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Saccharomyces cerevisiae biofilm tolerance towards
systemic antifungals depends on growth phase
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Abstract

Background: Biofilm-forming Candida species cause infections that can be difficult to eradicate, possibly because
of antifungal drug tolerance mechanisms specific to biofilms. In spite of decades of research, the connection
between biofilm and drug tolerance is not fully understood.

Results: We used Saccharomyces cerevisiae as a model for drug susceptibility of yeast biofilms. Confocal laser
scanning microscopy showed that S. cerevisiae and C. glabrata form similarly structured biofilms and that the viable
cell numbers were significantly reduced by treatment of mature biofilms with amphotericin B but not voriconazole,
flucytosine, or caspofungin. We showed that metabolic activity in yeast biofilm cells decreased with time, as
visualized by FUN-1 staining, and mature, 48-hour biofilms contained cells with slow metabolism and limited
growth. Time-kill studies showed that in exponentially growing planktonic cells, voriconazole had limited antifungal
activity, flucytosine was fungistatic, caspofungin and amphotericin B were fungicidal. In growth-arrested cells, only
amphotericin B had antifungal activity. Confocal microscopy and colony count viability assays revealed that the
response of growing biofilms to antifungal drugs was similar to the response of exponentially growing planktonic
cells. The response in mature biofilm was similar to that of non-growing planktonic cells. These results confirmed
the importance of growth phase on drug efficacy.

Conclusions: We showed that in vitro susceptibility to antifungal drugs was independent of biofilm or planktonic
growth mode. Instead, drug tolerance was a consequence of growth arrest achievable by both planktonic and
biofilm populations. Our results suggest that efficient strategies for treatment of yeast biofilm might be developed
by targeting of non-dividing cells.
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Background
Nosocomial fungal infections are a major problem for
immune compromised patients with a severe underlying
disease [1]. Fungi can cause infections by colonizing mu-
cosal surfaces in the oral cavity, airways, wounds and the
gastrointestinal tract [2]. Fungi can also adhere to inva-
sive medical devices and cause severe septicemia upon
detachment [3]. The hallmarks of biofilms are surface
attachment and production of an extracellular matrix
(ECM) [4]. Failure to eradicate microbial infections is
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often attributed to the unique lifestyle of cells in biofilms
and it is widely accepted that cells in a biofilm possess
antimicrobial tolerance mechanisms that are distinct
from their planktonic counterparts [2].
Drugs currently being used to treat systemic mycoses

belong to four major classes. The azoles target cyto-
chrome P450 and inhibit cell membrane ergosterol bio-
synthesis, resulting in accumulation of toxic ergosterol
intermediates [5]. Azoles have poor efficacy against Can-
dida species other than C. albicans, such as C. glabrata
[6]. The number of nosocomial blood isolates of these
non-susceptible Candida species has increased in the
past decades, possibly because of the selection that fre-
quent azole use impose [7]. The echinocandins inhibit
1,3-β-glucan synthases, resulting in a reduction in cell
wall 1,3-β-glucan [8], and the polyenes target ergosterol
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and cause pore formation in the fungal cell membrane [9].
The fourth class is the antimetabolite flucytosine. Flucyto-
sine is deaminated upon uptake in susceptible cells and
converted to 5-fluorouridine triphosphate, which is incor-
porated into RNA, inhibiting protein synthesis [10]. Flu-
cytosine can also be converted to 5-fluorodeoxyuridine
monophosphate which acts on thymidylate synthase to
inhibit DNA synthesis [10]. Despite the pronounced diver-
sity in antifungal mechanism of action and chemical struc-
ture, most antifungal agents are inactive against fungal
biofilms [11].
Several mechanisms have been suggested to be respon-

sible for drug tolerance of yeast biofilms. One of them is
the ECM layer that contains β-1,3 glucans and extra-
cellular DNA [12,13]. Treatment of biofilm cells with
glucanases or DNase result in increased efficacy of anti-
fungal agents, which indicate a role of ECM on anti-
fungal drug tolerance [13,14]. However, it has been
shown that antifungal susceptibility is independent of
amount of matrix produced and antifungal drugs can
diffuse through the matrix layer in inhibitory concen-
trations [15,16]. The ECM, in combination with the
nutrient-limited environment that results from a large
number of microbial cells, might induce expression of
genes that help cells cope with stressful conditions.
Altered gene expression could involve differential regu-
lation of general stress-response genes that affect drug
tolerance. For example, efflux pumps are reported to be
upregulated in young and intermediate [17,18] biofilms
in Candida species. However, efflux pump knockout
mutants remain drug resistant [18,19] and up-regulation
is lost in mature biofilms [17,18]. Furthermore, since
polyenes and echinocandins are not a substrate of any
known efflux pumps [20], efflux pumps are not respon-
sible for biofilm-mediated tolerance to these drug clas-
ses. None of the suggested tolerance mechanisms are
solely responsible for the multidrug tolerance associated
with biofilm, and it might be a combination of several
individual mechanisms that cause multidrug tolerance in
yeast biofilms.
Candida is the most frequent cause of fungal infec-

tions and extensive research has been performed with
this organism to investigate regulation of biofilm forma-
tion and antifungal drug recalcitrance [3]. However, due
to a limited repertoire of genetic and molecular tech-
niques available for some Candida species, the know-
ledge about yeast biofilm regulation and drug tolerance
is incomplete. The genetic tractability of another fungus,
Saccharomyces cerevisiae, has made it a model organism
for the study of fundamental issues in fungal biology
[21]. Transition from yeast to filamentous morphology is
correlated to virulence in Candida albicans and key sig-
naling pathways controlling this process is conserved in
S. cerevisiae [22]. Candida glabrata is phylogenetically
more closely related to S. cerevisiae than to other Can-
dida species [23] and they have homologous cell-surface
adhesins [24]. C. glabrata and S. cerevisiae furthermore
form biofilms as haploids with similar biofilm architec-
ture: thin layer of biofilm cells with yeast morphotype
surrounded by a low density of ECM [25,26]. S. cerevi-
siae is therefore relevant for the study of C. albicans
virulence and C. glabrata biofilm. S. cerevisiae has pre-
viously been used as a model organism to study yeast
biofilm development and regulation by taking advantage
of the molecular tools available for this organism [27-33].
However, much less effort has been made to investigate
the response of S. cerevisiae biofilm cells to antifungal
treatment [32,34,35]. S. cerevisiae has the potential to
cause human infections [36] and its ability to adhere to
plastic surfaces [28,30] makes it a relevant organism for
the study of yeast biofilm tolerance towards antifungal
agents.
Fungal and bacterial research report 1000-fold higher

tolerance level of mature biofilms compared to proli-
ferating planktonic populations [37,38]. Research in bac-
teria has shown that the tolerance phenotype is similar
between biofilm and planktonic cells when cultivated for
equally long time in identical medium [39-41]. This indi-
cates that tolerance mechanisms are not biofilm-specific
and that planktonic cells can achieve the same level of
tolerance. To address if growth arrest is also relevant for
drug tolerance in yeast biofilm, we have compared sus-
ceptibility of common antifungals in biofilms and plank-
tonic cells cultivated under similar conditions. We used
in vitro biofilms of S. cerevisiae and C. glabrata cultures
to investigate antifungal tolerance to drugs from each of
the major antifungal drug classes used for systemic
treatment of human pathogenic fungal infections: the
polyene amphotericin B (AmB), the azole voriconazole
(VOR), the antimetabolite flucytosine (5FC), and the
echinocandin caspofungin (CAS). We found that the
ability of biofilms to survive antifungal treatment was
dependent on the mode of action of the antifungal agent
and the growth state of the yeast cells.

Results
S. cerevisiae and C. glabrata biofilms have similar
structure and antifungal tolerance
We initially determined antifungal drug susceptibilities
of exponentially growing planktonic S. cerevisiae and C.
glabrata cells towards four antifungal compounds, AmB,
VOR, 5FC, and CAS. Drug susceptibilities of S. cerevisiae
cells were similar to C. glabrata as determined by minimal
inhibitory concentrations (MIC), except for VOR that was
4 μg/ml against C. glabrata, and 1 μg/ml against S. cerevi-
siae (Table 1).
Yeast biofilm architecture and antifungal drug sen-

sitivity was investigated using confocal laser scanning



Table 1 MIC susceptibility pattern of antifungal agents
against S. cerevisiae and C. glabrata

Organism MIC (μg/ml)

VOR 5FC CAS AmB

S. cerevisiae 1 8 1 1

C. glabrata 4 8 0.5 2

VOR: voriconazole, 5FC: flucytosine, CAS: caspofungin, AmB: amphotericin B.
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microscopy (CLSM). Mature GFP-tagged biofilm cells
were challenged with an antifungal agent for 24 hours
and stained with propidium iodide (PI) to identify dead
cells. S. cerevisiae biofilms contained a thin layer of cells
(approximately 30 μm) with a few dead cells distributed
throughout the biofilm. Biofilms treated with VOR, 5FC,
or CAS had the same architecture and mixture of living
and dead cells as untreated control cells (Figure 1),
showing that the drugs were inactive against yeast bio-
films. AmB was the only tested drug with anti-biofilm
activity, killing most cells after 24 hours (Figure 1). The
small subpopulation of cells that survived AmB treat-
ment was randomly distributed in the biofilms.
To determine if results from the S. cerevisiae biofilm

model applied to drug susceptibility in a pathogenic
yeast, we investigated the antifungal drug susceptibility
of C. glabrata biofilms. C. glabrata was cultivated under
conditions similar to S. cerevisiae cultures and developed
a thin layer of biofilm cells (approximately 25 μm). After
48 hours, mature biofilms were challenged with an anti-
fungal drug for 24 hours and stained with Syto9 and PI
to visualize living and dead cells. Results were similar to
those obtained with S. cerevisiae. Most C. glabrata bio-
film cells exposed to VOR, 5FC or CAS showed living
cells with a few dead cells distributed in the biofilm,
similar to the appearance of the untreated control cells
(Figure 1). AmB treatment killed most cells with a small,
surviving subpopulation randomly distributed in the bio-
film. These results suggested that S. cerevisiae could be
used as a model organism to study antifungal tolerance
in biofilms of the pathogenic C. glabrata.

Metabolic activity of biofilm cells decreases with biofilm
maturity
Planktonic microbial cells cultivated in a closed system
take up nutrients from the environment and enters a
stationary growth state with decreased metabolic activity
when nutrients become limited. To investigate if the
metabolic activity of biofilms at 48 hours was reduced
compared to a 4 hour biofilm, we measured metabolic
activity using FUN-1 staining. FUN-1 permeabilizes the
plasma membrane and biochemical processing of the
dye by an unknown pathway identifies metabolically ac-
tive cells with intravacuolar structures [42]. Most cells in
a 4-hour biofilm showed high metabolic activity as
estimated by staining intensity of the vacuole (red color,
Figure 2), but staining decreased with biofilm incubation
time. After 48 hours, only a small subpopulation of cells
in the biofilms showed FUN-1 staining of vacuoles
indicating a lower or different metabolic activity in ma-
ture biofilm than that found in young 4 hour biofilm
(Figure 2).

Activity of antifungal drugs depends on growth state
We hypothesized that the limited metabolic activity and
resulting lack of growth observed in cells in mature bio-
films may be an important cause of the low antifungal
activity of the drugs tested. We measured therefore the
killing kinetics of the antifungals using an exponentially
growing planktonic population and a growth-arrested
planktonic population. Untreated control cells proliferated
with a doubling time of 1.5 hours in the exponential
growth phase for the first 8 hours of incubation (Figure 3A).
The density of cells exposed to VOR increased at the same
rate as the untreated sample for the first 7 hours of incuba-
tion. Subsequently, the azole drug inhibited growth, re-
sulting in a decrease in viability after 24 hours. After two
hours of exposure to 5FC, the growth of exponential phase
populations was inhibited and cells remained at the same
viability and density for 24 hours showing that 5FC had
fungistatic activity. CAS had an inhibitory effect on ex-
ponential growth within the first hours of exposure and a
consistent killing rate throughout the experiment that
resulted in a 10-fold reduction in colony forming units
(CFUs) after 24 hours compared to the initial population.
Challenging cultures with AmB rapidly decreased the
viable population, reaching the lower detection limit for
CFUs after 5 hours.
We next investigated how growth arrest affects sus-

ceptibility to antifungal agents by incubating cells in
carbon-depleted medium. Starting cell density was simi-
lar to the starting density used for time-kill studies on
the exponential growing populations to eliminate cell
numbers from affecting comparisons between the two
experiments. Growth-arrested S. cerevisiae exposed to
VOR, 5FC or CAS had viability similar to untreated con-
trol cells, showing that the drugs had no activity against
non-growing cells in stationary phase (Figure 3B). Cells
exposed to AmB were killed, but the killing rate was
lower than the rate observed for exponentially growing
cells. The lower detection limit for CFUs was not
reached in the first 8 hours of drug exposure, but only
after 24 hours.

Drug sensitivity restored in a growing biofilm population
The antifungal activity of 5FC, CAS and AmB against
exponentially growing planktonic S. cerevisiae, but not
against growth-arrested cells, suggested that drug activity
depended on cell growth. To test if growth-dependent



Figure 1 Mature S. cerevisiae and C. glabrata biofilms have similar sensitivity to antifungal drugs. Antifungal drug activity against 48-hour
biofilms was visualized by confocal laser scanning microscopy. GFP-tagged S. cerevisiae was stained with propidium iodide (PI, 1 μM) to mark
living (green) and dead (red) cells. C. glabrata was stained with Syto9 (3 μM) and PI (1 μM) to mark living (green) and dead (red/yellow) cells.
Biofilm cells were treated for 24 hours with the indicated antifungal agents. VOR: voriconazole (10 μg/ml for S. cerevisiae and 50 μg/ml for C. glabrata),
5FC: flucytosine (80 μg/ml), CAS: caspofungin (10 μg/ml for S. cerevisiae and 5 μg/ml for C. glabrata), and AmB: amphotericin B (10 μg/ml for S. cerevisiae
and 20 μg/ml for C. glabrata).
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drug activity also applied to cells in biofilms, the viability
of a growing S. cerevisiae biofilm was quantified as CFUs
and visualized with CLSM. Quantification and visua-
lization assays were conducted after 24 hours of drug
treatment. The number of cells in untreated 4-hour bio-
films increased 8-fold over 24 hours, as determined by
CFUs (Figure 4). Growth in 4-hour biofilms exposed to
VOR or 5FC was inhibited compared to untreated control
biofilms. Cell numbers determined by CFUs increased
3-fold with VOR treatment and 1.3-fold with 5FC treat-
ment. In contrast, 80% of biofilm cells exposed to CAS
were killed, with surviving cells sporadically distributed in
the biofilm (Figure 4). AmB had a fungicidal effect on
young biofilms, killing 99.7% of cells during a 24-hour ex-
posure. Biofilms treated with AmB still contained minor
surviving subpopulations (Figure 4).
Figure 2 Metabolic activity of yeast cells in biofilms decreases with in
incubation of biofilm for 4 hours and 48 hours respectively. Metabolically a
Mature biofilm and stationary planktonic yeast have
similar susceptibility to systemic antifungals
We observed that most drug classes tested in this study
were inactive against mature biofilms (Figure 1) and
planktonic cells that are arrested for growth (Figure 3),
whereas growing biofilm and planktonic cells were sus-
ceptible to both AmB, VOR, 5FC, and CAS. These data
suggest that the physiological state of the cell in response
to ceased proliferation, rather than a biofilm-specific re-
sponse mediate drug tolerance in yeast biofilms.
To determine the effect of growth arrest on drug toler-

ance, we investigated differences in antifungal drug sus-
ceptibility between stationary cultures of cells grown
planktonically or in biofilms for 48 hours. S. cerevisiae bio-
films were cultivated on flat polystyrene surfaces. For
planktonic control populations, S. cerevisiae was cultivated
cubation time. S. cerevisiae cells stained with FUN-1 (10 μM) after
ctive cells produce red cylindrical intravacuolar structures.



Figure 3 Antifungal drug susceptibility in exponentially growing and growth arrested planktonic cells. (A) Killing kinetics of exponentially
growing planktonic S. cerevisiae cultivated in 2% glucose exposed to 5 times the MIC of the indicated antifungal drugs. (B) Killing kinetics of
growth-arrested planktonic S. cerevisiae cultivated in carbon-depleted minimal medium exposed to 5 times MIC of the indicated antifungal drugs.
VOR: voriconazole (5 μg/ml), 5FC: flucytosine (40 μg/ml), CAS: caspofungin (5 μg/ml), AmB: amphotericin B (5 μg/ml). n = 3, error bars show
standard deviations.
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in glass tubes [43]. An isogenic biofilm-deficient flo11
knockout mutant was included as a negative control for
biofilm formation [28]. The average inoculum before drug
challenge was 1.6 × 107 CFU/ml for biofilm cells, 1.8 × 107

for planktonic cells and 7.5 × 106 for flo11, minimizing the
influence of different cell densities on drug susceptibility
between the cultivation assays.
All three cultures, biofilm, flo11 control, and plank-

tonic, were challenged for 24 hours with antifungal
agents. No significant effects on CFUs were seen after
treatment with VOR, 5FC, or CAS (Figure 5), indicating
that growth arrested S. cerevisiae was not susceptible to
Figure 4 Antifungal drugs are active against growing biofilms. (A) Qu
viability determined as CFUs. Biofilms were then treated with 10 times the
measured. Shown is log change in CFUs after 24 hours treatment. n = 3, er
and untreated samples was evaluated with Student's t-test. *P < 0.01. (B) G
indicated antifungal agents. VOR: voriconazole (10 μg/ml), 5FC: flucytosine
(10 μg/ml). Cells were visualized as described in the legend to Figure 1.
any of the drugs under any of the three growth condi-
tions. Only treatment with AmB significantly decreased
population sizes (P < 0.01, Student’s t-test). Exposure to
AmB killed 95-98% of the yeast populations regardless
of growth condition (Figure 5). However, in all three
growth conditions, a subpopulation of 2-5% of cells sur-
vived drug treatment, so AmB was unable to eradicate
the entire S. cerevisiae population.

Discussion
In the current study, we found that antifungal drug effi-
cacy against S. cerevisiae biofilm was dependent on cell
antitation of biofilm cell viability. Biofilms were grown for 4 hours and
MIC of the indicated antifungal drug for 24 hours and CFUs were
ror bars are standard deviations. Statistical significance between treated
FP-tagged S. cerevisiae in 4-hour biofilms treated for 24 hours with the
(80 μg/ml), CAS: caspofungin (10 μg/ml), and AmB: amphotericin B



Figure 5 Stationary S. cerevisiae cells grown in biofilms and
planktonic cultures have similar drug tolerance. Cultures were
grown for 48 hours and viability was measured as CFUs. Cells were
treated with 10 times MIC of the indicated antifungal drug, or left
untreated as a control, and CFUs were measured after 24 hours.
Shown is log change in viability. White bar: wild type S. cerevisiae
Σ1278b grown as biofilms on polystyrene surfaces. Grey bar: wild
type grown planktonically in glass flasks. Black bar: flo11 knockout
mutant grown planktonically in glass flasks. VOR: voriconazole
(10 μg/ml), 5FC: flucytosine (80 μg/ml), CAS: caspofungin (10 μg/ml),
AmB: amphotericin B (10 μg/ml). n = 3, error bars show standard
deviation. Statistical significance between treated and untreated
samples was evaluated with Student’s t-test. *P < 0.01.
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growth. Only growing S. cerevisiae cells were susceptible
to growth inhibition by the fungistatic drugs VOR and
5FC, and killing by CAS. However, S. cerevisiae cells in
both growing and stationary state were efficiently killed
by AmB. We further observed that the effects of antifun-
gals were independent of biofilm or planktonic modes of
growth.
Multidrug tolerance mechanisms in biofilms are sug-

gested to include production of an ECM and a densely
packed microbial structure that shields cells, preventing
antimicrobials from reaching their targets. Cell-surface
proteins in the Flo family are responsible for S. cerevisiae
adhesion and ECM production [44]. Flo11p is the only
flocculation protein expressed in the Σ1278b S. cerevisiae
strain and it is essential for biofilm formation in liquid
medium [28,44-46]. We showed that a flo11 mutant has
an antifungal tolerance phenotype that is similar to ma-
ture yeast biofilms (Figure 5). This finding suggests that
cell-cell adhesion and Flo11p-dependent matrix produc-
tion are not obstacles for cell penetration by antifungal
drugs in S. cerevisiae biofilm. This observation is in con-
trast to the drug sequestering role of matrix β-1,3 glucan
in Candida biofilms [13,47,48] and might reflect dif-
ferences in matrix composition between Σ1278b S. cere-
visiae and Candida biofilms. The ECM layer is, however,
not the sole contributor to the drug tolerant phenotype
because systemic antifungals can penetrate the ECM of
Candida species biofilms at concentrations that exceed
the MIC values, and no correlation is observed between
the amount of matrix produced and drug susceptibility
[15,49]. In agreement with this, our results show similar
drug susceptibility between S. cerevisiae and C. glabrata
biofilms, suggesting another important contributor to the
observed antifungal drug tolerance phenotype.
Heterogeneous microbial biofilms often contain large

subpopulations with low metabolic activity [50,51]. We
showed that the metabolic activity of most cells in yeast
biofilms decreased as the biofilm matured (Figure 2) and
we observed no increase in cell density in mature bio-
films (Figure 5A). Therefore, large fractions of cells in
mature biofilms are likely in a stationary state. Even
though antimicrobial agents have diverse modes of ac-
tion, most are dependent on active growth to kill cells
[52], which we confirmed in the present study.
The drug 5FC has fungistatic activity against Candida

species [53]. We found a similar fungistatic activity against
proliferating S. cerevisiae Σ1278b planktonic and biofilm
populations (Figure 3A and Figure 4). However, 5FC was
inactive against mature biofilms and growth arrested
planktonic cells (Figures 1, 3B and 5). This result is not
surprising since fungistatic drugs do not kill cells but
only inhibit proliferation. Therefore, the viability of high-
density, nongrowing microbial populations such as mature
biofilms or stationary phase planktonic cells is expected to
be unaffected by treatment with fungistatic drugs.
Echinocandins have fungicidal activity against Candida

species [54] and we found that CAS killed 90% of expo-
nential growing planktonic S. cerevisiae cells (Figure 3A)
and 80% of proliferating biofilm cells (Figure 4). Despite
the ability of CAS to kill exponentially growing yeast
cells, CAS had no activity against mature biofilms
(Figures 1 and 5). CAS inhibits 1,3-β-glucan synthase,
which disrupt the yeast cell wall and result in osmotic
stress and cell lysis [8]. However, the synthase is most
active in growing cells [55,56], so CAS is unable to kill
growth-arrested cells [54] as we observed in this study
(Figure 3B) including the cells in mature biofilms.
The polyene AmB was the only drug tested in this study

with activity against cells in mature biofilms (Figures 1
and 5) and growth arrested planktonic cells (Figure 3B).
AmB binds to ergosterol in the cell membrane and form
pores that increase the permeability of electrolytes and
small molecules. Pore formation results in loss of mem-
brane potential and eventually cell lysis [9]. Since ion dif-
fusion and lysis are passive processes, cell metabolism is
not required for AmB to kill cells. Consistent with this
mechanism, AmB killed both growing and non-growing
yeast cells (Figure 3). However, although AmB killed cells
in non-proliferating, low-density yeast populations, AmB-
tolerant subpopulations were observed in stationary state
planktonic and biofilm populations (Figure 5).
Azole drugs are fungistatic against C. albicans, but less

active against other Candida species, which show a clear
increase in cell density after azole treatment [57,58]. The
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poor efficacy of the azole drug VOR against S. cerevisiae
cells within the first 7 hours of exposure (Figure 3A)
might be because S. cerevisiae and the closely related
C. glabrata share a mechanism that makes them intrin-
sically resistant to azoles.
Bacterial cells grown as biofilms or grown to stationary

state as planktonic cells have similar drug-tolerance phe-
notypes [40,41,59,60]; we have in the present study ex-
tended this phenotypic similarity to include yeast. Our
results indicated that the biofilm mode of growth itself
does not result in antifungal tolerance. Rather, the lack
of cell division and the physiological state of stationary
phase cells is responsible for the drug-tolerant phenotype.

Conclusions
A combination of factors is probably responsible for the
multidrug tolerance of cells in biofilms. However, as long
as biofilm populations contain non-proliferating cells,
some of the most commonly used antimicrobials will
have reduced efficacy. Biofilm tolerance to drugs is con-
ditional and depends on the mode of action of the tested
drugs, as well as cell physiology and environment [61].
We showed that standard laboratory yeast biofilm
models and methods can determine cell culture con-
ditions under which antifungal drugs are effective or
ineffective. Our findings imply that biofilm tolerance
phenotypes might be caused by the large number of sta-
tionary cells within mature biofilms rather than specific
biofilm mechanisms. Our data therefore suggest that fu-
ture research on novel drugs and treatments should
focus on strategies that are effective against stationary
non-growing cells, rather than attempting to develop
specific anti-biofilm treatments. The results obtained in
this study are based on in vitro experiments and relies
on the value of S. cerevisiae as a model organism for the
pathogenic fungi. Our results indicate that S. cerevisiae
and C. glabrata biofilms have similar antifungal sensiti-
vity, but the results should also be verified in an in vivo
model.

Methods
Yeast strains
S. cerevisiae Σ1278b YS-11 (MATa can1Δ::STE2p-spHIS5
lyp1Δ::STE3p-LEU2 his3::HisG leu2Δ ura3Δ) was used as
reference strain (a gift from the Boone Laboratory,
University of Toronto). A flo11 mutant that does not
form biofilm was obtained from the Σ1278b gene deletion
library [27]. C. glabrata (ATCC 90030) was obtained from
the American Type Culture Collection. A strain expres-
sing green fluorescent protein (GFP) was constructed by
expressing the GFP gene from the TEF1 promoter. The
TEF1 promoter was PCR amplified from pSP-GM2 [62]
with primers TEF-F: 5’-CGTGCGAUGCCGCACACAC
CATAGCTTC and TEF-R: 5’-ACGTATCGCUGTGAG
TCGTATTACGGATCCTTG. GFP was amplified from
pJBA27a [63] with primers GFP-F: 5’-AGCGATACGUAG
CATGCGTAAAGGAGAAGAA and GFP-R: 5’-CACGC
GAUTATTTGTATAGTTCATCCATGCC. The GFP and
TEF1 DNA fragments were simultaneously fused and
cloned into a digested vector with USER (uracil-specific ex-
cision reagent) technology as previously described [64,65].
In short, the vector pXI-2 [66] was digested with AsiSI and
nicking enzyme Nb.BsmI. Ten μl of digested vector was
mixed with 5 μl of each DNA fragment, 1 μl USER en-
zyme and 1.5 μl mili-Q water. The mix was incubated for
25 minutes at 35°C followed by 25 minutes at 25°C.
Subsequently, the reaction mixture was used directly to
transform competent Escherichia coli cells (DHα5). The
resulting plasmid was denoted pRKB5. The TEF1p-
GFP fragment was inserted in chromosome XI position
(91,575..92,744) of the reference strain using a high-
efficiency transformation protocol [67] and transformants
selected on synthetic complete agar medium that did not
contain uracil.
Media and antifungals
All experiments were performed in synthetic complete
medium (0.67% yeast nitrogen base supplemented with
glucose and amino acids) [68], which is the standard
medium for the study of S. cerevisiae biofilms [28]. A
0.2% (w/v) glucose concentration was used in all biofilm
experiments. Yeast extract peptone dextrose (YPD) [68]
agar plates were used for colony counting. Antifungals
VOR, 5FC, AmB and CAS were from Sigma-Aldrich. All
antifungals were dissolved in DMSO in 5 mg/ml stock
solutions and stored at -20°C. All experiments were per-
formed in triplicate.
Minimal inhibitory concentration
Minimal inhibitory concentrations (MIC) were deter-
mined as previously described [69] with modifications.
In short, two-fold dilution series of antifungal drugs
were prepared in fresh synthetic complete medium with
2% glucose (w/v) and distributed into 96-well microtiter
plate. Synthetic RPMI medium is recommended for
MIC assays by EUCAST, but S. cerevisiae grows poorly
in RPMI and MIC was therefore determined in synthetic
complete medium. Visibly turbid overnight cultures
were diluted to OD600 0.1 in fresh medium and trans-
ferred to microtiter plates containing aliquots of serially
diluted antifungal drug. Plates were statically incubated
at 30°C for 24 h and absorbance was measured with
a microplate spectrophotometer (BioTek PowerWave
340). Growth inhibition of ≥ 50% was determined as
MIC for CAS, VOR and 5FC and ≥ 90% growth inhi-
bition was determined as MIC for AmB as recom-
mended by EUCAST [69].
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Visualization of biofilm drug susceptibility
Visibly turbid cultures were diluted to OD600 0.1. After
2 hours at 30°C, cells were transferred to biofilm chambers
(Technical University of Denmark) with a polyvinyl chlor-
ide (PVC) coverslip surface (Rinzl, Electron Microscopy
Sciences). After 4 or 48 hours static incubation at 30°C,
medium was removed from biofilm chambers and centri-
fuged and antifungal drug was added to the supernatants at
10 times the MIC. Spent medium with drug was introduced
to biofilm cultures followed by 24 hours at 30°C. Chromo-
somally integrated GFP and 3 μM Syto9 (Invitrogen) were
used to visualize live cells and 1 μM propidium iodide
(Sigma-Aldrich) was used to stain dead cells. CLSM was
performed with a Zeiss LSM710 microscope equipped with
excitation lasers at 488 nm and 514 nm. Imaging used an
EC Plan-Neofluar 40x/1.30 Oil lens.

Metabolic activity
Preparation of cell cultures and CLSM imaging was as de-
scribed above except a Plan-Apochromat 63x/1.40 Oil DIC
M27 objective was used. Metabolically active cells were
distinguished from inactive cells with 10 μM FUN-1 as de-
scribed by the manufacturer (Molecular Probes, Probes for
yeast viability, MP 07009). Cells were considered metabolic
active if they produced red cylindrical intravacuolar struc-
tures [42,51].

Killing kinetics
Overnight cultures were diluted to OD600 0.01 in fresh syn-
thetic medium. Yeast cultures were grown to exponential
phase in baffled shake flasks at 30°C and samples were dis-
tributed to test tubes for exposure to antifungal drugs at 5
times the MIC before incubation at 30°C with aeration.
Samples were extracted at indicated time-points. CFUs
were determined by plating serial dilutions on YPD agar.

Antifungal survival assay
Visibly turbid cultures were diluted to OD600 0.1 in syn-
thetic medium and grown in baffled shake flasks for
2 hours. Culture samples were distributed to glass tubes
for planktonic cells and polystyrene microtiter plates for
biofilms and incubated statically at 30°C. After 4 or
48 hours, cells were challenged with antifungal drug at
10 times the MIC, added in spent medium, for 24 hours.
Viable cells were determined by counting CFUs on YPD
agar. Biofilm cells were washed twice in saline and CFU
was determined.

Statistical analysis
Unpaired Student’s t-test was used for statistical analysis.
P < 0.01 was considered significant. All statistical cal-
culations were performed using GraphPad Prism ver-
sion 5.00 for Windows, GraphPad Software, San Diego
California USA.
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