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Abstract

Background: The salivary mucin MUC7 (previously known as MG2) can adhere to various strains
of streptococci that are primary colonizers and predominant microorganisms of the oral cavity.
Although there is a growing interest in interaction between oral pathogens and salivary mucins,
studies reporting the specific binding sites on the bacteria are rather limited. Identification and
characterization of the specific interacting proteins on the bacterial cell surface, termed adhesins,
are crucial to further understand host-pathogen interactions.

Results: We demonstrate here, using purified MUC7 to overlay blots of SDS-extracts of
Streptococcus gordonii cell surface proteins, 4 MUC7-binding bands, with apparent molecular masses
of 62, 78, 84 and 133 kDa from the Streptococcus gordonii strain, PK488. Putative adhesins were
identified by in-gel digestion and subsequent nanolLC-tandem mass spectrometry analysis of
resultant peptides. The 62 kDa and 84 kDa bands were identified as elongation factor (EF) Tu and
EF-G respectively. The 78 kDa band was a hppA gene product; the 74 kDa oligopeptide-binding
lipoprotein. The 133 kDa band contained two proteins; alpha enolase and DNA-directed RNA
polymerase, beta' subunit. Some of these proteins, for example alpha enolase are expected to be
intracellular, however, flow cytometric analysis confirmed its location on the bacterial surface.

Conclusion: Our data demonstrated that S. gordonii expressed a number of putative MUC7
recognizing proteins and these contribute to MUC7 mucin binding of this streptococcal strain.

Background

Saliva lubricates the oral cavity and contains innate
defense related proteins (i.e. cystatins, lysozyme, proline-
rich proteins, histatins, lactoperoxidase, lactotransferrin,
Poly Ig receptor, DMBT1 and mucins [1,2]) that protect
the surfaces of the mouth exposed to the external environ-
ment. Mucins are the major macromolecular component

of the secretion and human saliva has been shown to con-
tain at least two structurally and functionally distinct pop-
ulations of mucins: the high molecular weight (M, > 10°
Da) polymeric, gel-forming population, MUC5B, (MG1)
and the lower molecular weight (M, 1.2-1.5 x 10° Da)
non-polymerizing population MUC7 (formerly known as
MG2) [3-6]. MUC?7 is mainly found in the sol-phase of
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saliva and is much less abundant in the gel-phase. MUC7
is not a structural component of the acquired pellicle
formed on dental and mucosal surfaces around the mouth
tissues [7-9]. The glycosylation pattern of these two
mucins is also essentially different. MUC7 displays a rela-
tively simple and a unique O-linked oligosaccharide pro-
file that is consistent between individuals. In contrast,
MUCS5B has a much more complex O-glycan profile
showing substantial inter-individual variations [10].

One of the major functions of MUC?7 is to competitively
bind to the bacteria in soluble phase of saliva in order to
protect potential attachment sites on the tooth and
mucosal surfaces from bacterial binding. Considerable
data suggest that MUC?7 is the primary salivary mucin that
binds to oral pathogens [11-14] and also that MUC?
interacts with other protective salivary components
including lactoferrin [15] and secretory Ig A [16].

Streptococci, including S. gordonii, are the primary colo-
nizers of the dental and mucosal surfaces of the oral cavity
and the major constituents of dental plaque [17,18]. They
are also common aetiological agents of infective endocar-
ditis [19]. Binding of the bacteria to the acquired pellicle
is one of the first steps in the formation of dental plaque.
The bacteria can also bind to the pre-formed bacterial
layer (coaggregation). Bacterial adherence to these differ-
ent surfaces is achieved by cell surface proteins, termed
adhesins. Substrates may be host derived molecules and
other cells. A number of distinct families of streptococcal
adhesins are found and characterized based on the molec-
ular organization such as cell wall anchored adhesins
[20,21], lipoprotein adhesins [22,23], and anchorless
adhesins [24]. The adhesion process is accomplished by
protein (lectin)-carbohydrate and/or protein-protein
interactions [25].

There is growing interest in the interaction between
MUC?7 and streptococci. There are reports that MUC7 can
interact with various strains of streptococci [26-30], how-
ever, reports that identify the specific cell surface proteins/
adhesins are rather limited. The purpose of the current
study was to identify and characterize the surface proteins
involved in the binding of Streptococcus gordonii to salivary
mucin MUC7. Here we show that human saliva derived
MUC?7 binds at least four proteins, indicating a complex
interaction and further highlights the role of MUC?7 in
oral mucosal innate defense.

Methods

Isolation of MUC7 was carried out according to a previ-
ously described method [31], which employed a two-step
chromatographic protocol. Saliva, from a healthy male
donor, was collected into an equal volume of 8 M GuHCl,
then chromatographed on a column of Sepharose CL-4B
eluted with 4 M GuHCI. MUC7-containing fractions, as
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assessed by immunoblotting, were pooled and chromato-
graphed on a Pharmacia Mono Q HR 10/10 column,
eluted with a linear gradient of 0-0.4 M lithium perchlo-
rate/6 M urea/10 mM piperazine, pH 5, as previously
described [32]. Fractions showing MUC7-immunoreactiv-
ity were pooled then dialyzed gradually against phosphate
buffered saline (PBS).

Streptococcal strains and culture conditions

The PK488 strain of Streptococcus gordonii was supplied by
Dr. A.J.Jacob (University of Manchester). The strain is
identical to ATCC 51656 (American Type Culture Collec-
tion, Manassas, VA, USA) [33]. The bacteria was main-
tained on brain heart infusion agar plates containing
0.5% glucose at 4°C. The strain was subcultured onto the
medium every two weeks. Batch cultures of the organism
were grown at 37°C to late log phase (16-18 h) in brain
heart infusion medium with 5% CO, support.

Extraction of streptococcal cell surface proteins of the
Streptococci

The bacteria were harvested by centrifugation for 10 min
at 4,000 g 10°C, then subsequently washed three times in
PBS. Bacterial suspensions were then adjusted to an OD at
600 nm = 0.8 with PBS and washed twice with PBS. After
each wash the bacteria were pelleted by centrifugation.
Finally, the Streptococcal pellet was re-suspended in PBS
containing 2% (w/v) SDS, vortexed and incubated at
room temperature for 1 h. Next, the SDS-extract was cen-
trifuged at 10,000 rpm at 4°C for 10 min and the super-
natant containing surface extract was stored at -80°C for
further use. Protein content of the extracts was measured
by BCA protein assay kit (Pierce Chester, UK).

Analytical SDS-PAGE

Sodium dodecyl sulfate-polyacrylamide gel electrophore-
sis (SDS-PAGE) was performed in a LKB 2050 mini-gel
electrophoresis unit in a discontinuous gel system under
non-reducing conditions. Samples were mixed with load-
ing buffer [1.25 M Tris-HCI/10% SDS (w/v)/50% (v/v)
glycerol containing 0.02% (w/v) bromophenol blue].
Gels were electrophoresed (running buffer; 0.2 M Gly-
cine/0.25 M Tris-HCI, pH 8.3 containing 0.1% (w/v) SDS)
at 120 V until the dye front reached the end of the gel.
Prestained broad range molecular weight markers were
run on every gel. Following electrophoresis, gels were
stained with Brilliant blue G-colloid for 2 h, then
destained with repeated rinses of 25% (v/v) methanol.
Molecular masses of the proteins were automatically cal-
culated in a Bio-rad model GS-700 imaging densitometer
with the Profile analyst II, V. 3.11 software.

Preparative SDS-PAGE

The streptococcal cell surface extract was fractionated on a
Bio-Rad Model 491 Prep Cell. A 5 ml sample containing
20 mg Streptococcal surface protein was loaded on a mini-
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Prep Cell tube (diameter of 37 mm) prepared with a 9 cm
7.5% separating and 4 cm 4% stacking gel. The sample
was electrophoresed at 4°C, at constant 60 mA and the
elution buffer (0.2 M Glycine/0.25 M Tris-HCI, pH 8.3
containing 0.1% (w/v) SDS) flow velocity of 125 ul/min.
2.5 ml fractions were collected and stored at -80° C for fur-
ther use.

Western transfer of SDS-PAGE gels

Gels were equilibrated in transfer buffer [250 mM Tris/
20% (v/v) methanol/200 mM glycine containing 0.1%
(w/v) SDS] for 15 min prior to transfer to 0.2 pm pore size
nitrocellulose membranes using semidry electrotransfer
with a Pharmacia-LKB Multiphore II Novablot unit.
Transfer conditions were 60 mA constant for 1 h. Identical
blots were stained with amido black (0.2% (w/v), con-
taining 3% (w/v) TCA) and destained with methanol, to
check transfer efficiency.

For enolase immunoblotting, the membrane was probed
with an antibody raised against human enolase (C-19,
Santa Cruz) which was shown to cross-react with strepto-
coccal enolase [34]. Immuno-detection was performed
using ECL detection.

Blot overlay assay to detect MUCT7-binding proteins from
S. gordonii

MUC7-binding proteins were determined by an immuno-
blotting procedure using the monoclonal antibody AM-3.
This antibody is reactive against the oligosaccharide struc-
ture sialyl-Lewis* which is present on MUC7 [35,36]. After
the western transfer of the Streptococcal surface extract,
the membranes were washed in PBS 2 x 5 min and then
blocked with TBST (Tris buffered saline-Tween - 10 mM
Tris-HCl/150 mM sodium chloride, pH 8.0 containing
0.05% (v/v) Tween 20) supplemented with 1% (w/v)
skimmed milk powder 30 min. They were rinsed twice
with PBS 10 min, and incubated with MUC?7 preparation
(10 pg/ml in PBS) at 4°C overnight. In the meantime, a
replica membrane was incubated with PBS as control.
After the incubation the membranes were rinsed twice for
20 min with TBST. The membranes including replica con-
trol, were then incubated with AM-3 in TBST (1:50 dilu-
tion) for 1 h, then rinsed with TBST 2 x 10 min and
incubated with secondary antibody (IgM anti-mouse, per-
oxidase conjugated, 1:2000 dilution) in TBST for 30 min.
The membranes were rinsed with TBST 3 x 10 min. ECL
detection was carried out using an Amersham ECL kit
according to the manufacturer's instructions.

Anti-enolase labelling and flow cytometry analysis of the
bacteria

S. gordonii suspension was adjusted to OD at 250 nm of
0.5 with PBS and incubated with an anti-enolase antibody
(C-19, Santa Cruz) overnight at 4°C with end-over-end
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rotation. The bacteria were harvested by centrifugation at
3000 x g at 4°C, washed twice with ice-cold PBS. Texas
Red-labeled anti-goat IgG (Jackson ImmunoResearch)
secondary antibody was added to the bacterial suspension
and incubated for 30 min and then washed with PBS as
described above. Purified goat IgG (Invitrogen) was incu-
bated with the bacteria and used as isotype-matched con-
trol. Samples were analyzed by a CyAn ADP flow
cytometer (Beckman Coulter) and the data were analyzed
using Summit software version 4.3. A minimum of 2 x 104
cells per sample were examined.

In-gel digestion

A previously described method [37] was used for in-gel
digestion of the putative adhesins with some minor mod-
ifications. Briefly, the protein band was cut out from the
SDS-PAGE gel and transferred into a 1.5 ml eppendorf
tube; all subsequent steps were performed in the same
tube. Gel pieces were de-stained with 50 mM NH,HCO,
in 50% acetonitrile and then reduced with 10 mM dithio-
threitol in 50 mM NH,HCO; at 37°C for 1 h prior to
alkylation by addition of 55 mM iodoacetamide 1 h in the
dark at room temperature. The gel pieces were washed in
100 mM NH,HCO; before dehydrating in acetonitrile and
then rehydrating in 100 mM NH,HCO;. Gel pieces were
dehydrated once again in acetonitrile and dried in the vac-
uum centrifuge (about 30 min). Trypsin (1 ng/pl in 50
mM NH,HCO;) was added to the dried gel pieces and left
for 30 min in ice. Excess digestion buffer was replaced
with the same buffer (10 puL) without trypsin and the gel
pieces were incubated 24 h at 37 °C. Extraction of the pep-
tides was performed in two steps; 50 puL of 25 mM
NH,HCO; for 30 min and 50 pL of 5% (v/v) formic acid
in 50% acetonitrile (v/v) 2 x 20 min. Extracts obtained
from each step, were combined, then dried down and ana-
lyzed by LC MS/MS.

Protein identification by tandem mass spectrometry

Digested samples were introduced to a Waters Q-Tof
micro, hybrid quadropole orthogonal acceleration time-
flight mass spectrometer via a Waters CapLC system
which was configured with a PepMap™ C18 (LC Packing,
300 um ID x 5 mm) pre-concentration column in series
with a Atlantis® (Waters) dC18 NanoEase™ (75 m x 150
mm) nanoscale analytical column. Samples were sepa-
rated on the column with a gradient of 5% acetonitrile in
0.1% formic acid to 60% acetonitrile in 0.1% formic acid
over 45 min. All data were acquired using Masslynx 4.0
software. The mass spectrometer data directed analysis
(DDA) acquired MS survey data from m/z 200 to 1500
with the criteria for MS to MS/MS including ion intensity
and charge state using a 1-second MS survey scan followed
by 1.5-second MS/MS scans, each on three different pre-
cursor ions. The Q-Tof micro was programmed to ignore
any singly charged species and the collision energy used to
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perform MS/MS was carried out according to the mass and
charge state of the eluting peptide. Precursors detected
were excluded from any further MS/MS experiment for
180 seconds. All analyses were repeated twice for each
sample, and peptides identified in the first run were
excluded from the second analysis.

Data processing and database searching

The raw data acquired were processed using Proteinlynx
module of Masslynx 4.0 to produce *.pkl (peaklist) files.
The peptide QA filter was 30 to eliminate poor quality
spectra and the minimum peak width at half height was
set to 4 to eliminate background noise peaks. Smoothing
(x2 Savitzky Golay) and polynomial fitting were per-
formed on all peaks and the centroid taken at 80% of the
peak height. The data processed were searched against
National Center for Biotechnology Information (NCBI)
non-redundant (nr) protein database (version 20050805;
2,739,666 sequences) and Swiss-Prot (Release 48.7;
190,255 sequences) using an in house MASCOT (Matrix
Science, UK) search engine (Version 2.0). Parameters used
for the MASCOT search were: Taxonomy Bacteria (Eubac-
teria), 0.2 Da mass accuracy for parent ions and 0.3 Da
accuracy for fragment ions, one missed cleavage was
allowed, carbamidomethyl-modification of cysteine and
methionine oxidation were used as fixed and variable
modifications respectively.

Results

Purification of MUC7

A rapid two step chromatographic protocol as described
by Mehrotra et al. [31] was applied to purify MUC7 from
the saliva. This method provided the recovery of this mol-
ecule at high purity and in adequate amount (750 pg/ml,
as assessed by refractive index measurement, data not
shown), enabling MUC7-streptococcus binding studies.
Purity of the MUC7 preparation was assessed by SDS-
PAGE, Western blotting and mass spectrometry. The final
purified MUC7 pool from the Mono Q HR 10/10 ion
exchange column was electrophoresed in a Midget 7.5%
SDS-PAGE gel under reducing conditions and visualized
by Coomassie blue staining (Figure 1A). The pool con-
tained a detectable amount of a protein with apparent M,
170 kDa, while no other proteins were visualized. This
protein band was subjected to in-gel digestion and the
resultant peptides were analysed by LC-MS/MS. Three
peptides (SHFELPHYPGLLAHQKPFIR, LPPSPNNPPK,
and FLLYMK) from the MUC?7 core protein were clearly
identified by mass spectrometry. The gel was also trans-
ferred to nitrocellulose membranes and probed with the
AM-3 monoclonal antibody. AM-3 reactivity showed one
distinct band at the same region with Coomassie blue
stained protein which was later identified as MUC7 (Fig-
ure 1B).
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SDS-PAGE and Western blot analysis of purified
MUCT7 preparation. MUCY purified by employing a two-
step chromatographic protocol as described in Methods. (A)
Final purified MUC7 pool from Mono Q HR 10/10 ion
exchange column was electrophoresed in a Midget 7.5% SDS-
PAGE gel under reducing conditions and visualized by
Coomassie blue staining and Western transferred to nitro-
cellulose membranes and probed with AM-3 monoclonal
antibody (B). Positions of the molecular weight markers are
indicated (kDa).

Extraction and separation of SDS-extracted Streptococcal
surface proteins

SDS-extracted proteins from intact S. gordonii were sepa-
rated by SDS-PAGE under non-reducing conditions (Fig-
ure 2). The extract yielded a large number of bands; at
least 30 bands were observed on the gel. In order to check
for possible cell lysis and hence contamination by intrac-
ellular proteins, the extract was examined for presence of
DNA by UV spectrophotometry but none was detected
(260/280 ratio was smaller than 0.6, data not shown).

Identification of Putative MUCT binding proteins by blot
overlay assay

In order to identify streptococcal proteins that bind
MUC?7, the SDS-extracted proteins were Western blotted
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Figure 2

Protein profile of SDS-extracted surface proteins
from S. gordonii: 10 ng of the SDS-extract supernatant
from S. gordonii was electrophoresed on a 10% SDS-PAGE
gel under non-reducing condition. Separated proteins were
stained by Coomassie blue. Positions of the molecular weight
markers are indicated (kDa). Results are shown as one rep-
resentative experiment of three different S. gordonii prepara-
tions.

onto nitrocellulose membranes and incubated with the
MUC?7 preparation. Mucin binding was quantified by
immunoblotting with an antibody against a glycan on
MUC?. The transfer of the separated proteins to nitrocel-
lulose membranes was assessed by a visual comparison of
blots stained with amido black compared to replica SDS-
PAGE gels stained with Coomassie blue (Figure 3A). The
comparison shows that all bands seen in the SDS-PAGE
gel (Figure 2) were represented on the membrane. The
extracted and separated proteins were blotted onto nitro-
cellulose and subsequently incubated with purified
MUC7 (50 pg/ml) preparation. Detection of bound
MUC?7 with monoclonal antibody AM-3 identified several
putative adhesin bands with apparent molecular mass 62,
78, 84, 133 kDa (Figure 3B). A control replica Western
blot probed with monoclonal antibody AM-3 and second-
ary antibody without prior incubation with MUC7 did
not visualize any bands (Figure 3C).

Further characterization of the MUC7-binding proteins
required their preparative separation and purification;
hence, the SDS-extracted proteins from intact S. gordonii
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were fractionated by preparative SDS-PAGE and the
resulting fractions were analyzed by analytical SDS-PAGE
(Figure 4). The electrophoretic analysis of the selected
fractions indicated that putative MUC7-binding bands
could be separated from other streptococcal proteins (Fig-
ure 4A). This separation of the adhesin bands from the
nearest contaminant allowed a cleaner sample for in-gel
digestion and subsequent protein identification. In order
to determine the fractions that contained MUC7 binding
proteins, aliquots of the fractions from the preparative
electrophoresis were transferred to the nitrocellulose
membranes by slot blotting and probed with 50 pg/ml
MUC?7 in PBS (Figure 4B). Antibody reactivity was
detected around the fractions 12-13 (62 kDa), 20-21 (74
kDa), 24-25 (84 kDa) and 44-45 (133 kDa), confirming
the result obtained from Western transfer and following
overlay assay as described above.

Putative adhesin bands were subjected to in-gel digestion
and the resultant peptides were analyzed by LC-MS/MS.
Database searching using the MS/MS peptide fragmenta-
tion data revealed identification of each band with high
probability identity scores and extensive homology (p <
0.005) (table 1). Two significant protein identifications
were revealed from the 133 kDa band: one was streptococ-
cal Enolase (15 peptides, 37% coverage, Mr 47 kDa) and
the other was streptococcal DNA-directed RNA polymer-
ase, beta' subunit (11 peptides, 13% coverage, Mr 135
kDa). The 84 kDa band also contained two streptococcal
proteins; translation elongation factor G, EF-G (47 pep-
tides, 53% coverage, Mr 76 kDa), and SecA protein (7 pep-
tides, 10% coverage, Mr 95 kDa). The 78 kDa band was
identified as oligopeptide-binding lipoprotein (4 peptides,
6% coverage, Mr 74 kDa). Translational elongation factor,
EF-Tu (57 peptides, 55% coverage, Mr 43,943), was the
major protein in the 62 kDa band.

The majority of the putative MUC7-binding proteins
identified are supposedly intracellular proteins suggesting
the SDS-extraction had caused cell lysis. To address this
issue, we performed flow cytometry analysis using an anti-
a-enolase antibody to investigate whether this protein
was present at the cell surface of S. gordonii. The bacteria
showed a strong signal for a-enolase indicating its cell sur-
face expression (Figure 5a). It is noteworthy that a-eno-
lase which has a predicted Mr of 47 kDa was observed to
have an apparent Mr of 133 kDa (table 1 and Figure 5B-
U). However, boiling with SDS and/or reduction of the
extract resulted in a change in apparent Mr to the expected
value of approx. 47 kDa (Figure 5B-R).

Discussion
MUCY? is responsible for modulation of the oral microbial
flora by selective attachment and following clearance of
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Figure 3

Identification of putative mucin binding proteins by
blot overlay assay. SDS-extracted putative surface pro-
teins were separated by a 7% SDS-PAGE and Western blot-
ted onto nitrocellulose and incubated with purified MUC7
preparation (50 pg/ml). Binding of MUCY7 to putative surface
proteins determined by immunological procedures probing
the membrane with AM-3 antibody and ECL detection (B).
Molecular masses of the MUC7-binding proteins were calcu-
lated in Bio-rad model GS-700 imaging densitometer and it's
PC compatible software. A control Western blot, which had
been incubated with PBS instead of MUC7 preparation was
probed with AM-3 antibody and subjected to ECL detection
(€). The efficiency of the Western transfer of the separated
SDS-extracted proteins was assessed by amido black staining
of the membranes (A). Positions of the molecular weight
markers are indicated (kDa). Results are shown as one rep-
resentative experiment of multiple independent prepara-
tions.

certain microorganisms. There are some reports that
MUC7 can adhere to various strains of streptococci [26-
30] which are the primary colonizers and predominant
microorganisms of the oral cavity. In order to further
understand these interactions and their consequences, the
specific streptococcal surface proteins, in other word
adhesins, that bind MUC7 must be identified. Although
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there has been growing interest in MUC7-streptococcal
interaction, there are limited reports that have identified
specific MUC?7 binding adhesins in the literature. Here we
have identified, using highly purified MUC7 mucin in a
blot overlay assay of SDS extracted S. gordonii proteins, a
number of putative MUC7-specific binding proteins.

At first glance, the majority of the proteins identified as
putative MUC7 binding proteins appear to be intracellu-
lar in origin, however, there are growing reports in the lit-
erature that most of these proteins can also be present on
the surface of the bacteria and are involved in extracellular
interactions (see below). Although these proteins do not
have a signal sequence, they are somehow secreted by an
unknown mechanism and are believed to associate with
the bacterial surface to become functional [24].

Tandem mass spectrometry analysis of the 133 kDa band
identified the glycolytic enzyme enolase and the B-subu-
nit DNA-directed RNA polymerase, both supposedly
intracellular proteins. However, presence of cell surface
enolase and its interaction with extracellular plas-
min(ogen) has been shown in a number of studies on dif-
ferent streptococcal species [38-41]. It has also been
shown that surface a-enolase from Streptococcus mutans
interacts with human plasminogen and salivary mucin
MG2 (MUC?7) [26]. Indeed, we provide evidence here by
flow cytometric analysis that a-enolase is present at the
surface of S. gordonii. It is noteworthy that the 47 kDa eno-
lase protein was identified from the digestion of 133 kDa
band, suggesting its possible oligomerization and/or
modification, perhaps glycosylation or interaction with
other proteins. Our immunoblot analysis, using an a-eno-
lase antibody indicated that boiling with SDS and/or
using a reducing agent moves the anti-enolase response
from 133 kDa to the 47 kDa region (Figure 5B) suggesting
an interaction with itself or other protein(s). The other
protein identified in the 133 kDa band was DNA-directed
RNA polymerase (RNAP) which is mainly located in the
cytoplasm, however, Beckman and coworkers [42], dem-
onstrated that DNA-directed RNA polymerase subunit
from Group B streptococci is a candidate cell surface pro-
tein that binds to the extracellular matrix protein,
fibronectin.

We have also identified elongation factors as putative
MUC7-binding proteins; the 84 kDa and 62 kDa protein
bands were shown to contain EF-G and EF-Tu respectively.
This is again somewhat surprising since EF-Tu, in general,
is an intracellular protein that promotes the GTP-depend-
ent binding of aminoacyl-tRNA to the a-site of ribosomes
during protein biosynthesis [43]. However, there are sev-
eral reports that some intracellular proteins, including
elongation factors EF-G, EF-Ts, EF-P, and EF-Tu, can be
localized on the cell surface of the pathogens and interact
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Figure 4

Preparative SDS-PAGE of SDS-extract from Streptococcus gordonii PK488 and identification of MUC7 bind-
ing proteins. Twenty milligrams of the surface extract from S. gordonii was electrophoresed on a 7.5% preparative electro-
phoresis in a Bio-Rad mini-prep cell and (A) selected fractions were electrophoresed on 7.5% SDS-PAGE gels, proteins
visualized with silver stain. (B) Selected fractions were transferred onto nitrocellulose membranes by slot blotting and probed
with MUCY7 preparation. MUC7 binding was determined by immunoblotting as described in Material and Methods. Positions of

molecular weight markers are indicated (kDa).

with extracellular proteins [39,41,44,45]. Furthermore, it
has been demonstrated in a previous study that elonga-
tion factor Tu (Ef-Tu) from Lactobacillus johnsonii is the
main cell surface protein that mediates its binding to
intestinal epithelial cells and mucins [46].

Expression of cell surface lipoproteins of Streptococcus gor-
donii is related to its adherence and coaggregation [22]. It
has been shown previously that the 76 kDa lipoprotein,
termed SarA (hppA) from S. gordonii is a crucial cell surface
protein that enables the bacteria to aggregate and coaggre-

gate with certain microorganisms [23]. Here, we have
clearly identified that the 78 kDa putative MUC7-binding
band contains the hppA gene product, oligopeptide bind-
ing lipoprotein. This cell surface lipoprotein has been
shown to be essential for uptake of hexa- and heptapep-
tides as source of nutrients to the organism [47]. Our
results indicate that MUC7 binds to this lipoprotein
adhesin; possibly this binding hinders the lipoproteins
function in nutrient uptake and preventing adhesion and
aggregation to the mucosal and/or dental surfaces.
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Table I: Identified proteins by LC-MS/MS analysis from the digestion of putative adhesin bands. Proteins are ranked according to their

probability score.

Gel digestion Protein hits Species Mw Score/peptides/coverage
133 kDa band* |- alpha Enolase S. gordonii 47,103 727/15/137%
2- DNA-directed RNA polymerase, beta' subunit Streptococcus 134,965 560/13/13%
84 kDa band* I- translation elongation factor G, EF-G Streptococcus 76,620 1251/47/53%
2- SecA S. gordonii 95,193 229/7/10%
78 kDa band* 1-Oligopeptide-binding lipoprotein S. gordonii 76,015 438/12/18%
2- Heat shock protein, chaperonin S. termophilus 64,738 197/4/6%
62 kDa band* I-Translation elongation factor Tu, EF-Tu Streptococcus 43,943 1135/57/55%
2- Pyruvate kinase Streptococcus 54,777 46719/24%

* Molecular masses of the putative adhesin bands were calculated in Bio-rad model GS-700 imaging densitometer and it's PC compatible software.

Detergent extraction of surface proteins from different
streptococcal species has been successfully applied to
study different aspects of their surface proteins, including
identifying mucin binding adhesins [48,49]. In the cur-
rent study, extraction of streptococcal cell surface proteins
was achieved by SDS, which has been used previously to
extract lipoprotein adhesins from S. gordonii [47,50]. The
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Figure 5

Flow cytometry and SDS-PAGE analysis of S. gordonii
surface enolase. A)- Intact S. gordonii preparation was
stained with a polyclonal antibody for a-enolase (C-19). Spe-
cific secondary antibody coupled with Texas Red (anti goat)
was used for detection (filled black) and compared with iso-
type control (filled gray). Results are shown as one repre-
sentative experiment of three different S. gordonii
preparations. B)- An aliquot from the surface extract from S.
gordonii were separated on a 4-20% gradient SDS-PAGE gel,
unreduced (U, lane 1) and reduced (R, lane 2). The gel
was Western blotted onto nitrocellulose membrane and
probed with anti-enolase antibody. Positions of the molecu-
lar markers are indicated (kDa).

SDS-PAGE profiles of the SDS extracted proteins observed
here are in general agreement with published data [51].

In order to identify MUC?7 binding proteins from S. gordo-
nii, a blot overlay assay was employed. This method has
been successfully employed to investigate mucin-bacteria
interactions by various investigators [22,44,46]. For exam-
ple, Murray et al. [52] demonstrated that detergent-
extracted S. gordonii surface proteins were able to bind a
trisaccharide that is later shown as a major oligosaccha-
ride structure on MUC?7 [53]. Furthermore, Carnoy et al.
[54] used a similar strategy that was employed here (west-
ern blotting of extracted bacterial protein and subsequent
probing with mucins) to identify Pseudomonas aeruginosa
outer membrane adhesins that bind respiratory mucins.
However, none of these studies have identified the spe-
cific bacterial proteins that bind to the mucins.

Conclusion

In summary, the identification and characterization of
specific mucin binding proteins is crucial to understand
host-pathogen interaction. Here we have identified puta-
tive MUC7-binding surface proteins from Streptococcus
gordonii. Additional experiments should be done to con-
firm and further characterize the interaction of these pro-
teins with the mucin and their in vivo significance.
Moreover, their role with respect to bacterial pathogenesis
and host defense remains to be elucidated.

Abbreviations
MUC7: mucin 7; MG2: mucus glycoprotein2; MS: mass
spectrometry, EF-Tu: elongation factor Tu;
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