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LPS stimulation and in newborn piglets under

normal conditions
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Abstract

TJ-deficient conditions.

Background: Tight junctions (TJs) maintain the intestinal mucosal barrier, dysfunction of which plays a vital role in
the pathophysiology of a variety of gastrointestinal disorders. Previously, we have shown that L. reuteri 15007
maintained the gut epithelial barrier in newborn piglets. Here we aimed to decipher the influence of L. reuteri 15007
on tight junction (TJ) protein expression both in vivo and in vitro.

Results: We found that L. reuteri 15007 significantly increased the protein abundance of intestinal epithelial claudin-1,
occludin and zonula occluden-1 (ZO-1) in newborn piglets (orally administrated with 6 x 10° CFU of L. reuteri 15007 daily
for 14 days). In vitro, treatment with L. reuteri 15007 alone maintained the transepithelial electrical resistance (TEER) of
IPEC-J2 cells with time. In addition, IPEC-J2 cells were stimulated with 1 ug/mL lipopolysaccharide (LPS) for 1, 4, 8, 12

or 24 h, following pre-treatment with L. reuteri 15007 or its culture supernatant for 2 h. The results showed that LPS
time-dependently induced (significantly after 4 or 8 h) the expression of TNF-a and IL-6, and decreased TJ proteins,
which was reversed by pre-treatment of L. reuteri 15007 or its culture supernatant.

Conclusions: L. reuteri 15007 had beneficial effects on the expression of TJ proteins in newborn piglets and the in-vitro
results showed this strain had a positive effect on TEER of cells and inhibited the reduction of TJ proteins expression
induced by LPS. These findings indicated L. reuteri 15007 may have potential roles in protection TJ proteins in
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Background
Diarrheal diseases in animals cause the livestock industry
great economic loss and also represent a serious threat
to farm animal welfare [1]. One of the main causes of
diarrhea is gastrointestinal disorder and intestinal mu-
cosa barrier dysfunction or “leaky gut” is reported to
play a vital role in the pathophysiology of a variety of
gastrointestinal disorders [2].

The intestinal mucosal barrier is maintained by tight
junctions (T7Js) [3], which are multiprotein complexes lo-
cated around the apical end of the lateral membrane of

* Correspondence: giaoshy@mafic.ac.cn

'State Key Laboratory of Animal Nutrition, China Agricultural University,
Beijing 100193, China

Full list of author information is available at the end of the article

( BioMVed Central

the epithelial cells and seal the paracellular space
between adjacent epithelial cells [4]. TJs function as a se-
lective/semipermeable paracellular barrier, which regu-
lates the transport of ions, water and solutes through the
paracellular pathway [5,6]. The most important and crit-
ical components in the structural and functional
organization of the TJs are occludin, zonula occluden-1
(ZO-1) and claudin-1 [7-9]. The importance of these T]
proteins has been demonstrated under many conditions.
For example, increased intestinal permeability, which is
thought to increase the load of bacterial and dietary an-
tigens in the lamina propria, has been observed in early
weaned pigs (21 days of age) apparently due to aberrant
expression of the essential T] proteins [10]. Hence, modu-
lation of TJ function, particularly through increasing levels
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of occludin, ZO-1 and claudin-1, is a target for novel
therapeutic or prophylactic treatments against a range of
diseases.

Probiotics, defined as live microorganisms which, when
consumed in adequate amounts as part of food, confer a
health benefit on the host [11], are widely used in humans
and animals. Since the European Union banned the use of
antibiotics as growth promoters in 2006, the use of pro-
biotic animal feed additives has increased as reported both
in vivo [12,13] and in vitro [14,15]. Ingestion of probiotics
has been shown to prevent or treat a variety of gut disor-
ders [16,17], although the mechanisms through which
they function are not completely known. However, a large
amount of evidence suggests that one mechanism may be
via protection or augmentation of the intestinal mucosal
barrier function [17,18].

Lactobacillus, one of the most commonly used pro-
biotic microorganisms [19,20], frequently occurs in the
intestinal microflora of various vertebrates and exerts
Lactobacillus-mediated barrier protection via modula-
tion of TJs [21-23]. Previous studies have demonstrated
that this genus significantly reduces the incidence and
the severity of diarrhea [24] and helps maintain a func-
tional mucosal barrier [25].

To test the hypothesis that natural Lactobacillus found
in animal intestinal tract may be a potential source of
probiotic bacteria for livestock. In 2003, our group iso-
lated thousands of strains of Lactobacillus from the
gastrointestinal tract GIT of eleven healthy weaned pig-
lets from different pig farms. According to criteria in-
cluding tolerance to heat, low pH, and bile salts, as well
as storage stability and antagonism to pathogenic agents,
four strains, Lactobacillus fermentum 15007, L. gasseri
S$1031, L. reuteri 12021 and L. acidophilus 1021, were se-
lected [26]. Subsequently, a series of in vivo and in vitro
studies demonstrated that L. fermentum 15007 had the
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greatest adhesion [27], and showed beneficial effects on
growth performance and antioxidative activity, as well as
modulation of intestinal microbiota and mucin secretion
in piglets [28-30]. Summarily, our work in the past dec-
ade indicates that L. fermentum 15007, now known as L.
reuteri 15007 according whole-genome sequence of this
strain [31], can be used as a potential probiotic. Re-
cently, our group found that oral administration of L.
reuteri 15007 favored intestinal development and main-
tained the gut epithelial barrier in neonatal piglets [28].
However, the mechanism through which it exerts func-
tions on the gut epithelial barrier is not fully understood.
The aim of the present study was to evaluate L. reuteri
15007-mediated intestinal mucosal barrier augmentation
in a newborn piglet model and investigate the mechan-
ism for modulation of TJs in a porcine jejunal epithelial
cell line (IPEC-J2) challenged by lipopolysaccharides
(LPS).

Results

Oral administration of L. reuteri 15007 enhanced the
protein abundance of intestinal epithelial TJs in newborn
piglets

Twelve male newborn piglets (4 days old) were orally
administrated with 0.1% sterile peptone solution (the
control group) or 6 x 10° CFU of L. reuteri 15007 (the L.
reuteri 15007 group) daily for 14 days. The expression of
TJ protein claudin-1, occludin and ZO-1 both in the je-
junal and ileal epithelium were measured using im-
munoblotting to investigate the effect of L. reuteri 15007
on TJ function. Compared with control group, no sig-
nificant difference was observed in the jejunal epithelial
claudin-1 expression in the L. reuteri 15007 group, while
oral administration of L. reuteri 15007 significantly in-
creased the protein abundance of occludin and ZO-1 in
jejunal epithelium of piglets (Figure 1A). However, all
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Figure 1 Expression of TJ proteins in piglets following oral administration with L. reuteri 15007. Four-day-old piglets were orally administrated
with 6 x 10° CFU of L. reuteri 15007 per day for 14 days. Subsequently, proteins were isolated from the intestinal tissues of piglets and then the
expression of claudin-1, occludin and ZO-1 was measured using immunoblotting. (A) Protein levels of occludin and ZO-1 in jejunal tissue
lysates were induced by L. reuteri 15007. (B) L. reuteri 15007 increased the expression of claudin-1, occludin and ZO-1 in the ileum. Data are
represented as mean + SEM, n =6. *P < 0.05 compared with control piglets.
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levels of these T] proteins were distinctly higher in the
ileum of piglets administrated with L. reuteri 15007 than
those of control piglets (Figure 1B).

L. reuteri 15007 maintained transepithelial electrical
resistance (TEER) of IPEC-J2 cells

IPEC-J2 cell monolayers cultured for complete confluence
were treated with L. reuteri 15007 cells (3 x 10’ CFU/mL)
and TEER values were measured every two hours for 10 h
(Figure 2). When compared with the untreated control,
treatment with L. reuteri 15007 had no effect on TEER of
IPEC-J2 cells during 0-2 h, but did lead to significantly
higher values of TEER during 4-10 h. On the whole, an
8.67% decline of TEER values was caused during 10 h of
the measurement, as seen for the control, while co-
incubation with L. reuteri 15007 showed almost no decline
(a 0.86% decline) in TEER values, indicating that L. reuteri
15007 had a positive maintaince on TEER of IPEC-J2 cells
with time.

L. reuteri 15007 differentially affected LPS-induced TNF-a
and IL-6 mRNA expression in IPEC-J2 cells

To further elucidate the effects of L. reuteri 15007 on
modulation of TJ function, the mRNA expression of in-
flammatory cytokines including TNF-a and IL-6 was de-
termined in IPEC-J2 cells treated with LPS for 1, 4, 8, 12
or 24 h, following pre-treatment with L. reuteri 15007
for 2 h. According to a previous study of our group, L.
reuteri 15007 could behave strong adhesion ability to
monolayer cells by co-culture with cells for 1 h [27].
Resta-Lener and Barrett [32] showed enteroinvasive
Escherichia coli evoked fall in TEER was prevented if cell
monolayers were pretreated with live probiotics, and was
also partially attenuated by exposure simultaneously to
probiotics and enteroinvasive E. coli, but not if the cells
were infected with enteroinvasive E. coli for one hour and
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Figure 2 Response of transepithelial electrical resistance (TEER)
to L. reuteri 15007 in IPEC-J2 cells. IPEC-J2 cells were treated with
3% 107 CFU/mL of L. reuteri 15007 cells alone for 0, 2, 4, 6, 8 and

10 h, and TEER values were measured, respectively. Treatment with
L. reuteri 15007 induced a nice maintaince on TEER of IPEC-J2 cells
with time. Results are represented as mean + SEM. The experiment
was repeated three times with quadruplicate wells in each assay.

*P < 0.05 vs. control cells.
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then exposed to probiotics. Considering these circum-
stances, to investigate the protect effects of L. reuteri
15007 on TJ proteins, we appropriately extended the incu-
bation time for pretreatment with L. reuteri 15007 to 2 h.
Figure 3A shows that LPS significantly increased TNF-
a mRNA expression after 4 h, but not at 1 h. No signifi-
cant differences were observed in the mRNA expression
of TNF-a at 1 h among different treatments. However,
TNF-a mRNA expression in LPS-stimulated cells was
time-dependently increased compared with the control
treatment, while after 12 h, the increase in TNF-a
mRNA expression reached a plateau. Similarly, the
mRNA expression of IL-6 (Figure 3B) was increased in
IPEC-J2 cells treated with LPS after 8 h and was main-
tained until 12 h treatment. Collectively, treatment with
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Figure 3 mRNA expression of inflammatory cytokines in
LPS-activated IPEC-J2 cells. IPEC-J2 cells were pre-treated with
either L. reuteri 15007 (LR) or L. reuteri 15007 culture supernatant (CS)
2 h prior to LPS-activation. Quantitative RT-PCR (gRT-PCR) analysis
was performed to determine the mRNA expression of inflammatory
cytokines after 1, 4. 8, 12 or 24 h treatment with LPS. (A) LPS
affected no change in TNF-a expression at 1 h, but significantly
increased TNF-a expression during 4-24 h. However, both L. reuteri
15007 and its culture supernatant had no effect on TNF-a expression
at the different time points in the absence of LPS, while they inhibited
or prevented LPS-induced expression of TNF-a. (B) There were obvious
increases in IL-6 expression during 8-24 h, but not 1-4 h induced by
LPS, while L. reuteri 15007 and its culture supernatant produced no
change at any time compared with control cells. L. reuteri 15007 and
its culture supernatant inhibited or prevented LPS-induced IL-6
expression. Results are represented as mean + SEM, n=3. *P < 0.05
vs. control cells, and #P < 0.05 vs. cells in the LPS group.
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L. reuteri 15007 in the absence of LPS had no effect on
mRNA levels of TNF-a and IL-6 compared with the
control group at different time points. However, in the
presence of LPS, L. reuteri 15007 significantly decreased
the mRNA expression of these two inflammatory cyto-
kines, compared with the LPS group after 8 h.

L. reuteri 15007 augmented LPS-induced TJ protein
expression in IPEC-J2 cells

We further investigated the mRNA expression of claudin-1,
occludin and ZO-1 in inflamed cultured intestinal cells.
Treatment of IPEC-J2 cells with 1 pg/mL LPS had no
effect on the mRNA expression of claudin-1 and ZO-1
during 1-4 h, but showed a significant decline during
8-24 h (Figure 4A and C). Similarly, compared with the
control treatment, LPS time-dependently reduced occlu-
din mRNA expression. In detail, no difference at 1 h, but
decreases during 4—24 h (Figure 4B). However, there was
no significant change in mRNA expression of all three T]
proteins in the other four groups versus the control group.
Pre-treatment with L. reuteri 15007 significantly mitigated
or prevented the reduction of mRNA expression of all
three T] proteins induced by LPS.

We used immunoblotting to investigate the protein
abundance of claudin-1, occludin and ZO-1. In agree-
ment with the observation of mRNA expression of these
TJ proteins, there was no significant difference in the
levels of these T] proteins in the other four groups (ex-
cept for the LPS group) compared with the control
group (Figure 5). However, LPS stimulation robustly de-
creased the levels of claudin-1, occludin and ZO-1 dur-
ing 4-24 h (Figure 5B-E), but not at 1 h (Figure 5A).
Treatment of IPEC-]2 cells using L. reuteri 15007 mark-
edly induced higher levels of these proteins than those
in cells treated with LPS during 4—24 h.

L. reuteri 15007 culture supernatant differentially affected
LPS-induced inflammatory cytokine and specific TJ protein
expression in IPEC-J2 cells

To further elucidate whether the culture supernatant
was involved in L. reuteri 15007-mediated improvement
in TJ function, the culture supernatant of L. reuteri
15007 was also added to pre-treat IPEC-J2 cells. Com-
pared with the control group, cells treated with L. reuteri
15007 culture supernatant in the absence of LPS caused
no significant change in TNF-a and IL-6 mRNA expres-
sion. However, the culture supernatant of L. reuteri
15007 did reduce LPS-induced inflammatory cytokine
expression during 8-24 h (Figure 3). In general, both
mRNA expression and protein levels of claudin-1, occlu-
din and ZO-1 in cells pre-treated with the culture super-
natant of L. reuteri 15007 were higher than those in cells
induced by LPS after 4 or 8 h (Figure 4 and Figure 5).
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Figure 4 mRNA expression of TJ proteins in LPS-activated
IPEC-J2 cells. (A) gRT-PCR analysis showed that LPS induced a
decrease in mRNA expression of claudin-1 at 8, 12 and 24 h, while
L. reuteri 15007 (LR) and L. reuteri 15007 culture supernatant (CS)
effectively inhibited LPS-induced expression of claudin-1. (B) There
was no change in occludin expression at 1 h, but a significant
decrease after 4 h treatment with LPS. However, L. reuteri 15007
and its culture supernatant inhibited the decline. (C) LPS induced a
distinct decrease in ZO-1 expression after 8 h, which was inhibited
by L. reuteri 15007 and its culture supernatant. Results are represented
as mean + SEM, n = 3. *P < 0.05 vs. control cells, and #P < 0.05 vs. cells
in the LPS group.

Discussion

The defense response of the intestinal epithelium against
pathogenic bacteria has been extensively explored, and
evidence suggests that interactions between commensal
bacteria and the host are involved in this process [33].
Thus, much attention has been paid to the effects of
probiotics on gut barrier function. Some probiotics
might improve or prevent gut barrier dysfunction caused
by pathogenic bacteria or other toxic substances [22,23].
For example, L. plantarum significantly ameliorated
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Figure 5 Levels of TJ proteins in LPS-activated IPEC-J2 cells at different time points. Proteins were isolated from IPEC-J2 cells and the
expression of TJ proteins was assessed using immunoblotting. There was no significant difference in claudin-1, occludin and ZO-1 expression
among the different treatments at 1 h (A). LPS produced decreases in all three TJ proteins at 4 (B), 8 (C), 12 (D) and 24 (E) h. Although L. reuteri
15007 (LR) and its culture supernatant (CS) had no effect on the levels of TJ proteins in the absence of LPS, they inhibited LPS-induced levels of TJ
proteins. Results are represented as mean + SEM, n= 3. *P < 0.05 vs. control cells, and #P < 0.05 vs. cells in the LPS group.

phorbol ester-induced ZO-1 and occludin redistribution
and increased permeability in Caco-2 cells [34]. There-
fore, although the mechanisms of action of probiotics
may vary, the vital mechanism of probiotics is regulating
the expression of TJ proteins.

The effects of probiotics on gut barrier in animal
models are commonly studied in rodents. For example,
L. helveticus and L. rhamnosus prevented chronic stress
induced intestinal abnormalities in rats, which received
7 days of these strains in the drinking water prior to ei-
ther a water avoidance stress or a sham stress for one
hour per day for ten consecutive days and remained on
these probiotics during the duration of the study [35].
However, reports in pigs, especially in neonatal piglets,
are rare. In the present study, newborn piglets were se-
lected to study the effects of L. reuteri 15007 on the ex-
pression of TJ proteins in the intestinal epithelium. We
showed that L. reuteri 15007 up-regulated the expression
of jejunal epithelial occludin and ZO-1, and ileal epithe-
lial claudin-1, occludin and ZO-1 in young piglets, indi-
cating L. reuteri 15007 effectively improved the intestinal
mucosal barrier function of newborn piglets. This was
consistent with an earlier study [36] showing that L.
rhamnosus accelerated maturation of the intestinal mu-
cosal barrier in mice via up-regulating the protein level
of claudin-1. Oral administration of VSL#3, a mixture of
Streptococcus thermophilus, three strains of Bifidobacter-
ium and four strains of Lactobacillus, in SAMP mice,
obviously improved ileal epithelial permeability and in-
creased the expression of occludin, but not claudin-1 or
ZO-1 [21], which was not entirely consistent with our
results. This might be due to different experimental con-
ditions including strains of probiotic bacteria and animal
models.

We next examined the effects of L. reuteri 15007 on
the expression of inflammatory cytokines and specific T]
proteins in IPEC-J2 cells induced by LPS. LPS is an inte-
gral component of the gram-negative bacteria cell wall,
capable of binding to Toll-like receptor-4 and activating
a variety of protein kinase signaling pathways, subse-
quently generating inflammatory cytokines and other
mediators [37]. Liu et al. [15] found that treatment of
porcine intestinal epithelial cells (IPEC-J2) and rat intes-
tinal epithelial cells (IEC-6) with LPS for 16 h markedly
increased the secretion of IL-8, while co-culture with L.
reuteri robustly inhibited LPS-induced overexpression of
IL-8 in IPEC-J2 cells. In the present study, LPS induced

increases in mRNA expression of TNF-a and IL-6 of
IPEC-J2 cells after 4 or 8 h, and pre-treatment with L.
reuteri 15007 significantly suppressed LPS-induced TNF-
a and IL-6 expression. In addition, several studies have
reported effects of probiotics on TNF-a and IL-6 expres-
sion induced by LPS, but the regulatory action differs in
different species or even different strains. For instance,
L. reuteri ACTT 6475 greatly inhibited the generation of
TNF in LPS-activated human monocytoid THP1 cells,
as an immunosuppressive action [38]. In contrast, L. reu-
teri ACTT 55730 stimulated TNF-a production, as an
immunostimulatory action [39]. Moreover, Rachmilewitz
et al. [40] observed that co-culture of mice macrophages
(isolated from Balb/c mice) with DNA of VSL#3 bacteria
significantly promoted IL-6 production.

TJs, apical-most component of the junctional complex
in epithelial cells, determine the selective permeability
along the paracellular pathway. claudin-1, occludin and
ZO-1 are critical components of the TJs [41]. LPS chal-
lenge resulted in a distinct decrease in the levels of ZO-1
and ZO-2, and induced the redistribution of ZO-2 in hu-
man corneal epithelial cells [42]. Also, deterioration of the
TJ proteins occludin and ZO-1 was observed in pulmon-
ary cells of LPS-treated mice [43]. In agreement with pre-
vious studies, the present study found LPS reduced the
levels of claudin-1, occludin and ZO-1 in IPEC-]J2 cells.
Our results also showed L. reuteri 15007 significantly at-
tenuated the LPS-induced decline in claudin-1, occludin
and ZO-1 expression. In fact, one of the effects probiotics
exert is to promote the integrity of the intestinal mucosal
barrier by affecting the expression and structure of TJ pro-
teins. An earlier study, conducted in dextran sodium
sulfate-induced colitis in mice, demonstrated the probiotic
mixture VSL#3 prevented apoptosis and low expression of
TJ proteins, and especially increased the ZO-1 level [44].
Khailova et al. [45] studied the effects of Bifidobacterium
Bifidum in a rat model of necrotizing enterocolitis. The
results showed that B. Bifidum improved intestinal integ-
rity by normalizing the expression and localization of T]
and anherens junction proteins in the ileum compared to
rats with neonatal necrotizing enterocolitis. Moreover,
Lactobacillus and Bifidobacterium robustly suppressed E.
coli-induced hyperpermeability and decreased ZO-1 ex-
pression in vitro [32].

A previous study showed that Lactobacillus and Bifi-
dobacterium produced increases in the expression of the
TJ proteins claudin-1 and occludin in normal human
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epidermal keratinocytes (NHEK) which had not been
treated with any stressor [46]. However, it contrasts with
our result that L. reuteri 15007 had no effect on the ex-
pression of specific T] proteins in the absence of LPS.
The in-vitro result seemingly showed differences from
in-vivo finding that L. reuteri 15007 augmented TJ pro-
tein expression in piglets under normal conditions. It is
well-known that GIT, in which microorganisms, toxins,
digestive enzymes and other substances are all likely to
cause damage, is the site of the largest and most com-
plex environment in the mammalian host [47]. In this
complex environment, piglets orally administrated with
L. reuteri 15007 had higher expression of TJ proteins
compared with control piglets which may be stimulated
by complex factor in the GIT, indicating that L. reuteri
15007 exerted protective effects on TJs. In vitro, L. reu-
teri 15007 indeed prevented the LPS-induced decline in
TJ protein expression, which further validated the pro-
tective effects of L. reuteri 15007 on TJ protein expres-
sion. Although L. reuteri 15007 behaved no effect in the
absence of LPS, in-vitro results provide corroborative ev-
idences that L. reuteri 15007 may play a positive role in
protecting T] proteins in dysfunctional or damaged GIT
caused by pathogenic bacteria or other toxic substances
[32,44]. In other words, in-vivo results together with in-
vitro results imply that L. reuteri 15007 performs its pro-
tective effects by stabilization of synthesized T] proteins
or increasing new synthesis, and studies on a definite
mechanism are needed.

TEER is a very important parameter of epithelial bar-
rier function, which indicates variation of permeability
and integrity of the cell monolayer [48,49]. In the
present study, co-incubation with L. reuteri 15007 alone
showed a nice maintaince on TEER of IPEC-J2 cells,
consistent with an earlier study [46] showing that L.
rhamnosus GG and B. longum increased TEER over con-
trol levels in NHEK cells. Furthermore, TEER in Caco-2
cells continued to decrease with time when treated with
TNF-a, while increased in L. plantarum + TNF-a [50].
We also found the effects of LPS and L. reuteri 15007 on
inflammatory cytokines and specific T] protein expres-
sion were time dependent. There was no difference in
the expression of TNF-a, IL-6 and TJ proteins among
the different groups at 1-4 h. However, TNF-a and IL-6
mRNA expression in LPS-mediated cells increased and
the levels of T] proteins decreased with time compared
with control cells after 4 or 8 h. Meanwhile, L. reuteri
15007 prevented the increased expression of TNF-a and
IL-6 and decreased expression of T] proteins induced by
LPS. These findings were supported by work conducted
by Sheth et al. [50], which evaluated the effect of LPS in
normal rat cholangiocyte monolayers and showed LPS
produced a time-dependent effect on T] integrity and
barrier function. Moreover, in LPS-activated Caco-2 cells
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model, TEER was minimized at 1 h after treatment with
LPS and was sustained after that, while co-culture of
Lactobacillus after activation with LPS for 3 h boosted
TEER over time and was maximized at 24 h [51].

In the past, only live microorganisms were thought to
exert probiotic effects, which may be why probiotics
were defined as ‘live microorganisms which, when con-
sumed in adequate amounts as part of food, confer a
health benefit on the host’ [11]. As the effective ingredi-
ents of probiotics have not been fully revealed, more and
more studies are further exploring this issue. Heat-killed
preparations of the probiotic L. rhamnosus GG acceler-
ated intestinal barrier maturation and induced claudin-3
expression [36]. Furthermore, treatment of NHEK with
lysates of Lactobacillus and Bifidobacterium for 24 h
produced significant increases in TEER and levels of TJ
proteins in NHEK, suggesting lysates of microorganisms
also can exert probiotic effects [46]. This study also
showed peptidoglycan, a major ligand of gram-positive
bacteria, induced increased TEER in keratinocytes, in
agreement with a previous study [52], together raising
the interesting possibility that the cell wall components
from probiotic lysates may at least partially be respon-
sible for the changes in T] function. Herein, our results
showed the culture supernatant of L. reuteri 15007
(metabolites or secreted bioactive factors from L. reuteri
15007) obviously attenuated or prevented high expres-
sion of inflammatory cytokines and low levels of TJ pro-
teins induced by LPS, indicating the culture supernatant
of L. reuteri 15007 played a role in L. reuteri 15007-
mediated improvement in TJ function. Similarly, se-
creted bioactive factors from B. infantis significantly
increased TEER and levels of occludin and ZO-1 in T84
cells [53]. Therefore, the culture supernatant of L. reuteri
15007 had a similar effect of L. reuteri 15007 on modula-
tion of inflammatory cytokine and T] protein expression,
implying that substances secreted by L. reuteri 15007, in-
cluding lactic acid, hydrogen peroxide, bacteriocin and
exopolysaccharide, play a role in this effect. Whole gen-
ome sequencing result showed that genome of L. reuteri
15007 encoded two gene clusters for exopolysaccharide
biosynthesis [31]. It may be proposed that secreted bio-
active factors of L. reuteri 15007, especially exopolysac-
charide interact with pattern recognition receptors of
cells to induce activation of a series of signaling path-
ways [52] and subsequently regulate barrier function,
including TJ function.

Conclusions

Taken together, the data presented here suggest that L.
reuteri 15007 could effectively increase the levels of spe-
cific T] proteins in the intestinal epithelium, thereby
promoting maturation of the intestinal mucosal barrier
in formula-fed piglets. L. reuteri 15007 maintained TEER
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of IPEC-J2 cells and mitigated and even prevented LPS-
induced inflammatory cytokine and TJ protein expres-
sion, and the effects might be derived from its culture
supernatant and were time dependent. Since L. reuteri
15007 has a positive effect on T] protein expression, it is
possible that this stain plays a potential role in treatment
or prevention of intestinal epithelial TJs deficiency in
mammals or human beings.

Methods

Ethics statement

All procedures used in this experiment complied with
the Animal Care Protocol which was approved by the
China Agricultural University Animal Care and Use
Committee (Beijing, China).

Preparation of bacteria

L. reuteri 15007 was cultured to a stationary phase
(about 24 h) in sterile Man Rogosa Sharpe (MRS)
medium at 37°C in an anaerobic environment, then cen-
trifuged at 5,000 x ¢ for 10 min at 4°C. For animal ad-
ministration, the centrifugal cells were resuspended in
reconstituted skim milk (20% w/v) and immediately
freeze-dried. Plate counts showed the freeze-dried pow-
der contained 6 x 10° colony forming units (CFU) of L.
reuteri 15007 per gram. The bacteria powder was stored
in sealed packets at a temperature of 4°C until used.
During administration, 1 g of powder was dissolved in
3 mL 0.1% of sterile peptone solution for each piglet
once a day. For cell culture assays, the culture super-
natant of L. reuteri 15007 was reserved for subsequent
treatment with a 10% (v/v) concentration. The centrifu-
gal cells were washed three times in phosphate-buffered
saline (PBS), and then resuspended in 1 mL PBS. Finally,
200 pL of bacterial resuspension solution was immedi-
ately used to treat cell cultures with a final concentration
of 3 x 10’ CFU/mL according to a preliminary test (data
not shown).

Animals and experimental design

Twelve male Yorkshire x Landrace piglets which had been
allowed to obtain colostrum from their dam for 48 h after
birth were obtained from a commercial pig farm and
transported to the Laboratory of Animal Metabolism at
China Agricultural University (Beijing, China).

The piglets were individually housed in stainless steel
cages (1.4x0.45x0.6 m®) in a temperature controlled
nursery room (33 £ 1°C, 40%—60% relative humidity). On
the third day of life, piglets were trained to suckle from
pacifier bottles filled with milk replacer (Rosalac Instant,
Bonilait Proteins, France). The milk replacer provided
45% lactose, 21.5% protein, 18.7% fat, 9.8% ash, 1.7% ly-
sine, and sufficient vitamins and minerals to meet nutri-
ent requirements. The milk replacer was dissolved in
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warm boiled water (w/v 1:5) to provide a similar dry
matter concentration as sow’s milk. All the piglets were
artificially fed every 4 h. On day four (equivalent to the
first day of the trial), the piglets with an average body
weight of 2.00+0.31 kg were assigned into 2 groups
with 6 piglets per treatment (a control group and a L.
reuteri 15007 group) in a randomized complete block de-
sign according to their initial body weight. Each piglet in
the L. reuteri 15007 group was orally administered with
6 x 10° CFU L. reuteri 15007 dissolved in 3 mL 0.1% ster-
ile peptone solution at a fixed time every day for 14 days,
while the piglets in the control group were given the
same volume of 0.1% sterile peptone solution.

On the morning of day 15, piglets were euthanized
after an overnight fast and their abdominal cavities were
opened to remove the gastrointestinal tract. The small
intestine was carefully dissected from the mesentery and
5 c¢cm segments of the jejunum and ileum were gently
flushed with 0.9% physiological saline. Then the intes-
tinal segments were frozen in liquid nitrogen and stored
at -80°C for further analysis.

Cell culture and treatment

IPEC-J2, a porcine intestinal epithelial cell line, was
kindly provided by Dr. Bruce Schultz from Kansas State
University (Manhattan, KS). IPEC-J2 cells were cul-
tured in 6-well plates in DMEM/F12 medium (Thermo,
Waltham, MA), supplemented with 5% fetal bovine
serum (Gibco, Carlsbad, CA), 5 pg/L epidermal growth
factor (ScienCell, Carlsbad, CA) and 0.1% 1X insulin-
transferrin-sodium (ScienCell, Carlsbad, CA) at 37°C in
a humidified 5% CO, atmosphere. The culture was chan-
ged every other day.

TEER measurements were performed using a Millicell
Electrical resistance system (Millipore, Billerica, MA).
IPEC-J2 cells were seeded on the millicell membrance
(12-wells, Millipore, Billerica, MA) cell inserts (Costar,
Corning Inc., NY) at a density of 7 x 10*/cm? and deter-
mined to be confluent at a TEER value of > 1 kOhm x cm?.
When monolayer of cells was completely differentiated,
cells were treated with 3 x 10’ CFU/mL of L. reuteri 15007
for 0, 2, 4, 6, 8 and 10 h and the TEER was measured
respectively.

For measurements of inflammatory cytokine and T]
protein expression, IPEC-J2 cells were cultured in 6-well
plates for complete confluence. Cells in each well were
treated with 2 mL new medium containing 200 pL of L.
reuteri 15007 resuspension solution (with a final concen-
tration of 3 x 10’ CFU/mL) or its culture supernatant
which had no bacteria in it (diluted 1:10 in basal
medium) for 2 h. After rinsing in PBS three times,
medium was then replaced with new medium containing
1 pg/mL LPS (E. coli 055:B5, Sigma, St. Louis, MO)
based on the results of a preliminary test (data not
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shown). After 1, 4, 8, 12, or 24 h, cells were collected to
extract total RNA and protein for follow-up studies. All
experiments were repeated three times with duplicate
wells within each individual run.

RNA isolation and expression analysis by real-time PCR
Total RNA was isolated from the cells using a RNeasy
kit (Qiagen, Hilden, Germany) according to the manu-
facturer’s instruction. RNA quality and quantity were
determined by gel electrophoresis and a NanoDrop
Spectrophotometer (P330, Implen, Germany). Subse-
quently, 1 pg RNA was reverse-transcribed to comple-
mentary DNA (cDNA) using a PrimeScript 1st Strand
c¢DNA Synthesis Kit (Takala, Ostu, Japan) according to
the manufacturer’s instructions. The gene-specific pri-
mer sequences are given in Table 1. Real-time PCR was
performed using an Applied Biosystems 7500 Real-Time
PCR System (Applied Biosystems, Singapore) with SYBR
Green PCR Master Mix (Takala, Ostu, Japan), containing
MgCl,, dNTP and Hotstar Taq polymerase. Briefly, copy
numbers were calculated relative to a dilution series
(1:107 to 1:1) of the respective reference plasmids which
contained the cloned RT-PCR products obtained with
these primers. The PCR system consisted of 5.0 pL of
YBR Green qPCR Mix, 1.0 pL of ¢cDNA, 0.25 pmol of
each primer, and 3.6 uL of double distilled water in a
final volume of 20 pL. Each sample was determined in
triplicate and the housekeeping gene, p-actin, was used
as the internal standard for the PCR reaction.

Extraction of protein and immunoblotting

Total protein was extracted from the intestinal tissues or
IPEC-J2 cells using lysis buffer (150 mM NaCl, 1% Triton
X-100, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM
Tris-HCl at pH 7.4, plus a protease inhibitor cocktail pur-
chased from Applygene, Beijing, China). Briefly, 0.02 g of
each frozen jejunum and ileum sample were powdered

Table 1 Primers used for real-time PCR

Genes Primers Sequences (5'-3") Size (bp) Tm (°C)

TNF-a Forward ATTCAGGGATGTGTGGCCTG 120 62
Reverse CCAGATGTCCCAGGTTGCAT

IL-6 Forward TGGATAAGCTGCAGTCACAG 109 54
Reverse  ATTATCCGAATGGCCCTCAG

Claudin-1 Forward = GCAGCAGCTTCTTGCTTCTC 664 58
Reverse  CTGGCATTGACTGGGGTCAT

Occludin  Forward ATCAACAAAGGCAACTCT 157 50
Reverse  GCAGCAGCCATGTACTCT

Z0-1 Forward GAGTTTGATAGTGGCGTT 298 50
Reverse  GTGGGAGGATGCTGTTGT

B-actin Forward TGCGGGACATCAAGGAGAAG 216 60
Reverse  AGTTGAAGGTGGTCTCGTGG
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under liquid nitrogen, and lysed in lysis buffer containing
protease inhibitors. IPEC-J2 cells in each well were
scraped into 100 pL of ice-cold lysis buffer containing pro-
tease inhibitors and then incubated on ice for 30 min. The
lysed samples were centrifuged at 10,000 x g for 5 min at
4°C and the supernatant was collected. Total protein con-
centrations were determined using a BCA Protein Assay
Kit (Pierce, Rockford, IL). Equal amounts of proteins
(30 pg) were electrophoresed on SDS polyacrylamide gel,
and proteins were electrophoretically transferred onto
polyvinylidene difluoride (PVDF) membranes (Millipore,
Bedford, MA). These were then blocked in 5% skim milk,
and incubated (overnight at 4°C) with primary antibodies
against claudin-1 (Sigma, St. Louis, MO), occludin
(Abcam, Cambridge, United Kingdom), ZO-1 (Santa Cruz
Biotechnology, Santa Cruz, CA), and B-actin (Cell Signal-
ing Technology, Danvers, MA). The membranes were
subsequently washed and incubated (1 h at room
temperature) with horseradish peroxidase-conjugated sec-
ondary antibodies (Zhongsan Gold Bridge, Beijing, China).
The immunoblots were developed with the Western blot
Luminence Reagent (Santa Cruz Biotechnology, Santa
Cruz, CA), and exposed by Alphalmager 2200 (Alpha
Innotech, San Leandro, CA) automatically. Band densities
were quantified using Alphalmager 2200 (Alpha Innotech,
San Leandro, CA).

Statistical analysis

All data were statistically analyzed using SPSS Software
Version 17. The statistical significance of differences of in-
vivo data was determined by Student’s t-test. Each piglet
served as an experimental unit. One way analysis of vari-
ance (ANOVA) was used with Student-Neuman-Keuls
(SNK) as a multiple comparsion test to analyse in-vitro
data, except for data of TEER, which was analyzed by
Student’s t-test. A P value <0.05 was considered signifi-
cant. Results are expressed as mean * standard error of
the mean (SEM).
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