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Abstract

Background: The success of herbivorous insects has been shaped largely by their association with microbes. Seed
parasitism is an insect feeding strategy involving intimate contact and manipulation of a plant host. Little is known
about the microbial associates of seed-parasitic insects. We characterized the bacterial symbionts of Megastigmus
(Hymenoptera: Torymidae), a lineage of seed-parasitic chalcid wasps, with the goal of identifying microbes that
might play an important role in aiding development within seeds, including supplementing insect nutrition or
manipulating host trees. We screened multiple populations of seven species for common facultative inherited
symbionts. We also performed culture independent surveys of larvae, pupae, and adults of M. spermotrophus using
454 pyrosequencing. This major pest of Douglas-fir is the best-studied Megastigmus, and was previously shown to
manipulate its tree host into redirecting resources towards unfertilized ovules. Douglas-fir ovules and the parasitoid
Eurytoma sp. were also surveyed using pyrosequencing to help elucidate possible transmission mechanisms of the
microbial associates of M. spermotrophus.

Results: Three wasp species harboured Rickettsia; two of these also harboured Wolbachia. Males and females
were infected at similar frequencies, suggesting that these bacteria do not distort sex ratios. The M. spermotrophus
microbiome is dominated by five bacterial OTUs, including lineages commonly found in other insect microbiomes
and in environmental samples. The bacterial community associated with M. spermotrophus remained constant
throughout wasp development and was dominated by a single OTU - a strain of Ralstonia, in the Betaproteobacteria,
comprising over 55% of all bacterial OTUs from Megastigmus samples. This strain was also present in unparasitized
owvules.

Conclusions: This is the first report of Ralstonia being an abundant and potentially important member of an insect
microbiome, although other closely-related Betaproteobacteria, such as Burkholderia, are important insect symbionts.
We speculate that Ralstonia might play a role in nutrient recycling, perhaps by redirecting nitrogen. The developing
wasp larva feeds on megagametophyte tissue, which contains the seed storage reserves and is especially rich in
nitrogen. Future studies using Ralstonia-specific markers will determine its distribution in other Megastigmus species,
its mode of transmission, and its role in wasp nutrition.
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Background
One of the major reasons that insects are the most diverse
and abundant animals on Earth is due to their coevolution
with plants and the myriad strategies they have evolved to
successfully feed on them [1]. Only recently have we come
to appreciate that microbial endosymbionts of phytopha-
gous insects have played a important role in this success
[2,3], for example by providing essential metabolites and
vitamins [4-8], breaking down cell wall components, such
as lignocellulose [9], recycling nitrogenous waste [10]
and detoxifying plant secondary metabolites [11,12].
Maternally transmitted intracellular symbionts are ex-
tremely common in herbivorous insects [3]. Obligate nu-
tritional symbionts are usually found within specialized
host-derived organs called bacteriomes and they often
exhibit co-speciation with their host lineages, indica-
tive of an ancient association stabilized by strict vertical
transmission from mother to offspring [13,14]. In addition,
many insects harbour facultative heritable endosymbi-
onts that are not necessary for the development and
reproduction of the host [14]. These symbionts have evolved
diverse strategies to persist in their hosts, including ma-
nipulating reproduction, for example by inducing par-
thenogenesis [15]. Other facultative symbionts increase
host fitness under certain conditions, and it is in this
regard that they are potentially important in mediating
plant-insect interactions [3,16,17]. For example, facultative
inherited symbionts of pea aphids have been implicated in
facilitating the colonization of novel host plants [18,19].

Gut microbes also play critical roles in plant-insect inter-
actions. Some herbivorous insects are associated with essen-
tial communities of microbes found within gut chambers
(e.g. termite, cockroach) [20,21] or crypts (e.g. true bugs)
[22]. Several posthatch transmission mechanisms have
evolved to ensure transmission of gut associates from
generation to generation, such as egg-smearing [23],
coprophagy [24] and capsule-mediated transmission [25].
In addition, some true bugs acquire their gut microbes de
novo every generation from the environment [26-28]. Gut
bacteria can affect a herbivore’s host range. For example,
when the symbiont capsule from a stinkbug pest of soy-
bean, Megacopta punctatissima, is exchanged with a
non-pest species, M. cribraria, there is an increase in
fitness of this species on soybean and a decrease in fitness
of the pest species on soybean [29]. This implies that the
obligate symbiont dictates the pest status of the host.
Since some of the major lineages of gut symbionts have
only recently been discovered and characterized, we are
still in early days in our understanding of how associated
microbial communities are able to shape plant-insect in-
teractions [16].

There are many examples of nutritional symbiosis among
phytophagous hymenopterans. Xylophagous woodwasps
and horntails rely on a symbiotic fungus for cellulose-
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digestion and/or nutrition during larval stages [30,31]
and woodwasps have also been found to be associated
with cellulose degrading bacteria [32]. Leaf-cutter ants
have also formed a symbiotic relationship with fungi, in
which the ants cultivate and consume a mutualistic fungus
on a substrate of foraged leaf fragments [33]. The honey-
bee, Apis mellifera, is known to be associated with a dis-
tinct microbiota [34-39], that is thought to be important
for both bee health and nutrition [35,38], including pollen
coat digestion. Arboreal herbivorous ants that subsist
mainly on a nutrient-poor diet of sugary plant exudates
and hemipteran honeydew secretions harbour gut symbi-
onts, which aid in nutrition. These symbiotic gut mi-
crobes include bacteria that are related to nitrogen-fixing
root-nodule bacteria [40-42]. Carpenter ants in the genus
Camponotus have an obligate endosymbiont, the gamma-
proteobacterium Blochmannia, which is found in host-
derived bacteriomes [43]. Sequencing of the Blochmannia
genome suggests that this symbiont provides its host with
essential amino acids [44,45]. There is also evidence that
Blochmannia plays a role in nitrogen recycling by encod-
ing urease [46].

Many insects have independently evolved the ability to
feed from within plant issues, for example, as seed-
feeders, gallers, or leaf-miners. This feeding style permits
the larval stage access to internal plant tissues with rela-
tively high nutrient content and low defence response,
and often involves complex physiological and morpho-
logical modifications of host plant tissue, including dif-
ferentiation of additional tissues (gall formation), in situ
up-regulation and synthesis of proteins and sugars, trans-
location of nutrients to the insect feeding site and the for-
mation of green islands (photosynthetically active areas
surrounding leaf-mining insects during leaf senescence)
[47-50]. However, the mechanisms controlling these com-
plex modifications are not well understood; it remains an
open question whether symbiotic microbes might have a
role in these systems. An interesting study recently impli-
cated bacterial symbionts in insect endophytophagy. Feed-
ing by leaf-mining Phyllonorycter blancardella caterpillars
prevents leaf senescence, resulting in characteristic islands
of green tissue. These green islands are associated with
increased levels of plant hormones [47,48,51], including
cytokinins similar to those used by bacteria to manipulate
plant physiology [52-54]. When leaf-miners were treated
with antibiotics, the green-island phenotype failed to
appear, suggesting that bacterial symbionts of P. blan-
cardella might be involved in manipulation of the
plant [51,55].

Seed chalcid wasps of the genus Megastigmus (Hymenop-
tera: Torymidae) provide an interesting system to explore
the role of microbes in nutrition and host manipulation of
endophytophagous insects. The genus Megastigmus con-
tains 134 described species, of which more than 72 are tree
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and shrub seed feeders; the remaining species are thought
to be mainly parasitoids of gall insects [56,57]. Seed infest-
ing species of Megastigmus undergo their development
within the seeds of plants, obtaining nourishment from
the developing embryo and storage reserves within the
megagametophyte [58]. The best-studied species, M. sper-
motrophus, is a major pest of Douglas-fir (Pseudotsuga
menziesii). This insect has the ability to manipulate the
seed development of Douglas-fir for its own reproductive
success [59,60]. First, M. spermotrophus can re-direct
unfertilized ovules that normally abort to continue devel-
oping. Ovules do not redirect resources back to the
mother plant, but instead feed the insect [59]. Second, the
developing larva acts like a ‘surrogate’ embryo, caus-
ing the continued accumulation of storage reserves in
the megagametophyte, which provides nourishment for
the larva [60]. The re-direction of unfertilized ovule devel-
opment by the presence of the parasite can be partially ex-
plained by changes in seed hormone levels, especially
cytokinins [61]. It is suspected that all Megastigmus
species infesting Pinaceae hosts can manipulate seed
development [62].

Do Megastigmus wasps contain bacterial associates,
and if so could they play an important role in the endo-
phytophagous lifestyle of the host? In this paper, we used
two approaches to characterize the microbial symbionts
of Megastigmus, with the long-term goal of understand-
ing their role in host nutrition and manipulation. Using
symbiont-specific primers we screened a large sample
of sexual Megastigmus species and two parasitoids of
M. spermotrophus for common insect facultative herit-
able endosymbionts [63]. We also used 16S rRNA bacter-
ial amplicon pyrosequencing to perform an unbiased
and in-depth survey of the microbes associated with
different developmental stages of M. spermotrophus (the
best-studied Megastigmus species and an important pest
of Douglas-fir), Douglas-fir ovules and the parasitoid
Eurytoma sp. There have not been any studies on the
microbial associates of Megastigmus except for a re-
cent study that showed that thelytokous parthenogen-
esis in Megastigmus is caused by the reproductive
parasite Wolbachia [64].

Results

Common heritable endosymbiont infections in
Megastigmus

Three species tested positive in our inherited symbiont
screens, with infection frequencies ranging from 33-100%
(Table 1). Megastigmus milleri harbours a strain of Rickett-
sia from the bellii clade (Figure 1) [GenBank:K]J353735].
Megastigmus amicorum and M. bipunctatus harbour a
strain of Rickettsia that is allied with R felis, ie. in the
‘transitional’ group [65]. Rickettsia citrate synthase se-
quences from these two hosts were identical [GenBank:
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KJ353732 - KJ353734]. These two hosts also harboured
supergroup A Wolbachia infections (Figure 2) [GenBank:
KJ353723 - KJ353731]. M. amicorum collected from dif-
ferent host plants and locations (Jumiperus oxycedrus
from Corsica and /. phoenicea from mainland France) were
2% divergent in mitochondrial COI [GenBank:K]J535736 -
KJ535737] and infected with different Wolbachia strains.
There was no significant difference in the frequency of in-
fection in males and females, nor did we find an associ-
ation between Wolbachia and Rickettsia in coinfected
species (Fisher’s exact tests, data not shown). Arsenopho-
nus, Cardinium, and Spiroplasma were not detected in
Megastigmus samples screened using PCR with symbiont-
specific primers.

Microbial associates of M. spermotrophus

16S rRNA bacterial amplicon pyrosequencing of M.
spermotrophus (adult females, larvae and pupae), adult
Eurytoma sp. and P. menziesii ovules generated 81,207
raw reads with an average length of 422 bp (see Additional
file 1) [BioProject: PRJNA239784]. Quality and chimera
filtering removed approximately 27% of the reads. The as-
signment of operational taxonomic units (OTUs) resulted
in 352 unique bacterial clusters after the removal of sin-
gletons. A total of 160 OTUs were assigned to the genus
level. The average sequencing depth was 3,616 sequences
per sample (minimum and maximum of 1,962 and 6,130
sequences per sample). Rarefaction analysis showed that
for most of the M. spermotrophus samples the number
of observed OTUs no longer exponentially increased
after an approximate sampling depth of 3,000 sequences
(see Additional file 2) and the average number of observed
species was 60 + 13 and the average Chaol species diver-
sity estimate was 71 + 25.

Fifteen major OTUs form the core bacterial microbiome
of M. spermotrophus, i.e. having a total relative abundance
of 0.5% or greater (Table 2). These OTUs are from five
bacterial classes: Betaproteobacteria, Gammaproteobac-
teria, Actinobacteria, Firmicutes and Alphaproteobacteria.
Over 60% of the sequences from the M. spermotrophus
samples were assigned to the genus Ralstonia spp. (61.57%).
Other major OTUs were assigned to the genera Acineto-
bacter and Corynebacterium representing 17.20% and
4.44% of total relative abundance, respectively. Further in-
vestigation using BLAST searches against the Ribosomal
Database Project (http://rdp.cme.msu.edu/) and GenBank’s
16S ribosomal RNA sequence database revealed that all
but one of the major OTUs not assigned to the genus level
were actually Acinetobacter, Corynebacterium, or Ralsto-
nia. The unknown Firmicutes is most closely related to
Turicibacter, a strictly anaerobic gram-positive bacteria in
the family Erysipelotrichaceae [66]; this OTU represents
0.74% of the total relative abundance of the 16S rRNA se-
quences in the M. spermotrophus samples.
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Table 1 Megastigmus spp. and parasitoids screened for common heritable symbionts using PCR

Species Host plant Year Location N Sample type  Wolbachia positive  Rickettsia positive
Family: Pinaceae

M. schimitscheki Cedrus atlantica 2010 Petit Luberon, FR 15 Female

M. schimitscheki Cedrus atlantica 2009  Mont Ventoux, FR 14 Female

M. schimitscheki Cedrus atlantica 2010  Saou, FR 14 Female

M. schimitscheki Cedrus atlantica 2010 Gap, FR 15 Female

M. schimitscheki Cedrus atlantica 2008  Barjac, FR 15 Female

M. schimitscheki Cedrus libani 2005  Turkey 9 Female

M. rafni Abies alba 2009 Lespinassiere, FR 15 Female

M. rafni Abies alba 2009  Pardailhan, FR 15 Female

M. rafni Abies alba 2010  Ventouret, FR 15 Female

M. rafni Abies alba 2004  Doubs, FR 9 Female

M. rafni Abies nordmanniana 2000  Rold Skov, DK 9 Female

M. rafni Abies grandis 2012 Vancouver Island, CAN 16 Female

M. rafni Abies grandis 2012 Vancouver Island, CAN 10  Male

M. milleri Abies grandis 2012 Vancouver Island, CAN 16 Female 75% (12)
M. milleri Abies grandis 2012 Vancouver Island, CAN 10  Male 90% (9)
M. spermotrophus  Pseudotsuga menziesii 2011 British Columbia, CAN 26 Female

M. spermotrophus  Pseudotsuga menziesii 20M British Columbia, CAN 10 Larvae

Family: Cupressaceae

M. watchli Cupressus sempervirens 2011 Salleles du Bosc, FR 15 Female

M. watchli Cupressus sempervirens 2011 Monfavet, FR 15 Female

M. watchli Cupressus sempervirens 2011 Ruscas, FR 16 Female

M. watchli Cupressus sempervirens 1997 Aghois loannis, GR 10 Female

M. bipuncatatus Juniperus sabina 2011 Briancon, FR 10  Female 90% (9) 100% (10)
M. bipuncatatus Juniperus sabina 2011 Pallon, FR 13 Female 38% (5) 54% (7)
M. bipuncatatus Juniperus sabina 2011 Pallon, FR 10  Male 50% (5) 60% (6)
M. amicorum Juniperus phoenicea 2011 Petit Luberon, FR 8 Female 100% (8) 100% (8)
M. amicorum Juniperus phoenicea 2011 Luberon, FR 15 Female 100% (15) 93% (14)
M. amicorum Juniperus phoenicea 2011 Luberon, FR 10  Male 80% (8) 70% (7)
M. amicorum Juniperus oxycedrus 2009  Corsica, FR 10  Female 70% (7) 80% (8)
M. amicorum Juniperus oxycedrus 2011 Corsica, FR 10  Female 80% (8) 100% (10)
M. amicorum Juniperus oxycedrus 2011 Corsica, FR 9 Male 33% (3) 56% (5)
Parasitoids of M. spermotrophus

Eurytoma sp. - 2011 British Columbia, CAN 7 -

Mesopolobus sp. - 2011 British Columbia, CAN 16 -

These species did not host Arsenophonus, Cardinium, or Spiroplasma. Spiroplasma was identified from Eurytoma sp. using 16S rRNA pyrosequencing.

The relative abundance of the major OTUs from the dif-
ferent developmental stages of M. spermotrophus was
mostly conserved (Figure 3), and there was no differ-
ence in the core microbiomes of the different devel-
opmental stages, based on principle coordinate analysis of
weighted or unweighted UniFrac phylogenetic distances
(see Additional file 3). The total relative abundance of
OTUs from the class Betaproteobacteria (all in the genus

Ralstonia) ranged from 464 - 72.3%. One female sample
contained only a very small proportion of OTUs assigned
to the class Gammaproteobacteria (0.36% relative abun-
dance) while the total relative abundance of Gamma-
proteobacteria ranged from 12.7 - 33.1% in the remaining
samples. The total relative abundance of all OTUs within
the class Actinobacteria (all in the genus Corynebacter-
ium) ranged from 1.9 - 7.1%.
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65% bootstrap support.
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Transitional Group

Rickettsia sp. endosymbiont of M. amicorum on Juniperus oxycedrus KJ535733
Rickettsia sp. endosymbiont of M. amicorum on Juniperus phoenicea KJ535732
Rickettsia sp. endosymbiont of M. bipunctatus on Juniperus sabina KI535734

Spotted Fever Group

Adalia Group

Rickettsia sp. endosymbiont of M. pinus on Abies grandis KI535735

Bellii Group
6
25580

Rickettsia sp. endosymbiont of Gymnopternus celer Q925620

925581
eus HE583221

Rickettsia sp. endosymbiont of Rhyzobius litura FI666753
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Figure 1 Maximum likelihood phylogeny for Rickettsia citrate synthase sequence constructed using the Tamura 3-parameter plus
gamma distributed rates among sites model of nucleotide substitution. The sequences generated by this study are highlighted in red.
Numbers next to the nodes indicate percentage of bootstrap support from 500 bootstrap replicates. Nodes without numbers received less than
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{E Aedes albopictus DQ842268/DQ842305/DQ842416
Solenopsis invicta DQ842300/DQ842336/DQ842448
M. rosae KF531865/KF531889/KF531873
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M. pictus KF531862/KF531886/KF531870
Drosophila bifasciata DQ842279/DQ842315/DQ842427
M. amicorum on Juniperus oxycedrus KJ535724/KJ535727/KJ535730
100 [ Drosophila melanogaster wMel DQ842304/DQ842340/DQ842452

99 Nasonia vitripennis A DQ842296/DQ842332/DQ842444
99 * Muscidifurax uniraptor DQ842293/DQ842329/DQ842441
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[ Culex pipiens pipiens DQ842277/DQ842313/DQ842425

|: Nasonia giraulti DQ842294/DQ842330/DQ842442

Figure 2 Concatenated maximum likelihood phylogeny for Wolbachia coxA, ftsZ and gatB sequence constructed using the Tamura
3-parameter plus gamma distributed rates among sites model of nucleotide substitution. Sequences generated by this study are red and
sequences previously obtained from parthenogenetic Megastigmus are green [64]. Numbers next to the nodes indicate percentage of bootstrap
support from 500 bootstrap replicates. Nodes without numbers received less than 65% bootstrap support.

Supergroup A

Drosophila innubila DQ842280/DQ842316/DQ842428

Supergroup B

Trichogramma deion DQ842302/DQ842338/DQ842450

A maximum likelihood phylogeny for Ralstonia was cre-
ated using 16S rRNA sequence from the most abundant
Ralstonia OTU in the pyrosequencing data set (Figure 4).
Strong bootstrap support (0.99) clusters the Ralstonia iso-
lated from M. spermotrophus with the human pathogen
R. pickettii (sequence divergence = 3.3%).

Ovule samples were dominated by chloroplast rRNA
(99.0%); the remaining OTUs included Ralstonia (0.8%)
and Acinetobacter (0.2%). The Eurytoma parasitoid sam-
ples were dominated by one OTU, which is allied with
inherited Spiroplasma in the Ixodetis group (see Additional
file 4) [GenBank:KJ535740], (99.6%). The remaining OTUs
were Ralstonia.

Discussion
Common heritable endosymbiont infections in
Megastigmus
We found three sexual Megastigmus species infected with
Rickettsia, and two of these same species infected with
Wolbachia. None of the species was infected with Arseno-
phonus, Spiroplasma, or Cardinium. From this patchy dis-
tribution (i.e. high prevalence in some host populations
and low prevalence or absence in others), we can likely
conclude that none of these inherited symbionts are es-
sential in host nutrition and/or manipulation.

It is not surprising that Wolbachia was detected, as it
is the most common intracellular bacterial symbiont of
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Table 2 Major bacterial OTUs associated with M. spermotrophus (greater than 0.5% average relative abundance) based

on 16S rRNA amplicons from pyrosequencing

Phylum Class Order Family Genus Percent total relative abundance
Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Ralstonia 55.86
Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter 16.28
Actinobacteria Actinobacteria Actinomycetales Corynebacteriaceae Corynebacterium 341
Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Ralstonia 312
Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Ralstonia 259
Proteobacteria 1.29
Actinobacteria Actinobacteria Actinomycetales Corynebacteriaceae Corynebacterium 1.03
Actinobacteria Actinobacteria Actinomycetales 0.95
Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter 092
Firmicutes Clostridia Clostridiales Clostridiaceae Anaerococcus 0.79
Firmicutes 0.74
Proteobacteria 073
Proteobacteria Betaproteobacteria 0.72
Firmicutes Clostridia Clostridiales Clostridiaceae Anaerococcus 0.52
Proteobacteria Alphaproteobacteria Rhizobiales Bradyrhizobiaceae 0.50

insects [67]. Wolbachia are transmitted maternally, in
the egg cytoplasm, and many strains have evolved strat-
egies to increase the frequency of infected female hosts
in the population. Reproductive manipulating strains of
Wolbachia have been show to either cause cytoplasmic
incompatibility or distort sex ratios by killing males or in-
ducing parthenogenetic reproduction (i.e. clonal production
of females) or feminization [68]. Parthenogenesis-inducing
Wolbachia are common in Hymenoptera and have been
characterized in several parasitoid [69] and cynipid gall
wasps [70,71]. A recent study implicated Wolbachia in
parthenogenetic reproduction in Megastigmus, with 10/10
asexual species infected [64]. Treating M. pinsapinis

with the antibiotic tetracycline restored the production of
males, strongly suggesting that Wolbachia is the causative
agent of thelytoky in asexual Megastigmus. No sexual
Megastigmus species were infected with Wolbachia in the
Boivin et al. study [64]; however, we found infections in
M. amicorum and M. bipunctatus. The Wolbachia strains
that we identified from sexual Megastigmus are closely
allied with those in asexual Megastigmus. It would be
interesting to determine if parthenogenesis-induction in
Megastigmus is due to the host or the particular Wolba-
chia strain.

Rickettsia infections were discovered in three species.
Bacteria in the genus Rickettsia are well known for being
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Burkholderia cepacia M22518

insect-vectored vertebrate pathogens, such as the causal
agents of Rocky Mountain spotted fever (R. rickettsiae)
and typhus (R typhi). However, recent surveys have un-
covered many Rickettsia that are vertically transmitted
symbionts of diverse arthropods, most of which do not
feed on vertebrates [72]. Some Rickettsia symbionts have
been shown to distort host sex ratios via male-killing
[73] or parthenogenesis-induction [74]. The presence of
Rickettsia and Wolbachia in males likely rules out sex
ratio distortion in our study. Alternatively, facultative
symbionts may benefit their hosts under some circum-
stances. For example, some Wolbachia and Rickettsia in-
crease host fitness by providing protection against natural
enemies [75,76].

Phylogenetic analysis shows that closely related Rickett-
sia and Wolbachia infect distantly related Megastigmus
(Figures 1 and 2). This provides strong evidence of hori-
zontal transmission over evolutionary timescales, and is a
common pattern in facultative inherited symbionts of in-
sects [14]. In most cases, it is not known how inherited
symbionts colonize novel hosts; shared hosts and shared
natural enemies have both been implicated [77-80]. Inter-
estingly, for some inherited symbionts, horizontal trans-
mission over ecological timescales may be quite common
[19,81]. It would be useful to sequence more rapidly evolv-
ing Rickettsia genes, to determine if there was very recent
transmission between M. amicorum and M. bipunctatus.
Since both these species develop in junipers, we could
speculate that horizontal transmission occurs via shared
host plants; the Boivin et al. study of Wolbachia in asexual
Megastigmus also found evidence for such host-plant-
mediated transmission [64]. Plant-mediated transmission
may be an important and underappreciated way for sym-
bionts to colonize hosts. Indeed, a recent study showed

that an inherited Rickettsia in the sweet potato whitefly
can be transmitted via phloem [61]. Two strains of
Arsenophonus that infect planthoppers are transmitted
both transovarially and via plants, and both have been im-
plicated in plant disease [82,83]. However, as far as we are
aware, interspecific transmission via plants has not yet
been demonstrated in any inherited symbionts.

Microbial associates of M. spermotrophus
Our estimate of M. spermotrophus microbial species rich-
ness (60 + 13 OTUs) fell within the range of other studies
of insect microbiomes. Pollenivorous and predacious
Hymenoptera (bees and wasps) harbour distinct bacterial
communities with the lowest level of species richness
(11.0+ 5.4 OTUs/sample), while termites harbour the
highest species diversity (89.5 + 61.2 OTUs/sample), based
on a recent meta-analysis [84]. A recent study estimated
the diversity of bacteria associated with parasitoid wasps
from the genus Nasonia ranged from 14 to 38 bacterial
OTUs [85]. Pyrosequencing has been show to detect a
greater number of OTUs compared to traditional
methods, such as 16S rRNA clone sequencing [86]. This
might explain why the estimated bacterial diversity associ-
ated with M. spermotrophus is comparably high because
the Nasonia study and many previous insect microbiome
surveys were done using 16S rRNA clone sequencing.
Despite a relatively high overall richness, only fifteen
major OTUs are present with a total relative abundance
of 0.5% or greater. The core bacterial community of M.
spermotrophus can thus be considered to have a some-
what low diversity, characterized by bacterial OTUs that
are commonly found associated with insect guts. The
major OTUs associated with M. spermotrophus can be
grouped into five distinct phylotypes: Betaproteobacteria
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(mostly Ralstonia), Gammaproteobacteria (mostly Acine-
tobacter), Actinobacteria (Corynebacterium), Firmicutes
(mostly Anaerococcus) and Alphaproteobacteria (family
Bradyrhizobiales). Most of these OTUs are related to
bacteria that have been previously reported in insect
guts, with Acinetobacter and Corynebacterium especially
common (e.g. [85,87]). All of the major OTUs identified
below the order level are bacteria that commonly occur
in the environment, such as in soil [88] and in the rhi-
zospere [89]. Similar results are commonly found with
microbial associates of insects. For example, the micro-
bial symbionts of Tetraponera ants are closely related to
nitrogen-fixing root nodule bacteria [40]. The giant mes-
quite bug, Thasus neocalifornicus acquires an important
mutualistic gut symbiont de novo every generation from
the soil [27]. The presence of the same major OTUs in
M. spermotrophus in ovule and even Eurytoma samples
provides clues to the distribution and transmission of the
Megastigmus microbiome; it suggests that it is derived
from the environment, which, for the developing wasp, is
the ovule. Acinetobacter and Corynebacterium have been
previously cultured from within surface-sterilized seeds
and ovules [90-92].

The M. spermotrophus microbiome appears to be highly
conserved across development, as demonstrated by the
UniFrac analysis, with all of the samples tightly grouped.
This contrasts with a recent survey of microbial associates
of three Nasonia species that found that bacterial species
richness increased with development [85]. Like most higher
Hymenoptera, the larvae of M. spermotrophus have a
blind digestive system with the midgut and hind gut only
uniting during the last larval instar. Prior to pupation all
of the built-up wastes are voided in a fecal pellet, termed
the meconium [93]. During metamorphosis the larval
midgut epithelium is discarded and replaced by a new
pupal epithelium [94]. If these bacteria are associated with
the gut, how M. spermotrophus maintains its major associ-
ates throughout development is not known. Some insects,
like true bugs, termites and cockroaches, have crypts or
paunches associated with the gut that are thought to en-
hance persistence of the microbiota [6]. This physiological
feature is not well characterized in the Hymenoptera, with
the exception of some ants [95].

A single OTU assigned to the genus Ralstonia comprised
over 55% of all sequences from the M. spermotrophus sam-
ples. The high abundance and persistence of Ralstonia
throughout host development is a strong indicator that this
bacterium is an important associate of M. spermotrophus.
Ralstonia was also found to be associated with Douglas-fir
ovules and the parasitoid Eurytoma. The genus Ralstonia
contains species from ecological diverse niches, such as the
plant pathogen R. solanacearum, the opportunistic human
pathogen R. pickettii and the environmental isolate R. eury-
tropha [96]. A maximum likelihood phylogeny placed
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M. spermotrophus associated Ralstonia in a cluster with
the human pathogen R. pickettii (Figure 4). To our know-
ledge, this is the first report of Ralstonia being a very abun-
dant and potentially important component of an insect
microbiome, although Ralstonia spp. have been previously
reported from microbial surveys of insects, including the
cotton bollworm (not published; accession # EU124821),
Bartonella-positive fleas [97], an omnivorous carabid bee-
tle [98] and the Potato Psyllid (as well as the faucet water
used to water the potato plants) [99]. Recently, Husnik
et al. also report the horizontal transfer of one Ralstonia
gene into the genome of the mealybug Planococcus citri
[100]. Also, R. oxalatica was isolated from the alimentary
canal of an Indian earthworm [101].

A recent meta-analysis of 16S clone-library studies of
insect associated microbes found that Betaproteobacteria
contributed over 50% to all sequences from Hymenop-
tera [84]. The most common bacterial phylotype identi-
fied from solitary bee species, was a Betaproteobacteria
from the genus Burkholderia [35], which is closely re-
lated to Ralstonia. Burkholderia spp. have also been
identified as important mutualists of some phytophagous
true bugs (suborder Heteroptera), where they reside in
gut crypts [26-28,102,103].

The developing M. spermotrophus larva feeds on mega-
gametophyte tissue, which contains all of the seed storage
reserves, primarily in the form of starch, triacylglycerols,
and nitrogen rich proteins [104,105]. Therefore, Ralstonia
and other microbial associates of M. spermotrophus would
not likely play a role in supplementing this already rich
diet with missing essential nutrients but instead may play
a role in nutrient recycling. Parasitism by M. spermotro-
phus results in the formation of a nutrient sink, in which
the larva and associated microbes are nourished by stor-
age reserves of the megagametophyte. The reserves are
intended to provide nourishment for the developing seed-
ling or to be re-absorbed by the mother plant in the event
of megagametophyte abortion. In loblolly pine, more than
half of the nitrogen in megagametophytes comes from
the amino acid arginine [106]. Insects use the enzyme
arginase to hydrolyze arginine into ornithine and urea
[107]. Excretion of urea would result in the substantial
loss of nitrogen, especially since larvae must undergo ex-
tended periods of diapause. Very few insects are known to
produce urease, the enzyme required to convert urea into
ammonium for subsequent amino acid biosynthesis [108].
We speculate that Ralstonia or other microbial associates
of M. spermotrophus might play an important role in
nitrogen recycling by producing urease or other key en-
zymes missing from the host genome. Many insect symbi-
onts have been suggested to promote increased availability
of nitrogen in a variety of ways [5]. For example, Bloch-
mannia and Blattabacterium, the obligate nutritional sym-
bionts of carpenter ants and cockroaches, respectively, use
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ureases to recycle nitrogen from urea [109,110]. Nitrogen
recycling by symbionts has also been shown to be import-
ant during diapause in the shield bug, Parastrachia japo-
nensi [111].

It is also tempting to speculate that Ralstonia could
potentially play a role in plant manipulation. Another
Ralstonia species, R. taiwanensi, has been shown to be
capable of nodulating and fixing nitrogen in Mimosa
spp. [112], which implies an ability to manipulate plant
physiology. Alternatively, Ralstonia may not be a key as-
sociate of Megastigmus species in general, but rather a
microbe that is found in the seed environment that en-
codes enzymes required for the catabolism of seed stor-
age molecules or other essential pathways required for
the seed feeding lifestyle of M. spermotrophus.

Now that Ralstonia has been identified as a likely sym-
biont of M. spermotrophus, further targeted surveys using
Ralstonia-specific PCR primers would be helpful in deter-
mining its prevalence in other populations of M. spermo-
trophus, in other Megastigmus species, and in associated
plants. The development of strain-specific markers for
fluorescence in situ hybridization would also be useful for
localizing Ralstonia on or within M. spermotrophus and
the ovule, and following its transmission throughout its
life cycle. It would also be interesting to examine Ralsto-
nia’s role in nitrogen recycling, for example by identifying
and following the expression of ureases and other key en-
zymes during M. spermotrophus development.

Conclusions

In this study two different approaches were used to sur-
vey Megastigmus for microbial symbionts. The directed
PCR screens identified the presence of two common
heritable symbionts, Wolbachia and Rickettsia; these are
not likely distorting sex ratios in the sexual Megastigmus
species surveyed in this study. Pyrosequencing was used
to characterize the core microbiome of the Douglas-fir
seed chalcid, M. spermotrophus, which is dominated by
Ralstonia, a microbe that has not been previosly charac-
terized as an important microbial associated of an insect.
Interestingly, Ralstonia was also present in ovule and
Eurytoma samples, indicating its prevalence within the
niche of the ovule and potential horizontal transmission
route from host to parasitoid.

This initial characterization of microbial associates of
Megastigmus did not provide any insight into the poten-
tial involvement in host manipulation, although the main-
tenance of a consistent microbiome from larvae to adult
suggests that microbes may be vital to the development and
reproduction of M. spermotrophus. Many new questions are
inspired by these findings, such as, how is the microbiome
of M. spermotrophus maintained and transmitted? How
widespread is the association with Ralstonia? What is the ef-
fect of heritable symbionts in sexual Megastigmus?
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Methods

Insect samples

Several species of Megastigmus and their parasitoids
were screened for common heritable symbionts using
PCR. Adult insects were reared from seeds that were
collected from forest stands in France, Greece, Denmark
and Turkey from 1997 to 2011; detailed information
on sample species is listed in Table 1. Also, larvae of
M. spermotrophus were dissected from infested seed
collected in 2011 from seed orchards located throughout
British Columbia. Adult M. spermotrophus were reared
from this same seed. Any Eurytoma sp. parasitoids that
emerged were also collected. Wild adult female M.
spermotrophus were collected from trees located on the
University of Victoria campus in Victoria, BC. Whole in-
sect samples were stored in 95% ethanol at —20°C until
DNA extraction.

For 16S rRNA bacterial amplicon pyrosequencing,
M. spermotrophus and their parasitoids were obtained
in 2011 from heavily infested seed from the Mt. Newton
Seed Orchard, located in Saanichton, BC. The seeds
were placed at room temperature to hasten the devel-
opment of larvae and adult emergence. Larvae as well
as approximately one-week-old pupae were extracted
from surface-sterilized seeds. Adult female M. spermo-
trophus and adult Eurytoma sp. were collected upon
emergence about two and three weeks later, respectively.
Samples of uninfested ovules were also collected from
surface-sterilized seeds.

DNA extraction

Whole insects were rinsed several times with sterile water
and allowed to air dry. The samples were then placed indi-
vidually into 2 mL Micro tubes (Sarstedt) with 100 pL of
PrepMan Ultra Reagent (Applied Biosystems, USA) and
approximately twenty 1.0 mm diameter zirconia or silica
beads (BioSpec Products). Samples were homogenized
using the Mini-Beadbeater-16 (BioSpec Products) on max-
imum (3450 oscillations/min) for two 20-30 second cycles
separated by 30 seconds of centrifugation at 13,000 x g.
The samples were then incubated at 100°C for ten mi-
nutes, then cooled to room temperature for one minute,
then centrifuged for three minutes at 13,000 x g and
transferred into new Eppendorf tubes. DNA samples used
for pyrosequencing were purified by precipitation in cold
isopropanol and then washed with 70% ethanol and re-
suspended in TE buffer (pH=7.5). A NanoDrop 2000
Spectrophotometer (Thermo Scientific) was used to
determine the DNA concentration and quality. The
quality of the DNA extract was also checked by suc-
cessful PCR amplification of the mitochondrial cyto-
chrome oxidase subunit I (COI) gene using standard
primers for invertebrates (see Additional file 5). All DNA
extracts were stored at —20°C.
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Directed PCR

Directed PCRs were conducted using either Invitrogen or
ABM PCR Taq and reagents. Symbiont-specific primer-
pairs were used to screen the samples for the presence of
common heritable symbionts (see Additional file 5) with
the following infected insects used as positive controls:
Drosophila neotestacea (Wolbachia and Spiroplasma posi-
tive), Macrosteles quadrilineatus (Arsenophonus and Car-
dinium positive), and Ctenocephalides felis (Rickettsia
positive). Sterile water was used as a negative control.
Positive PCR products were separated on 1% agarose
gel, stained with eithidium bromide and visualized under
UV light.

Five microlitres of DNA from each individual extraction
within a sample subset (individuals of the same species,
sample type, location and year) were pooled (total of 32
pooled samples) and then screened using each primer set.
If a positive PCR product was amplified from a pooled sam-
ple then each individual sample was screened for presence
or absence of the corresponding symbiont using the same
primer set. Positive PCR products were validated by se-
quencing representative amplicons in both directions. Puri-
fication and sequencing of PCR products were completed
at Macrogen USA (Maryland). Forward and reverse se-
quences were aligned using MUSCLE and manually edited
using the software Geneious (v6.1.3) (Biomatters) to create
high-quality consensus sequences. A portion of mitochon-
drial COI was sequenced from one representative female
of every symbiont-positive population, using Megastig-
mus-specific primers (see Additional file 5) and compared
with other Megastigmus sequences deposited in GenBank.
Percent divergence between COI sequences from M. ami-
corum populations was calculated using MEGA 5.1 [113].

Phylogenetic analysis of Rickettsia and Wolbachia
infecting Megastigmus

A number of additional symbiont genes were amplified via
PCR and sequenced: citrate synthase gene (gltA) for Rick-
ettsia, and coxA, and gatB for Wolbachia (see Additional
file 5). Phylogenies were re-constructed using sequences
generated in this study and a sample of sequences ob-
tained from GenBank. For Wolbachia, a sample of se-
quences obtained from an independent study of Wolbachia
in parthenogenetic Megastigmus was also included [64].
Sequences were aligned using ClustalW, visually inspected
and trimmed when necessary. A maximum-likelihood tree
was generated using the Tamura 3-parameter model plus
gamma distributed rates among sites (best substitution
model identified by MEGA), with MEGA 5.1 [113], boot-
strapped 500 times.

Bacterial tag-encoded FLX amplicon pyrosequencing
Three replicates of five sample types were submitted for
bacterial tag-encoded FLX 454-pyrosequencing (bTEFAP):
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M. spermotrophus larvae, pupae and adult females, Eury-
toma sp. adults and P. menziesii ovules. Although the
27 F/519R primer set is not ideal for characterizing bacter-
ial 16S rRNA sequence from plant tissue due to chloro-
plast DNA contamination [114,115], we included ovule
samples in order to see if any trace endophytic bacteria
could be found after post-sequencing removal of plastid
sequences. Inhibitor removal and bTEFAP were com-
pleted by MR. DNA Laboratories (Shallowater, TX). In-
hibitor removal involved the use of the PowerClean DNA
Clean-up kit (MO BIO Laboratories, Inc., Carlsbad, CA)
according to the manufacturer’s protocol. The methods
used for bTEFAP are previously described in Palavesam
et al. (2012) and Shange et al. (2012) [116,117] and were
originally described by Dowd et al. (2008) [118]. Briefly, a
single-step PCR was done using the following temperature
profile: 94°C for 3 minutes, followed by 28 cycles of 94°C
for 30 seconds, 53°C for 40 seconds and 72°C for 1 minute,
with a final elongation step at 72°C for 5 minutes using
HotStarTaq Plus Master Mix Kit (Qiagen, Valencia, CA).
The 16S universal bacterial primers 27Fmod (5-AG
RGTTTGATCMTGGCTCAG-3) and 519Rmodbio (5-
GTNTTACNGCGGCKGCTG-3)) were used to amplify a
500 bp region of the 16S rRNA gene spanning the V1-V3
regions. The PCR products from each of the different sam-
ples were mixed in equal concentrations and then purified
using Agencourt Ampure beads (Agencourt Bioscience
Corporation, MA, USA). Following the manufacturer’s
guidelines, sequencing was conducted using the Roche 454
FLX titanium platform (Roche, Indianapolis, IN).

Qiime pipeline
The 454 generated Standard Format Flowgram (SFF) file
was converted into a SFF text file using Mothur (v1.23.0)
[119]. The open source software package Quantitative
Insights Into Microbial Ecology (QIIME v1.6.0) was used
to process the sequence data [120]. The raw sequencing
data was filtered using the following parameters: mini-
mum sequence length of 100 bp, maximum sequence
length of 2,000 bp and maximum homopolymer region
of eight. Also, any sequences with an average quality
score below 25 or any ambiguous bases were discarded.
This filtering step reduced the number of total se-
quences from 81,207 to 60,543. The 454 data were
then denoised to reduce the number of erroneous
OTUs [121]. Chimera detection was done independ-
ently of QIIME by implementing UCHIME through the
USEARCH (v6.0.307) program [122]. The sequences were
compared against the Gold database (http://www.drive5.
com/usearch/manual/otupipe.html, downloaded February
13, 2013). Chimeric sequences (1,190 or 1.97%) were
gleaned from the data set.

OTUs were picked with the UCLUST method with the
optimal option indicated. Similar sequences were clustered
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at the default level of 0.97 [123]. Taxonomy was assigned
to representative sequences using the RDP Classifier 2.2
method at the 0.9 confidence level [124]. Taxonomies were
based on the Greengenes database (ftp://greengenes.
microbio.me/greengenes_release/gg 12_10/, downloaded
February 1, 2013) [125,126].

Originally, the PyNast method was used to align the
representative sequences to a pre-aligned database; how-
ever, this method resulted in poor overall alignment. Al-
ternatively, representative sequences were aligned to a
Stockholm format reference of pre-aligned sequences and
secondary structures using Infernal [127]. The aligned se-
quences were filtered to remove common gap positions,
with the gap filter threshold set to 0.8 and the en-
tropy threshold set to 0.10. An approximately-maximum-
likelihood phylogenetic tree was created using FastTree
2.1.3 [128]. An OTU table in Biom format was created
and then split at the highest taxonomic ranking to remove
unclassified OTUs (likely remnant chimeric sequences).
Singletons were removed from the Biom table. Alpha di-
versity results were generated using a rarefaction depth of
5,000. In order to identify possible outliers (i.e., samples
that contain unusual or unexpected OTUs), the micro-
biome data were visualized using a correspondence ana-
lysis biplot [129]. One pupal sample (P1) and one female
sample (F4) were found to be associated with distinct
OTUs that did not cluster with the remaining samples.
Sample P1 had a relatively elevated species richness com-
pared to the other samples, likely originating from envir-
onmental contamination (data not shown). Sample F4
contained bacteria typical of human contamination. Sub-
sequently these two samples were removed from further
analysis.

Data exploration, visualization and analyses were per-
formed in R (v3.0.1) [130] on RStudio (v0.97.336) (www.
rstudio.com, downloaded August 5, 2013), mainly using
the Phyloseq R-package (v1.5.19) [131]. Data were rarefied to
an equal sampling depth of 1,962 prior to community ana-
lysis. Initial correspondence analysis and biplots were gen-
erated using the Ade4 R-package (v1.5-2) [132]. Principle
component analysis was completed using unweighted and
weighted UniFrac distances [133,134].

In order to obtain longer 16S rRNA fragments for phylo-
genetic analysis from the Spiroplasma strain infecting
Eurytoma, general 16S rRNA amplicons were generated
using the primers 63 F (5-CAGGCCTAACACATGCA
AGTC-3) [135] and 907R (5-CCGTCAATTCCTTTRA
GTTT-3’) [136]. Amplicons were then cloned using the
Strataclone kit with Solopack Competent cells (Stratagene).
Transformation was validated with PCR using M13F (5-
CACGACGTTGTAAAACGAC-3) and M13R (5-GGATA
ACAATTTCACACAGG-3). Eight clones were sent for
sequencing and one representative Spiroplasma 16S
rRNA sequence was used for further analysis. Attempts
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to clone longer Ralstonia 16S rRNA fragments were not
successful.

Ralstonia sequence from the most abundant OTU in
the pyrosequencing data was used to generate a 16S rRNA
phylogeny, along with representative Ralstonia species
and outgroup sequences, obtained from GenBank. Max-
imum likelihood analysis was performed as above, except
using the Tamura-Nei model with invariant sites and
gamma rate distribution among sites.

Additional files

Additional file 1: Summary of 454 16S rRNA sequence data. Summary
of sequence data from tag encoded FLX 454-pyrosequencing of 165 rRNA
from M. spermotrophus, Eurytoma sp. and P. menziesii ovule samples.

Additional file 2: Observed species and Chao1 species diversity
estimator rarefaction curves. Observed species richness and Chao1
species diversity estimator rarefaction curves for bacteria associated with
different life stages of M. spermotrophus, based on 165 rRNA
pyrosequencing.

Additional file 3: Analysis of phylogenetic distances. Analysis of
phylogenetic distances (UniFrac) for all OTUs associated with different
developmental stages of M. spermotrophus based on 16S rRNA amplicon
pyrosequence.

Additional file 4: Maximum likelihood phylogeny for Spiroplasma
16S rRNA. Maximum likelihood phylogeny for Spiroplasma 165 rRNA
sequence constructed using the general time reversible model of
nucleotide substitution with gamma distributed rates among sites. The
sequence generated in this study is highlighted in red. Numbers next to
the nodes indicate percentage of bootstrap support from 500 bootstrap
replicates. Nodes without numbers received less than 65% bootstrap
support.

Additional file 5: List of PCR primers and reactions conditions. List
of PCR primers and reactions conditions used to generate COI sequence
from Megastigmus spp. and screen for common heritable symbiont
infections.
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