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Abstract

Background: 14-3-3 proteins comprise a family of eukaryotic multifunctional proteins involved in several cellular
processes. The Pb14-3-3 of Paracoccidioides brasiliensis seems to play an important role in the Paracoccidioides-host
interaction. Paracoccidioides brasiliensis is an etiological agent of paracoccidioidomycosis, which is a systemic
mycosis that is endemic in Latin America. In the initial steps of the infection, Paracoccidioides spp. synthetizes
adhesins that allow it to adhere and invade host cells. Therefore, the aim of this work was to perform a functional
analysis of Pb14-3-3 using Saccharomyces cerevisiae as a model.

Results: The functional analysis of Pb14-3-3 was performed in S. cerevisiae, and it was found that Pb14-3-3 partially
complemented S. cerevisiae proteins Bmh1p and Bmh2p, which are recognized as two yeast 14-3-3 homologues.
When we evaluated the adhesion profile of S. cerevisiae transformants, Pb14-3-3 acted as an adhesin in S. cerevisiae;
however, Bmh1p did not show this function. The influence of Pb14-3-3 in S. cerevisiae ergosterol pathway was also
evaluated and our results showed that Pb14-3-3 up-regulates genes involved in ergosterol biosynthesis.

Conclusions: Our data showed that Pb14-3-3 was able to partially complement Bmh1p and Bmh2p proteins in
S. cerevisiae; however, we suggest that Pb14-3-3 has a differential role as an adhesin. In addition, Pb-14-3-3 may be
involved in Paracoccidioides spp. ergosterol biosynthesis which makes it an interest as a therapeutic target.
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Background
Paracoccidioides brasiliensis and Paracoccidioides lutzii
are the etiological agents of paracoccidioidomycosis, an en-
demic, systemic mycosis in Latin America, with the highest
prevalence in Brazil (80 % of cases), where the Southeast
and South regions report most of the cases [1, 2]. It is the
eighth highest cause of death among infectious and para-
sitic diseases and has the highest mortality rate, up to 59 %,
between systemic mycosis in Brazil in endemic areas [3–5].
The infection occurs through the inhalation of conidia

of the mycelial form. Once inside the host, the fungus
undergoes a transition to the yeast form, also known as

the parasitic form, via temperature stimulation [6].
However, the establishment of the infection depends
on several factors, such as the host immune system,
the ability of the fungus to evade it and establish it-
self in the hostile environment provided by the host.
In this way Paracoccidioides spp. synthesize several
substances that may cause damage in the host cells
and assist in colonization [7–10].
An important feature in the host-pathogen interaction

is the adhesion process, which contributes to pathogen
colonization, dissemination and evasion of the host im-
mune system [11, 12]. Several adhesins that allow the
fungus to bind the host extracellular matrix (ECM) have
already been described for Paracoccidioides spp. [9].
Among these, 14-3-3 protein plays an important role in
Paracoccidioides-host interaction.
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The 14-3-3 protein from P. brasiliensis, termed Pb14-
3-3, belongs to the 14-3-3 protein family, and it is com-
posed of approximately 30 kDa acidic dimeric proteins
that have already been described in all eukaryotes and
are involved in many cellular processes [13–18].
The Pb14-3-3 protein was first described as an

adhesin and a laminin ligand [19] and it was identi-
fied in P. brasiliensis extracellular vesicles [20]. Da
Silva et al. [21] demonstrated using in vitro and in vivo
models that during infection, an accumulation of this pro-
tein occurred in the fungal cell wall. Additionally, the re-
combinant protein promoted a decrease in the adhesion
rate of P. brasiliensis to epithelial cells.
In a study conducted by de Oliveira et al. [22] the ex-

pression of adhesins genes and adhesion profile of both
P. brasiliensis and P. lutzii were compared during inter-
action with mice and they observed that in both species
Pb14-3-3 gene is up-regulated, showing that this protein
plays an important role in the host-pathogen interaction
in both Paracoccidioides species.
Recently, da Silva et al. [23] evaluated the pneumocytes

response when treated with gp43 and Pb14-3-3. The cells
exhibited the same profile of apoptosis signaling observed
during P. brasiliensis infection, highlighting the import-
ance of this protein during the interaction with the host.
Saccharomyces cerevisiae has two encoding genes,

BMH1 and BMH2, for 14-3-3 proteins (Bmh1p and
Bmh2p) that are involved in innumerable processes,
such as sporulation, ergosterol metabolism-related gene
transcription and chitin synthesis [14, 24–28].
Although advances in the genetic manipulation of P.

brasiliensis have been made, Saccharomyces cerevisiae is
still extensively used for genetic studies, including func-
tional analyses, due its ease of use and the wide range of
available information. [29–34] Thus, we chose this yeast
as our model to evaluate the role of the Pb14-3-3 and its
relationship with the pathogenicity of P. brasiliensis.

Results
Primary sequence alignment of 14-3-3 proteins
As previously described, S. cerevisiae has two 14-3-3 iso-
forms, Bmh1p [GenBank: DAA07840.1] and Bmh2p
[GenBank: DAA11946.1] [35]. Therefore, using the Clus-
talW2 amino acid sequence, an analysis was performed be-
tween them and Pb14-3-3 [GenBank: AAR24348.1], and a
high identity was found among these proteins: Bmh1p and
Pb14-3-3 presented an identity of 76 %, and Bmh2p and
Pb14-3-3 presented an identity of 80 % (Fig. 1).

Molecular cloning of Pb14-3-3 gene and BMH1
The heterologous expression of Pb14-3-3 in S. cerevisiae
was carried out using P. brasiliensis cDNA to amplify
the Pb14-3-3 ORF [GenBank: AY462124] (Fig. 2a),
followed by cloning into pYES2 vector. As a control,

these procedures were performed using BMH1 ORF
[GenBank: X66206.1] because it is the predominantly
expressed isoform in S. cerevisiae [35]. After cloning
confirmation (Fig. 2b) and sequence analysis, the ob-
tained plasmids, pYES-14-3-3 and pYES-BMH1, and the
empty plasmid, pYES, were transformed into wild type
(wt), Δbmh1 and Δbmh2 S. cerevisiae strains using the
lithium acetate method for yeast transformation. The
positive transformants were selected on SD-URA (syn-
thetic defined medium without uracil) plates.

Complementation assay
To evaluate the ability of Pb14-3-3 to complement Bmh1p
or Bmh2p function in the Δbmh1 and Δbmh2 S. cerevisiae
mutants or to improve the functions of these proteins in
the wt S. cerevisiae, we performed a spot test using flucona-
zole (FZ) 35 μM as described in the Materials and Methods.
The Pb14-3-3 promoted a decrease in fluconazole suscepti-
bility, and a higher complementation was observed in the
Δbmh2 S. cerevisiae mutant, probably due to the higher
identity of Pb14-3-3 with Bmh2p from S. cerevisiae (Fig. 3).
In addition, as fluconazole acts in ergosterol biosyn-

thesis, there is evidence that Pb14-3-3 may be involved
in ergosterol biosynthesis, as found with S. cerevisiae
Bmh1/2 proteins [26, 36].

Expression analysis of genes related to ergosterol
pathway
In order to test our hypothesis, we evaluated the expres-
sion of genes involved in ergosterol pathway by Real
Time PCR. Bmh1p and Bmh2p influence in ergosterol
pathway have already been described and downregula-
tion of ERG1, ERG11, ERG28 and HES1 genes were ob-
served in S. cerevisiae BMH1/2 mutants [26]. In this
sense, those genes were chosen to evaluate the possible
role of Pb14-3-3 in ergosterol pathway.
An increase of expression of all evaluated genes was

observed in the three S. cerevisiae transformants contain-
ing pYES-BMH1 and pYES-14-3-3 when compared to the
S. cerevisiae pYES.transformants (Fig. 4). The expression
analysis showed an increased expression of all genes in the
wt and Δbmh1 S. cerevisiae containing pYES-14-3-3 when
compared to the pYES-BMH1 transformants, with a
significant increase for ERG1, ERG28 and HES1. In
Δbmh2 S. cerevisiae transformed with pYES-14-3-3 a slight
increase is observed for ERG28 and HES1 genes. These
data demonstrate that Pb14-3-3 is also involved in ergos-
terol pathway by altering the expression of these genes.
In addition, it seems like Bmh1p has a higher influence

in this pathway, once ERG1, ERG11, ERG28 and HES1
showed a higher expression in Δbmh2 S. cerevisiae con-
taining pYES-BMH1, which have the BMH1 gene and
the plasmid, than Δbmh1 S. cerevisiae, which expression
of Bmh1p occurs only through the plasmid.
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Adhesion assay
Pb14-3-3 was identified in our group as an adhesin,
hence, we performed an adhesion assay to evaluate the
ability of Pb14-3-3 to induce S. cerevisiae adherence to
epithelial cells (ATCC A549).
A significant increase in adhesion was only observed in

wt S. cerevisiae transformed with pYES-14-3-3, showing

that Pb14-3-3 acts as an adhesin even in a non-pathogenic
fungus. However, Bmh1p did not promote the increase of
the adhesion rate, suggesting a differential role of Pb14-3-
3 (Fig. 5a).
In Δbmh1 and Δbmh2 S. cerevisiae transformants with

pYES14-3-3 or pYESBMH1 no increase of adhesion rate
was observed, although it was unexpected, the Pb-14-3-

Fig. 1 Primary sequence analysis. An “*” (asterisk) indicates positions that have a single, fully conserved residue; A “:” (colon) indicates conservation
between groups with strongly similar properties - scoring > 0.5 in the Gonnet PAM 250 matrix; A “.” (period) indicates conservation between
groups of weakly similar properties - scoring = < 0.5 in the Gonnet PAM 250 matrix. The code of colors according to their physicochemical
properties are as follows: red, small and hydrophobic (AVFPMILW); blue, acidic (DE); magenta, basic (RK); and green, (STYHCNGQ)

Fig. 2 Agarose gel electrophoresis. a Confirmation of Pb14-3-3 ORF amplification: (L1) 1 kb ladder and (2) Pb14-3-3 ORF (798 bp). b Restriction
diagnosis: (L1) 1 kb ladder; 1 – pYES-14-3-3, (2) restriction products using BamH1 and XhoI (expected product 798 bp), and (3) restriction products
using BamHI and HindIII (expected product 605 bp), (L2) 100 bp ladder
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3 may be acting in Bmh1p or Bmh2p primary func-
tions in order to compensate the lack of missing
genes, meanwhile wt S. cerevisiae possess both genes
and Pb14-3-3 can be required for secondary func-
tions, as adhesin (Fig. 5).

Discussion
As with many pathogens, Paracoccidioides spp. adhesion
to host cells is a crucial event in the establishment of

disease and contributes to the colonization and invasion
of host cells, as well as evasion from the host immune
system [9, 11, 12]. Therefore, Paracoccidioides adhesins
are important proteins to be studied because they might
promote a better understanding of fungal pathogenesis
and provide new targets for antifungals.
Several Paracoccidioides spp. adhesins have already

been described, such as the 43 kDa glycoprotein, gp43,
which is most studied Paracoccidioides spp. adhesin that

Fig. 3 Evaluation of complementation. A spot assay was used to evaluate susceptibility to fluconazole 35 μM in wt (a), Δbmh1 (b) and Δbmh2
(c) S. cerevisiae transformants. There was a decreased sensitivity of transformants pYES-14-3-3 and pYES-BMH1 compared with the empty vector
transformant (pYES). As a growth control, the transformants were also spotted in SD-URA without fluconazole

Fig. 4 Relative gene expression of genes involved in ergosterol pathway. Relative gene expression of ERG1, ERG11, ERG28 and HES1 in (a) wt
S. cerevisiae transformed with pYES-BMH1 and pYES-14-3-3, (b) Δbmh1 S. cerevisiae transformed with pYES-BMH1 and pYES-14-3-3 and (c) Δbmh2
S. cerevisiae transformed with pYES-BMH1 and pYES-14-3-3. (*) Indicates a statistically significant difference in expression level, p < 0,05. The graph
show the normalized gene expression relative to wt, Δbmh1 and Δbmh2 S. cerevisiae transformed with pYES (empty vector), respectively
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binds to laminin and fibronectin and is also used as a
serological marker [37–40]; glyceraldehyde-3-phosphate-
dehydrogenase (GAPDH), enolase (ENO), triose phos-
phate isomerase (TPI), malate synthase (MLS), aconitase
(ACO) and isocitrate lyase (ICL), which, in addition to
their primary roles in the metabolism, are found in the
fungal cell wall and are able to bind to different compo-
nents of the ECM [41–49]; and the 30 kDa protein iden-
tified as the 14-3-3 protein, which stands out in
Paracoccidioides – host interaction [21].
The 14-3-3 proteins comprise a family of small, dimeric

and acidic proteins that are present in all eukaryotic cells
[16, 18, 50]. The closest relation between 14-3-3 protein
and fungus virulence was first described by Andreotti et
al. [19], where they found an increase in the expression of
a 30 kDa protein after animal reisolation and that this
30 kDa protein binds to laminin and it is able to inhibit P.
brasiliensis adhesion and invasion in epithelial cells. Later,
da Silva et al. [21] identified this protein as being related
to a member of the 14-3-3 protein family and demon-
strated that Pb14-3-3 accumulates in the fungal cell wall
during infection in both in vitro and in vivo models.
As genetic manipulation of P. brasiliensis are still hard

to accomplish [51], we decided to use S. cerevisiae as a
model to improve our knowledge about Pb14-3-3. The
double knockout of BMH1 and BMH2 genes are lethal
[31], then we decided to evaluate Pb14-3-3 function in
single mutant and wild type strains of S. cerevisiae, a
strategy successfully used by Clapp et al. [52].
As the first description of Pb14-3-3 was as an adhesin,

we performed an adhesion assay to evaluate the ability of
Pb-14-3-3 to promote S. cerevisiae adhesion to pneumo-
cytes. A significant increase in the adhesion rate was ob-
served for wt S. cerevisiae transformed with pYES-14-3-3,
but not with pYES-BMH1 and pYES. However, this was
not observed in any transformed S. cerevisiae mutants
(Fig. 5).
In this way, as S. cerevisiae is a non-pathogenic micro-

organism the adhesion process is not required to the

yeast, therefore, when Δbmh1 and Δbmh2 S. cerevisiae
express Pb14-3-3, the protein is recruited to perform the
primary functions of the missing gene, BMH1 and
BMH2, respectively, as it occurs with the Bmh1p and
Bmh2 proteins [35]. However, in the wt S. cerevisiae
transformants there is no need to supplement any func-
tion and the protein expressed through the plasmid per-
form secondary function and act as adhesin. Interesting,
only wt S. cerevisiae pYES-14-3-3 showed an increase in
adhesin rate compared to the wt S. cerevisiae pYES sug-
gesting although the high identity, Pb14-3-3 may present
different functions than Bmh1p, such as an adhesin.
Although 14-3-3 proteins are multifunctional proteins

that are involved in several cellular processes [16, 18, 27,
28, 53], which may have influenced the adhesion of S. cer-
evisiae, the Pb14-3-3 role in adhesion process during
Paracoccidioides spp. interaction with host cells in vitro
and in vivo have already been demonstrated [21]. Add-
itional role of conserved proteins in pathogenic organisms,
including Paracoccidioides spp., during interaction with
host cells has already been described. Enzymes from
glycolytic pathway, tricarboxylic cycle and glyoxylate cycle
are found in fungus cell wall during infection and are able
to interact with ECM components, assisting in the fungus
adherence [22, 49, 54].
In humans, this protein has been widely study as a tar-

get for drug development or as a biomarker [55–57] be-
cause it has been associated with neurodegenerative
disease, such as Creutzfeldt-Jakob disease, Alzheimer’s
disease [17, 24, 58, 59] and some cancer types [60, 61] .
However, the knowledge of the influence of 14-3-3

proteins in pathogenic fungi is still limited. Candida
albicans encodes a single 14-3-3 gene, BMH1 [62],
which the expressed protein is involved in growth and
filamentation that may affect the host-fungus interaction
[63]. It was also recognized by C. albicans germ-tube-
specific antibodies in the detection of invasive candid-
iasis, highlighting the potential as a biomarker for
diagnosis [64].

Fig. 5 Adhesion assay. a Adhesion rate of wt, Δbmh1 and Δbmh2 S. cerevisiae transformed with pYES (empty vector), (b) adhesion rate of wt,
Δbmh1 and Δbmh2 S. cerevisiae transformed with pYES-BMH1 and the (c) adhesion rate of wt, Δbmh1 and Δbmh2 S. cerevisiae transformed with
pYES-14-3-3. (*) Indicates a statistically significant difference in adhesion rate, p < 0,05
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The 14-3-3 proteins of some parasites have also been
studied in regards their involvement in infectious dis-
eases [65]. In Trypanosoma brucei, 14-3-3 proteins were
related to cell motility, cytokinesis and the cell cycle [66,
67]; the 14-3-3 protein from Toxoplasma gondii seems
to stimulate the host immune system and is a promising
vaccine candidate [68, 69]. Several studies of 14-3-3 pro-
teins from the genus Ecchinococcus suggest the import-
ance of this protein in host-parasite interactions, where
it can be involved in the regulation of cell proliferation,
survival and invasion, as well as in the modulation of the
host immune system [70–73]. The same behavior was
also verified in 14-3-3 proteins from the genus Schisto-
soma and studies have been conducted to development
of vaccines and diagnostic methods [74–78].
In Aspergillus nidulans, the expression of 14-3-3 pro-

tein was also identified and seems to be involved in hy-
phae morphogenesis as its overexpression promoted
defects in the establishment of the germ tube and asex-
ual development [79].
In this study, we also demonstrated that Pb14-3-3

could partially complement the functions of Bmh1p and
Bmh2p by decreasing the susceptibility to fluconazole at
35 μM, showing a greater complementation in the mu-
tant S. cerevisiae Δbmh2, which was expected because
according to the amino acid alignment analysis, we ob-
served a higher identity between Pb14-3-3 and Bmh2p
than between Pb14-3-3 and Bmh1p.
In addition, it is well known that in azoles, such as flu-

conazole, the mechanism of action takes place in ergos-
terol biosynthesis by interrupting the conversion of
lanosterol into 4,4-dimethylcholesta-8,14,24-trienol [80].
Thus, we hypothesized if Pb14-3-3 may be related to

ergosterol biosynthesis due to the decreased sensibility
of the S. cerevisiae strains transformed with pYES-14-3-
3. To verify that, we performed an expression analysis of
genes involved in ergosterol pathway, ERG1, ERG11,
ERG28 and HES1, which have already been described to
be regulated by Bmh1p and Bmh2p [26].
The Pb14-3-3 promoted the up-regulation of all

evaluated genes, demonstrating its involvement in er-
gosterol pathway in this model. In addition, the up-
regulation promoted by Pb14-3-3 was higher than
promoted by Bmh1p, this was specially observed for
the genes ERG1, ERG28 and HES1 wt and Δbmh1 S.
cerevisiae transformants.
Ergosterol is the major sterol in fungi and it is an es-

sential structural component of plasma membrane. Also,
ergosterol acts in membrane permeability and in
membrane-bound enzymes [81, 82]. In pathogenic fun-
gus ergosterol is a microbe associated molecular pattern
and because of the differences between ergosterol and
human sterols it is widely study in the development of
antifungal compounds [83–86].

The currently antifungals used in treatment of para-
coccidioidomycosis, itraconazole and amphotericin B,
have as target enzymes of ergosterol pathway, such as
ERG11p, and ergosterol, respectively [87–91]. The resist-
ance and effect of these antifungals in pathogenic fungi
have been studied [92–94], Da Silva Neto et al [82],
studied the transcriptional profile of Paracoccidioides
treated with itraconazole and observed an up-regulation
of genes from ergosterol biosynthesis.
The ergosterol biosynthesis is performed by genes

from ERG family. ERG1 and ERG11 genes encode essen-
tial enzymes in the initial stages of ergosterol biosyn-
thesis, acting in the conversion of squalene into
squalene epoxide and of lanosterol into 4,4-dimethylcho-
lesta-8,14,24-trienol, respectively. ERG28p seems to be a
key enzyme in the ergosterol biosynthesis, once interacts
with seven ergosterol biosynthetic enzymes, where the
association with ERG11p, ERG27p, ERG25p and ERG6p
are more closely and with ERG1p and ERG26p are less
associated [95]. HES1 is related to ergosterol biosyn-
thesis and sterol transport [96, 97].
The role of Paracoccidioides spp. in adhesion process

and this new role here described, in ergosterol biosynthesis,
reinforce the importance of this protein in host-pathogen
interactions and its potential as therapeutic target.

Conclusion
These findings corroborate results presented in previous
studies. Here, we demonstrated that Pb14-3-3 acts as an
adhesin, even in a non-pathogenic model. This protein
has adhesin function unlike Bmh1p, despite the high
identity between these proteins.
The influence of Pb14-3-3 in ergosterol pathway was

also demonstrated in this model and we believe that also
happens in Paracoccidioides spp.. Further studies should
be conducted in order to evaluate this new function of
Pb14-3-3 and its implications in Paracoccidioides spp.
pathogenesis and virulence. However, this highlights the
importance of this protein and its potential as thera-
peutic target against Paracoccidioides spp..

Methods
Microorganisms and growth conditions
In this study, P. brasiliensis Pb18 strain in the yeast
phase was cultured in Fava Netto medium at 37 °C and
was used to perform RNA extraction.
S. cerevisiae wild type (wt), Δbmh1 (bmh1::KanMX4)

and Δbmh2 (bmh2::KanMX4) strains were generously
provided by Dr. Cleslei Fernando Zanelli from the
Molecular Biology Laboratory of Faculty of Pharmaceutical
Sciences. They were maintained in YEPD (yeast extract
peptone dextrose) medium at 25 °C. After transformation,
the yeast cells were maintained in the selective medium
SD-URA.
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The Escherichia coli DH10B strain was employed for
plasmid amplification and was maintained in Luria-
Bertani (LB) medium. After transformation, the positive
transformants were selected in LB supplemented with
ampicillin (50 μg/mL).

Cloning of the Paracoccidioides brasiliensis 14-3-3 gene
into pYES expression vector
Genomic DNA from S. cerevisiae strains were obtained
through the phenol: chloroform: isoamilic alcohol
method according to Hanna and Xiao [98], whereas the
P. brasiliensis RNA extraction was performed by the
TRIzol method (Invitrogen Life Technologies, Carlsbad,
CA, USA) according to the manufacturer’s instructions
followed by cDNA synthesis using reverse transcriptase
(RevertAid™H Minus Reverse Transcriptase, Fermentas,
Canada) and 1 μg of total RNA.
Amplification of Pb14-3-3 [GenBank: AY462124] and

Bmh1p [GenBank: X66206.1] coding regions were carried
out through PCR using the specific primers 14-3-3 F/14-
3-3R and BMH1F/BMH2R (Table 1). The PCR products
were checked by agarose electrophoresis, purified using a
QIAquick PCR Purification kit (Qiagen, Redwood City,
CA, USA) and quantified using a NanoVue Plus (GE
Healthcare Buckinghamshire, UK).
The 14-3-3 amplicon was cloned into BamHI/XhoI sites

of the pYES2 vector expression system (Invitrogen Life
Technologies, Carlsbad, CA, USA), and the Bmh1 ampli-
con was cloned into BamHI/EcoRI sites of the pYES2 vec-
tor expression system (Invitrogen Life Technologies,
Carlsbad, CA, USA). The obtained plasmids, pYES-14-3-3
and pYES-BMH1, were transformed into E. coli DH10B
through the heat shock method, and then the bacteria was
plated in LB medium supplemented with ampicillin
50 μg/mL and incubated overnight at 37 °C.
Positive colonies were grown, and plasmid extraction

was performed using QIAprep Spin Miniprep (Qiagen,
Redwood City, CA, USA). To ensure that the plasmid
extracts were pYES-14-3-3 and pYES-BMH1, restriction
diagnosis was performed using HindIII and BamHI en-
zymes (Promega, Madison, Wi, USA). After confirm-
ation, transformation in yeast was initiated.
The wt, Δbmh1 and Δbmh2 S. cerevisiae strains were

submitted to yeast transformation with pYES-14-3-3 and
pYES-BMH1 (used as a complementation control)
through the lithium acetate method. After transform-
ation, yeast cells were plated in SD-URA medium to se-
lect positive transformants and incubated at 30 °C until
the appearance of growth.

Spot test
The spot test was performed to evaluate the ability of
Pb14-3-3 to complement the functions of Bmh1p or
Bmh2p. Fluconazole was chosen after searching the

Saccharomyces Genome Database, where a decrease in
sensitivity to fluconazole was described for S. cerevisiae
Δbmh1 and Δbmh2.
Each transformant was grown in SD-URA medium

until a concentration of 1×107 cells/mL (A600nm = 0.6–
0.9), and suspensions of 2.5 × 108 cells/mL were
prepared in glycerol 50 %. Then, 100 μL of each sample
was transferred to a 96-well plate, six serial dilutions
were prepared and 2.5 μL of each suspension was spot-
ted in SD-URA supplemented with 2 % galactose and
35 μM fluconazole (Sigma-Aldrich, St. Louis, MO,
USA); control plates without fluconazole were also
made. The plates were incubated at 30 °C until growth
in all dilutions was observed in control plates. The ex-
periment was conducted in triplicate with three inde-
pendent experiments for each transformant.

Expression analysis of ergosterol pathway genes ERG1,
ERG11, ERG28 and HES1 by Real Time PCR
The evaluated genes, ERG1, ERG11, ERG28 and HES1,
were chosen according to Bruckmann et al. [26] and
ACT1 was used as housekeeping gene. Specific primers
for each gene were synthetized (Table 1).
Saccharomyces cerevisiae transformants were grown in

SD-URA medium overnight at 30 °C/150 rpm and then
transferred to induction medium, which consisted of
SD-URA with 2 % galactose. The cells were collected
and RNA extraction was performed by the TRIzol
method (Invitrogen Life Technologies, Carlsbad, CA,
USA) according to the manufacturer’s instructions
followed by first-strand cDNA synthesis using reverse
transcriptase (RevertAid™H Minus Reverse Transcriptase,
Fermentas, CA) and 1 μg of total RNA.

Table 1 Oligonucleotides used for plasmids construction and
Real Time PCR study

Name Description (5′–3′)

14-3-3F CGGGATCCATGGGTTACGAAGATG

14-3-3R CCGCTCGAGCTACTCAGCGGCCTTAGG

BMH1F CG GGATCC ATGTCAACCAGTCGTGAAG

BMH1R CG GAATTC TTACTTTGGTGCTTCACC

ERG1F ATCCATTGACTGGTGGTGGT

ERG1R CGGTCGCTGAAGTCTAGGTC

ERG11F CCTCTTATTCCGTCGGTGAA

ERG11R TGTGTCTACCACCACCGAAA

ERG28F CAACCCATTTGAGTGCAAGA

ERG28R GAAGTGGAATAGGGCAACCA

HES1F TGTGGCAGAAGCAATCAGAC

HES1R CTTTGCCATTCCACACCTTT

ACT1F CGGTGATGGTGTTACTCACG

ACT1R GGCCAAATCGATTCTCAAAA
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The reaction mixtures contained 1 μL of cDNA, 10 μL
of Maxima ® SYBR Green/ROX qPCR Master Mix (2X)
(Fermentas, Canada), 0.7 μM of each primer and
nuclease-free water to the final volume of 20 μL The reac-
tions were performed in Applied Biosystems 7500 Real
Time PCR System (Applied Biosystems, Foster City, CA,
USA) with the following program: 50 °C for 2 min, 95 °C
for 10 min, and 40 cycles of 95 °C for 15 s followed by an-
nealing and synthesis at 60 °C for 1 min. Following the
PCR, a melting curve analysis was performed, which con-
firmed that the signal corresponded to a single PCR prod-
uct. The data were analyzed using the 2−ΔΔCT method.
The cycle threshold values for the triplicate PCRs of each
RNA sample were averaged, and then the values were cal-
culated using the ACT1 gene which was chosen as refer-
ence housekeeping gene [99].
Before the relative expression analyses, the efficiency

of the amplifications were performed, then experiments
were conducted in triplicate with three independent ex-
periments for each primer and sample. Statistical ana-
lysis was performed using ANOVA test followed by
Turkey’s post-test. The analyses and the graphs con-
struction were conducted in GraphPad Prism5 software
(GraphPad Software Inc., La Jolla, CA, USA).

Adhesion assay
The adhesion assay was performed according to Younes
et al. [100] with some modifications. Saccharomyces
cerevisiae transformants were grown in SD-URA medium
containing 2 % raffinose overnight at 30 °C/150 rpm and
then transferred to induction medium (SD-URA with 2 %
galactose) and incubated for 4 hours under the same
conditions described above.
In 24-well plates, pneumocytes (ATCC A549) were

plated with HAM-F12 medium supplemented with fetal
bovine serum and incubated at 36.5 °C, 5 % CO2 until
monolayer formation. Then, the cells were washed three
times, and new medium was added. In each well, 300 μL
of each inoculum was added to a final concentration of
1×104 yeast cells/mL.
The plates were incubated for 30 min at 36.5 °C/5%CO2.

After this period, they were washed to remove non adher-
ent yeast cells. The epithelial cells were lysed with 100 μL
of cold water and plated in YEPD medium incubated for
36 h/30 °C. The colony count was performed, and the ad-
hesion rate was expressed as the percentage of adhered
cells in relation to control plates.
The experiments were carried out in triplicate with

three independent experiments and statistical analysis
was performed using an ANOVA test with a Tukey’s
post-test. The analyses and the graphs were conducted
in GraphPad Prism5 software (GraphPad Software Inc.,
La Jolla, CA, USA).
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