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Abstract

Background: Listeria monocytogenes, a foodborne pathogen is ubiquitous to different environments including the
agroecosystem. The organism poses serious public health problem. Therefore, an attempt has been made to gain
further insight to their antibiotic susceptibility, serotypes and the virulence genes.

Results: Out of the 10 vegetables selected, 6 (brinjal, cauliflower, dolichos-bean, tomato, chappan-kaddu and chilli),
20 isolates (10%) tested positive for L. monocytogenes. The prevalence of the pathogen in the respective rhizosphere
soil samples was 5%. Noticeably, L. monocytogenes was absent from only cabbage, broccoli, palak and cowpea, and
also the respective rhizospheric soils. The 30 isolates + ve for pathogenicity, belonged to serogroup 4b, 4d or 4e,
and all were positive for inlA, inlC, inlJ, plcA, prfA, actA, hlyA and iap gene except one (VC3) among the vegetable
isolates that lacked the plcA gene. ERIC- and REP-PCR collectively revealed that isolates from vegetables and their
respective rhizospheric soils had distinct PCR fingerprints.

Conclusions: The study demonstrates the prevalence of pathogenic L. monocytogenes in the selected agricultural
farm samples. The increase in the number of strains resistant to ciprofloxacin and/or cefoxitin seems to pose serious
public health consequences.
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Background
Listeria monocytogenes, the foodborne pathogen, causes
listeriosis with high mortality rates (~30%), and presently
considered to pose serious public health problem [1].
The organism survives diverse conditions such as low
temperature, low pH and high salt concentrations, and
manifests abortion, stillbirth, septicemia, meningitis and
meningoencephalitis in pregnant women, neonates, eld-
erly, or immune-compromised humans [2,3]. Usually, L.
monocytogenes is susceptible to a wide range of antibiotics,
but resistance to multiple antibiotics is also on record
[4,5]. The presence of a number of virulence factors such
as internalins (encoded by inlA, inlC, inlJ), listeriolysin O
(LLO encoded by hlyA), actin (actA), phosphatidyl-
inositol-phospholipase C (PI-PLC encoded by plcA), iap
(invasion associated protein encoded by iap) and virulence
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regulator (encoded by prfA), in L. monocytogenes signifi-
cantly regulates the pathogenicity [6,7]. Serotyping of L.
monocytogenes from different sources revealed difference
in their virulence attribute [8-10]. The isolates from food
and environmental samples belonged to a small number
of serotypes 1/2a, 1/2b and 4b [11,12]. Among the various
approaches for molecular typing of L. monocytogenes,
Pulsed Field Gel Electrophoresis (PFGE) has been consid-
ered the “gold standard” owing to its high reproducibility
and discriminatory ability [13]. However, Repetitive
Element Sequence (REP) and Enterobacterial Repeti-
tive Intergenic Consensus (ERIC) - PCR are relatively
simple, cost-effective and discriminatory to the type
genus Listeria which generate DNA fingerprint com-
parable to PFGE that permits discrimination within a
single bacterial species [12,14].
L. monocytogenes common to different environments

including the agroecosystem, may serve as the contam-
ination source. Since the first report of human listeriosis
outbreak in 1980 through consumption of contaminated
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food [15], several such cases have been reported following
the consumption of raw and cooked meat, dairy products
and ready-to-eat foods, and raw and smoked seafood
[16]. Todd and Notermans, [17] and Swaminathan and
Gerner-Smidt [18] reported outbreaks of foodborne lis-
teriosis across the various countries. The listeriosis inci-
dence varies from 0.3 to 11.3 per million population in
different countries, although no such outbreaks have
been reported from India [19]. The incidence of listeri-
osis has also been attributed to consumption of salad
vegetables such as cabbage, celery, lettuce, cucumber,
onion, leeks, watercress, radish, tomatoes, and fennel
[20,21]. Since the majority of such studies used vege-
table samples randomly collected from the market, it is
difficult to account for the actual inoculum source.
India is the second largest global producer of the fruits

(45.5 million tones/y) and vegetables (90.8 million
tones/y), contributing 10.23% and 14.45% of the total
world production, respectively [22]. Therefore, it is essen-
tial to continuously monitor the prevalence of foodborne
pathogens including L. monocytogenes. A few Indian re-
ports available, show prevalence of L. monocytogenes in
different vegetable and soil samples, but these are limited
to the virulence attributes, antibiotics sensitivity and sub-
typing of the isolates [23-25]. The organism poses serious
problem to the food industry, public health agencies, and
government bodies [9,26]. In the present study, we charac-
terized L. monocytogenes isolated from the vegetables and
the respective rhizosphere soils (soil adhering to the root
surface) for the presence of virulence genes, serovar and
antibiotics susceptibility. For generation of DNA finger-
prints and to know-how of the clonal relationships among
the isolates, ERIC- and REP-PCR approach was used.
Results and discussion
Prevalence of L. monocytogenes
The overall prevalence of L. monocytogenes in 200 vegetable
samples was 20 (10%) and 10 (5%) for 200 soil samples.
Of the 10 vegetables, 6 of these i.e., brinjal, cauliflower,
dolichos-bean, tomato, chappan-kaddu and chilli and their
respective rhizospheric soils tested + ve for L. monocyto-
genes. Conversely, cabbage, broccoli, palak and cowpea
and their respective soils tested - ve.
Reports elsewhere in other countries indicated variable

prevalence of L. monocytogenes in vegetables. It was low
(0.62%) in North China, 3.1% in Brazil and high (60%) in
US [26-28]. The findings of the present study on the
prevalence of L. monocytogenes in vegetable samples, are
in agreement with the values (10% and 11%) from the
freshly supermarket prepared, cooked or raw ready-to-
eat vegetable-salads from Santiago, Chile and Japanese
light pickle made from vegetables in Obihiro, respect-
ively [20,29]. Studies conducted on vegetable samples in
Mumbai and Tamilnadu in India reported an average
13% prevalence of L. monocytogenes [23,25].
Among the 10 vegetables, L. monocytogenes frequency

was 20% (4 contaminated samples out of 20 analyzed) in
brinjal, cauliflower, chappan-kaddu and chilly while 10%
(2 contaminated samples out of 20 analyzed) in dolichos-
beans and tomato. L. monocytogenes has previously been
isolated from carrot, cabbage, tomato, cucumber, green
beans, broccoli, spinach etc. [20,21,27]. In India, L. mono-
cytogenes is reported from coriander leaves (50%), tomato
(11%), cabbage (25%), spinach (50%) and Brassica oleracea
(100%) [23,25].
Further the overall prevalence of L. monocytogenes in

the rhizospheric soil samples from agricultural farm, is in
accordance with the value (5%) as reported by Moshtaghi
et al., [24] from Hisar, India and also, the L. monocyto-
genes prevalence (5.3%) from soils of calf-cow operation,
California, U.S. [30]. However, a higher prevalence of L.
monocytogenes (100% and 23%) is reported in soils from
animal farm environment in Nsukka, Nigeria and New
York, U.S., respectively [31,32]. In soils from the respect-
ive vegetables, L. monocytogenes prevalence reached 10%
(2 samples contaminated out of 20) in case of cauliflower,
chappan-kaddu, chilly and dolichos-beans, while 5%
(1 sample out of 20) in the rhizospheric soil of brin-
jal and tomato.
In the present study, vegetables such as cabbage, broc-

coli, palak and cowpea and their respective rhizospheric
soils tested – ve for L. monocytogenes. Although, previous
studies in India and elsewhere observed the presence L.
monocytogenes in such vegetable samples [20,25,27,33]. In
the current study, the apparent variation in the association
of L. monocytogenes with the selected vegetables or the
rhizospheric soils, possibly reflects the consequences of a
sort of crop- or soil- specific interaction with its pathogen.
However, Garrec et al., [34] and Vivant et al., [35] ob-
served low pathogen population in a heavily contaminated
environment thus limiting its isolation or even the mi-
crobes. Although a few studies showed carrot to have
anti-listerial activity, while cabbage highly inhibitory to
Gram – ve microorganisms along with some suppressant
effect against Gram+ ve ones such as L. monocytogenes
[36]. The proliferation of L. monocytogenes in the vege-
table samples depends upon several factors and their
complex interactions like intrinsic properties of the food
(e.g. pH, NaCl content, water activity, composition, associ-
ated microflora, antimicrobial constituents), extrinsic factors
(e.g. temperature, gas atmosphere), the physico-chemical
environment of the plant surface, epiphytic fitness, biofilm
formation, and bacteria–bacteria and vegetable-bacteria
interactions [36,37]. Soil is the environmental niche of L.
monocytogenes but its composition, microbial communi-
ties and macrofauna, are the extrinsic edaphic factors that
regulate the fate of L. monocytogenes in the soil. Generally,
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suppression of microflora via soil sterilization permitted
better growth of L. monocytogenes than the competitive
microflora [38]. As such, deciphering environmental
drivers that impact the occurrence of L. monocytogenes
in soils is extremely hard as these are interconnected,
and extrinsic factors (edaphic parameters, biotic envir-
onment, etc.) affect their survival [35,38]. Therefore, un-
derstanding the condition that triggers contamination
or, on conversely that limits risks of contamination, is
difficult in face of the complexity of the ecology of
Listeria.

Antibiotics susceptibility
L. monocytogenes isolates from vegetable and their rhi-
zospheric soil samples were tested for their antibiotic
susceptibility. Out of 20 isolates from vegetable sam-
ples, 15 were resistant to ciprofloxacin and cefoxitin,
while 3 only to ciprofloxacin, and 2 to cefoxitin. Simi-
larly, out of 10 isolates from soil samples, 5 were resist-
ant to ciprofloxacin and cefoxitin while only 4 to
cefoxitin, and only 1 resistant to ciprofloxacin. All the
isolates, however, were susceptible to other antibiotics
tested (Table 1).
The multidrug-resistant L. monocytogenes associated

with human listeriosis, has been reported from food and
environment [39]. Moreover, L. monocytogenes resistant to
ampicillin, erythromycin, gentamicin, kanamycin, penicil-
lin, streptomycin, sulphonamide, trimethoprim, tetracyc-
line, and rifampicin has also been documented [4,26]. In
India, Dhanashree et al., [33] reported sensitivity of L.
monocytogenes to ampicillin, ciprofloxacin, cotrimoxazole,
erythromycin, penicillin and chloramphenicol. Sharma
et al., [40] and Soni et al., [41] isolated multi-drug resist-
ant L. monocytogenes from human clinical samples, water
and milk. The application of commonly used antibiotics in
humans and veterinary, the disposal of untreated effluents
in the environment, and the application of faeces or dung
slurries of infected (or carrier) animals onto the agricul-
tural land, have role(s) in the development of resistance in
the pathogens [31,42]. There is also the possibility of the
spread of multidrug-resistant bacteria through intake of
uncooked food, and may have severe medical and public
health implications [5,43]. The resistance of all the isolates
from soil and vegetables to ciprofloxacin and/or cefoxitin
as observed in this study, indicates the possible emergence
of antibiotic resistance in L. monocytogenes. This finding is
significant in context of the incidence of temporal and
spatial changes in the antibiotics resistance [26,44]. There-
fore, there is a need for the continuous surveillance of the
emergence of antibiotics resistance.

Species and serovar identification
Twenty isolates from vegetable samples were + ve for inter-
nalin A (inlA) gene indicating that all of them belonged to
L. monocytogenes, and in serotype specific multiplex PCR,
all the isolates were + ve for ORF2110 and ORF2819 gene
indicating that these belonged to 4b, 4d or 4e serogroup.
Similarly, 10 isolates from the soil were also + ve for inter-
nalin A (inlA) gene, and the serotyping showed them +
ve for ORF2110 and ORF2819 (Table 1).
The typing of L. monocytogenes is important in epi-

demiological studies due to the relationship between se-
rotypes and food-borne listeriosis, and to identify the
source of contamination and the dissemination routes.
As serotypes 4d and 4e are relatively rare in food, the
isolates belonging to 4b, 4d or 4e serogroup may be
regarded as serotype 4b [9,45]. The present observations
thus corroborate with those of others on the isolation of
serogroup 4b from vegetable samples [27,29]. This study
also shows the high prevalence of 4b serotype among
the L. monocytogenes, that is commonly associated with
human listeriosis. The high incidence of this serotype in
vegetable and soils may be of serious concern from the
food safety perspective view point.

Virulence associated genes
Twenty isolates of L. monocytogenes from vegetable and
10 from soil samples were screened for the presence of
virulence genes. All the 20 isolates from vegetable
tested + ve for inlA, inlC, inlJ, plcA, prfA, actA, hlyA
and iap genes except 1 (VC3) that lacked plcA. Simi-
larly, all the 10 isolates from soil were + ve for inlA,
inlC, inlJ, plcA, prfA, actA, hlyA and iap gene (Table 1).
L. monocytogenes strains vary in their virulence poten-

tial. Whereas some of the L. monocytogenes strains are
naturally virulent to inflict high morbidity and mortality,
others non-virulent and unable to infect the mammalian
host [46,47]. The discrimination between pathogenic
and non-pathogenic strains is imperative to assess the
possible significance of this microorganism from food
safety and public health aspects [48,49]. Several proto-
cols developed for the assessment of L. monocytogenes
virulence include in vivo bioassay and in vitro cell assay.
The in vivo method has limitations because of its expen-
sive nature, and the use of animals. The in vitro assay is
hampered by the lack of desired reproducibility and the
time consumed during analysis. PCR based assays for
the key virulence-associated genes yield rapid and repro-
ducible results. Few studies based on the presence of key
virulence proteins and genes in the whole spectrum of L.
monocytogenes strains have contributed to the acceptable
outcome [50]. This study also demonstrates that all the
L. monocytogenes isolates, irrespective of their source,
possessed internalin inlC and inlJ genes indicating ability
for their cellular internalization. Majority of the isolates
from vegetables and soil possessed virulence genes encod-
ing inlA, inlC, inlJ, plcA, prfA, actA, hlyA and iap, indicat-
ing that these possess all the requisites of a virulent strain.



Table 1 Source of isolation, serogroup, antibiogram, ERIC- and REP- fingerprints and virulence profiles of L. monocytogenes
used in this study

Sl.
no.

Strains Source of isolation Date of
isolation

Serogroup Antibiogram ERIC
type

REP
type

Presence of following genes determined
by PCR

inlA inlC inlJ plcA prfA actA hlyA iap

1 VB1 Vegetable-brinjal 15.10.2011 4b, 4d, 4e Cf, Fox XVIA XIIIA + + + + + + + +

2 VB2 Vegetable-brinjal 15.10.2011 4b, 4d, 4e Cf, Fox XVIA XIIIA + + + + + + + +

3 VB3 Vegetable-brinjal 15.10.2011 4b, 4d, 4e Cf, Fox XVIA XIIIA + + + + + + + +

4 VB4 Vegetable-brinjal 15.10.2011 4b, 4d, 4e Cf, Fox XVIA XIIIA + + + + + + + +

5 VCF1 Vegetable-cauliflower 15.11.2011 4b, 4d, 4e Cf, Fox XVIB XIIIA + + + + + + + +

6 VCF2 Vegetable-cauliflower 15.11.2011 4b, 4d, 4e Cf, Fox XVIC XIIIB + + + + + + + +

7 VCF3 Vegetable-cauliflower 15.11.2011 4b, 4d, 4e Cf, Fox XVIIB XIIIB + + + + + + + +

8 VCF4 Vegetable-cauliflower 15.11.2011 4b, 4d, 4e Cf, Fox XVIIB XIIIB + + + + + + + +

9 VDB1 Vegetable-dolichos
bean

15.12.2011 4b, 4d, 4e Cf XVIIA XIIIB + + + + + + + +

10 VDB2 Vegetable-dolichos
bean

15.12.2011 4b, 4d, 4e Cf, Fox XVIIA XIIIB + + + + + + + +

11 VT1 Vegetable-tomato 15.01.2012 4b, 4d, 4e Cf, Fox XVB XIVB + + + + + + + +

12 VT2 Vegetable-tomato 15.01.2012 4b, 4d, 4e Cf, Fox XVA XIVB + + + + + + + +

13 VCK1 Vegetable-chappan
kaddu

15.01.2012 4b, 4d, 4e Cf, Fox XVA XIVC + + + + + + + +

14 VCK2 Vegetable-chappan
kaddu

15.01.2012 4b, 4d, 4e Cf XVC XIVB + + + + + + + +

15 VCK3 Vegetable-chappan
kaddu

15.01.2012 4b, 4d, 4e Cf, Fox XIV XIVB + + + + + + + +

16 VCK4 Vegetable-chappan
kaddu

15.01.2012 4b, 4d, 4e Cf XIV XIVD + + + + + + + +

17 VC1 Vegetable-chilli 15.02.2012 4b, 4d, 4e Fox XIII XIVB + + + + + + + +

18 VC2 Vegetable-chilli 15.02.2012 4b, 4d, 4e Cf, Fox XIII XIVA + + + + + + + +

19 VC3 Vegetable-chilli 15.02.2012 4b, 4d, 4e Fox XIII XIVA + + + - + + + +

20 VC4 Vegetable-chilli 15.02.2012 4b, 4d, 4e Cf, Fox XIII XIVA + + + + + + + +

21 S1 Soil from brinjal field 15.10.2011 4b, 4d, 4e Cf, Fox XIXA XVA + + + + + + + +

22 S2 Soil from cauliflower
field

15.11.2011 4b, 4d, 4e Cf, Fox XIXA XVA + + + + + + + +

23 S3 Soil from cauliflower
field

15.11.2011 4b, 4d, 4e Fox XIXA XVA + + + + + + + +

24 S4 Soil from dolichos
bean field

15.12.2011 4b, 4d, 4e Cf XIXB XVA + + + + + + + +

25 S5 Soil from dolichos
bean field

15.12.2011 4b, 4d, 4e Cf, Fox XX XVA + + + + + + + +

26 S6 Soil from tomato field 15.01.2012 4b, 4d, 4e Fox XVIIIB XVIII + + + + + + + +

27 S7 Soil from chappan
kaddu field

15.01.2012 4b, 4d, 4e Fox XVIIIA XVII + + + + + + + +

28 S8 Soil from chappan
kaddu field

15.01.2012 4b, 4d, 4e Cf, Fox XVIIIA XVI + + + + + + + +

29 S9 Soil from chilli field 15.02.2012 4b, 4d, 4e Fox XVIIIC XVII + + + + + + + +

30 S10 Soil from chilli field 15.02.2012 4b, 4d, 4e Cf, Fox XVIIIC XVII + + + + + + + +

Cf: ciprofloxacin; Fox: cefoxitin.
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These findings are similar to the isolation of virulent L.
monocytogenes from vegetable and soil as reported by
Chen et al., [12], Maklon et al., [29] and Sant Ana et al.,
[27]. Moreover, one of the isolates from vegetables (VC3)
lacking plcA showed variation in the virulence gene pro-
file, and this could be because of the absence of the
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respective virulence gene or the incidence of some muta-
tions in the same gene [43,51].

ERIC- and REP-PCR fingerprint analysis
The ERIC-PCR of genomic DNA from L. monocytogenes
isolates from soil and vegetables yielded a total of 8 fin-
gerprint profiles (profiles XIII through XIX) not de-
scribed earlier, and consisted of 7 to 12 bands ranging
between 350 and 5200 bases (Figure 1). While 2 of the
10 isolates from the soil, showed identical fingerprint
profile, other 3 isolates had almost similar ones. Simi-
larly, 3 isolates also yielded identical profile, and 1 isolate
had closely related one. Isolates from vegetables yielded
five distinct fingerprints, whereas those from chilli had
identical fingerprint, few isolates from chappan-kaddu
showed the closely related pattern. Although remaining
isolates from chappan-kaddu showed distinct finger-
prints, those from tomato had closely related fingerprint
patterns. Whereas isolates from brinjal had identical fin-
gerprint profile, those from cauliflower and dolichos-
Figure 1 DNA fingerprints generated by ERIC-PCR amplification from
was generated using the Bionumerics Fingerprint Analyst Software (Applied
with arithmetic means. Similarity of the ERIC-PCR fingerprint profiles was ca
default cluster settings of 0.00% optimization and 1.00% band position tole
bean were characterized by distinct but closely related
fingerprints. There was no relationship among the fin-
gerprint profiles of vegetable and soil isolates.
The REP-PCR of genomic DNA from L. monocyto-

genes from soil and vegetables showed amplification of
multiple DNA fragments (450 to 6000 base) (Figure 2).
Likewise, the ERIC-profile of 6 isolates from soil re-
vealed identical to closely related fingerprints and while
the remaining isolates had related to distinct finger-
prints. Whereas isolates from brinjal, cauliflower and
dolichos-bean had similar to identical fingerprints, iso-
lates from chilli, tomato or chappan-kaddu had identical
but different fingerprints. No correlation in fingerprint
profile between the soil and vegetable isolates was
observed.
ERIC- sequences located in the extragenic regions of

the bacterial genome are 124 to 127 bases long elements
consisting of highly conserved central inverted repeat.
REP elements containing 6 degenerate positions, are 38-bp
long with a 5-bp variable loop between each side of the
vegetable and soil isolates of L. monocytogenes. The dendrogram
Maths), and data clustered by the unweighted pair group method
lculated using the average simple-match similarity matrix and the
rance were used.



Figure 2 DNA fingerprints generated by REP-PCR amplification from vegetable and soil isolates of L. monocytogenes. The dendrogram
was constructed using the Bionumerics Fingerprint Analyst Software (Applied Maths) as described in the legend of Figure 1.
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conserved palindrome [14,52,53]. ERIC- and REP-PCR
was used in this study to assess the relatedness of L.
monocytogenes from the soil and vegetable, and of the
serotypes. Soil isolates showed identical to similar and
closely related ERIC- and REP fingerprints but distinct
from the vegetable isolates indicating distinct associ-
ation of strains in soils and vegetables. It is possible that
many clonal types of the organism populate the soil but
only distinct clones of L. monocytogenes colonize the
plants. The failure to isolate strains from the roots of
some plants may be due to hyperproduction of antago-
nists by the roots or the associated antagonist i.e.,
microflora. Several workers reported recovery of isolates
from vegetables originating from the soil and/or the en-
vironment used for their farming [15,21,54]. In the over-
all, there is a strong correlation of the results obtained
from the PCR, and the isolates from soils yielded identi-
cal fingerprint but distinct from the vegetable counter-
parts. The observed difference in the banding pattern
among the isolates from soil and vegetables suggests the
possible divergence in the genomic organization arising
from the genetic re-assortment in the given ecological
niche over time. There was no correlation between ser-
ogroup and the PCR fingerprint profiles.

Conclusions
In conclusion, L. monocytogenes isolates recovered from
vegetable and soil samples belonging to 4b, 4d or 4e ser-
ogroups, exhibited multiple antibiotic resistances and the
presence of all the virulence genes. The study provides evi-
dence for the prevalence of pathogen i.e., L. monocytogenes
in farm samples though there is no clear-cut evidence of
listeriosis outbreak in India. In addition, the acquisition of
antibiotic resistance in the isolates studied, reflects the po-
tential public health consequences.

Methods
Study site and sample collection
A total of 400 samples were collected from the agricultural
farm of the Indian Institute of Vegetable Research (IIVR),
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Varanasi, India (25° 08’ N latitude; 83° 03’ E longitude and
90 m from sea level), through October 2011 to February
2012, and of which, 200 each were from vegetables and the
accompanying rhizospheric soils. Among the vegetables, 20
each were from brinjal (Solanum melongena), cabbage
(Brassica oleracea var. capitata), broccoli (Brassica oleracea
var. italica), cauliflower (Brassica oleracea var. botrytis),
dolichos-bean (Dolichos lablab), palak (Beta vulgaris), tomato
(Solanum lycopersicum), chappan-kaddu (Cucurbita pepo),
chilli (Capsicum annum) and cowpea (Vigna unguiculata).
Rhizosphere soil (200 samples) contained 20 each from

the same vegetable grown. Soil samples were collected at
the ripening stage by uprooting the plants. Roots were
vigorously shaken to separate the loosely bound bulk
Table 2 Sequences and PCR cyclic conditions of primers used
molecular typing

Target gene Primer sequence (5’-3’) Direction

lmoO737 AGG GCT TCA AGG ACT TAC CC F

ACG ATT TCT GCT TGC CAT TC R

lmo1118 AGG GGT CTT AAA TCC TGG AA F

CGG CTT GTT CGG CAT ACT TA R

ORF2819 AGC AAA ATG CCA AAA CTC GT F

CAT CAC TAA AGC CTC CCA TTG R

ORF2110 AGT GGA CAA TTG ATT GGT GAA F

CAT CCA TCC CTT ACT TTG GAC R

Prs GCT GAA GAG ATT GCG AAA GAA G F

CAA AGA AAC CTT GGA TTT GCG G R

inlA ACG AGT AAC GGG ACA AAT GC F

CCC GAC AGT GGT GCT AGA TT R

inlC AAT TCC CAC AGG ACA CAA CC F

CGG GAA TGC AAT TTT TCA CTA R

inlJ TGT AAC CCC GCT TAC ACA GTT F

AGC GGC TTG GCA GTC TAA TA R

plcA CTG CTT GAG CGT TCA TGT CTC ATC CCC C F

CAT GGG TTT CAC TCT CCT TCT AC R

prfA CTG TTG GAG CTC TTC TTG GTG AAG CAA TCG F

AGC AAC CTC GGT ACC ATA TAC TAA CTC R

actA CGC CGC GGA AAT TAA AAA AAG A F

ACG AAG GAA CCG GGC TGC TAG R

hlyA GCA GTT GCA AGC GCT TGG AGT GAA F

GCA ACG TAT CCT CCA GAG TGA TCG R

Iap ACA AGC TGC ACC TGT TGC AG F

TGA CAG CGT GTG TAG TAG CA R

REP1R-I IIIICGICGICATCIGGC F

REP2-I ICGICTTATCIGGCCTAC R

ERIC1R ATGTAAGCTCCTGGGGATTCAC F

ERIC2 AAGTAAGTGACTGGGGTGAGCG R
soil. Pooled soil samples from the vegetable field were
homogeneously mixed and sieved (2 mm) to remove the
plant debris prior to further analysis [55]. All the vegetable
and rhizospheric soil samples were collected aseptically,
transported chilled to the laboratory, and processed within
24 h of collection.

Isolation and identification of L. monocytogenes
Vegetable and soil samples were examined following the
standard double enrichment method as prescribed by
ISO 11290:1 with slight modifications [56]. Each vege-
table sample was cut into small pieces, then 25 g each of
vegetable and soil sample were separately placed in
Stomacher bag with 225 ml of half-Fraser broth (Difco,
for detection of selected serogroups, virulence genes and

Amplicon size(bp) PCR cyclic conditions References

691 94°C × 5'; (94°C × 30s, 54°C × 75 s,
72°C × 75 s)35; 72°C × 10'

[8]

906 Do [8]

471 Do [8]

597 Do [8]

370 Do [8]

800 94°C × 2'; (94°C × 20s, 55°C × 20s,
72°C × 50s)30; 72°C × 2'

[7]

517 Do [7]

238 Do [7]

1484 95°C × 2'; (95°C × 15 s, 60°C × 30s,
72°C × 90s)35; 72°C × 10'

[60]

1060 Do [60]

839 Do [61]

456 Do [62]

131 Do [63]

Several 95°C × 7'; (95°C × 1', 44°C × 1',
65°C × 8')30; 65°C × 10'

[52]

Several 95°C × 7'; (95°C × 1', 52°C × 1',
65°C × 8')30; 65°C × 10'

[64]
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USA), and homogenized using Stomacher (60 s). The
bag was incubated (24 h, 30°C). Second enrichment was
done by adding 0.1 ml from the overnight grown culture
into 10 ml of the full strength of the selective agents
(Fraser broth, Difco, USA), and incubated (48 h, 37°C)
with the subsequent spreading on PALCAM agar (Difco),
and re-incubated (48 h, 37°C). Grey-greenish colonies with
black sunken centre and black halo were picked up and
confirmed by Gram staining, biochemical tests such as
catalase, methyl red-Voges-Proskauer (MR-VP) reaction,
nitrate reduction, motility (20-25°C), acid production from
rhamnose, xylose, mannitol, α-methyl-D-mannopyranoside,
and CAMP test with Staphylococcus aureus and Rhodo-
coccus equi [57]. L. monocytogenes MTCC1143, S. aureus
MTCC1144 and R. equi MTCC1135 served as control. All
the L. monocytogenes isolates and control strains were pre-
served in tryptic soy agar slants at room temperature for
use in the subsequent analysis.
Antibiotics susceptibility test
All L. monocytogenes isolates were tested for their suscep-
tibility to 10 antibiotics commonly used in veterinary and
human therapy, using the disc diffusion method of Bauer
et al., [58]. Antibiotics discs (Oxoid, UK) with the fol-
lowing concentrations were used: ampicillin (A, 10 μg),
chloramphenicol (C, 30 μg), ciprofloxacin (Cf, 5 μg),
cefoxitin (Fox, 30 μg), co-trimoxazole (SXT, 25 μg), genta-
micin (G, 10 μg), oflaxacin (Of, 5 μg), rifampicin (R, 5 μg),
streptomycin (S, 10 μg), and tetracycline (T, 30 μg).
The diameter of the clearance zone was recorded and
interpreted following the guidelines of the Clinical and
Laboratory Standards Institute (CLSI) for Gram + ve
bacteria [59].
DNA isolation
Chromosomal DNA was extracted from L. monocytogenes
isolates grown overnight (37°C) with shaking (200 oscilla-
tions per min) in brain heart infusion broth (BHIB, Difco,
USA) following the protocol of QIAGEN DNeasy® Blood
& Tissue kit. Harvested biomass (maximum 2 × 109 cells)
were centrifuged (7500 rpm, 10 min), re-suspended in
180 μl lysis buffer [20 mM Tris-Cl (pH 8.0), 2 mM
NaEDTA, 1.2% Triton® X-100, 20 mg lysozyme (Sigma)
per ml], and incubated for 30 min (37°C). Proteinase K
(25 μl) and 200 μl Buffer AL (without ethanol) were
added, mixed by vortexing and the mixture re-incubated
at 56°C (30 min). Thereafter, 4 μl RNase A (100 mg/ml)
was added and incubated (2 min) at room temperature.
Pure ethanol (200 μl) was added to the sample, and
mixed by vortexing. The DNA was eluted in AE Buffer,
and the concentration and purity determined with the
help of Eppendorf spectrophotometer at 260 and 280 nm,
respectively.
Species- and virulence- specific genes and serogroup
identification
The presence of internalin genes (inlA, inlC and inlJ),
virulence-associated genes (plcA, actA, hlyA, iap and prfA)
and serogroup (1/2a, 1/2b, 1/2c, and 4b) was determined
by multiplex PCR as described by Liu et al., [7], Noter-
mans et al., [60] and Doumith et al., [8], respectively, and
subsequently modified by Soni et al., [41]. The PCR prod-
ucts were analyzed by agarose (1.5%) gel electrophoresis,
stained with ethidium bromide, and visualized under UV
transilluminator (Bio-Rad). The details of oligonucleotide
sequences (Sigma) and PCR cyclic conditions used in this
study, are given in Table 2.

Genomic fingerprinting by ERIC- and REP-PCR
ERIC- and REP- PCR were performed as described by
Rivera et al., [52] and Versalovic et al., [64], respectively.
The amplicons were electrophoresed on 1.8% agarose at
60 V (6 h), stained with ethidium bromide and analyzed
as described [41]. The fingerprint pattern was measured
in a Fluoro-S-Imager (Bio-Rad) and analyzed using Bio-
numerics fingerprint analyst (Applied Maths, Kortrejik,
Belgium) software with a simple-matching similarity
matrix, and the data were clustered by the un-weighted
pair group method with arithmetic means (UPGMA).
The clustering analysis of the ERIC- and REP-PCR pat-
terns could be affected by factors like position bias in
gels, band assignment, and different settings in the Bio-
Numerics software. Therefore, the similarity of the
ERIC- and REP-PCR fingerprint profiles was calculated
using the average simple-match similarity matrix and
the default cluster settings of 0% optimization and 1%
band position tolerance.
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