expressed as sensitive (S), inter-
mediate (I), and resistant (R), following the methods of
the CLSI. Escherichia coli ATCC 25922 and V. parahae-
molyticus ATCC 17802 were used as quality control
organisms.

Statistical analysis
The size of each band in the ERIC patterns was deter-
mined and the data were coded as 0 (absence) or 1 (pres-
ence). Cluster analysis was performed with NTSYS-pc
(Version 2.10), a numerical taxonomy and multivariate
analysis software package [71], based on Dice’s similarity
coefficient (SD), with a 1 % position tolerance and the
unweighted-pair group method using arithmetic averages
(UPGMA).

To facilitate statistical analyzes of quantitative data,
half the detection limit (1.5 MPN/g) for the total V.
parahaemolyticus levels in aquatic product samples was
substituted when levels were below the limit of detection
[52]. Significance of differences was determined by using
SPSS 11.0 (IBM, USA) to perform an independent-
samples t-test.
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