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Abstract
Background: To date, only few compounds targeting the AI-2 based quorum sensing (QS) system
are known. In the present study, we screened cinnamaldehyde and substituted cinnamaldehydes for
their ability to interfere with AI-2 based QS. The mechanism of QS inhibition was elucidated by
measuring the effect on bioluminescence in several Vibrio harveyi mutants. We also studied in vitro
the ability of these compounds to interfere with biofilm formation, stress response and virulence
of Vibrio spp. The compounds were also evaluated in an in vivo assay measuring the reduction of
Vibrio harveyi virulence towards Artemia shrimp.

Results: Our results indicate that cinnamaldehyde and several substituted derivatives interfere
with AI-2 based QS without inhibiting bacterial growth. The active compounds neither interfered
with the bioluminescence system as such, nor with the production of AI-2. Study of the effect in
various mutants suggested that the target protein is LuxR. Mobility shift assays revealed a decreased
DNA-binding ability of LuxR. The compounds were further shown to (i) inhibit biofilm formation
in several Vibrio spp., (ii) result in a reduced ability to survive starvation and antibiotic treatment,
(iii) reduce pigment and protease production in Vibrio anguillarum and (iv) protect gnotobiotic
Artemia shrimp against virulent Vibrio harveyi BB120.

Conclusion: Cinnamaldehyde and cinnamaldehyde derivatives interfere with AI-2 based QS in
various Vibrio spp. by decreasing the DNA-binding ability of LuxR. The use of these compounds
resulted in several marked phenotypic changes, including reduced virulence and increased
susceptibility to stress. Since inhibitors of AI-2 based quorum sensing are rare, and considering the
role of AI-2 in several processes these compounds may be useful leads towards antipathogenic
drugs.
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Background
Vibriosis, caused by Vibrio spp., is a major disease of
marine fish and shellfish and is an important cause of eco-
nomic loss in aquaculture [1,2]. Until recently prophylac-
tic antibiotics were extensively used in aquaculture [3,4].
However, overuse of antibiotics resulted in increased rates
of resistance so that novel approaches are required to
manage vibriosis [5]. A possible novel target is the bacte-
rial communication system. Bacteria monitor their popu-
lation densities through the production and sensing of
small signal molecules called autoinducers, a process enti-
tled as quorum sensing (QS). To date three types of QS
systems have been identified in Vibrio spp. [6]. Acylated
homoserine lactones (AHL) are used as signal molecules
in the LuxM/N QS system [7], while in the CqsA/S system,
(S)-3-hydroxytridecan-4-one ("Cholera autoinducer 1",
CAI-1) is used [8]. A third QS system appears to be shared
by many Gram-positive and Gram-negative bacteria and is
based on a mixture of interconvertible molecules collec-
tively referred to as autoinducer-2 (AI-2) [9]. A key
enzyme in the production of AI-2 is LuxS. LuxS catalyzes
the cleavage of S-ribosylhomocysteine to homocysteine
and 4,5-dihydroxy-2,3-pentanedione (DPD) [10]. DPD
will subsequently undergo spontaneous derivatizations,
forming a mixture of molecules, including (2R,4S)-2-
methyl-2,3,3,4-tetrahydroxytetrahydrofuran (R-THMF)
and (2S,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydro-
furan-borate (S-THMF-borate) [11]. Although not all QS
systems are present in all Vibrio spp., most of them con-
tain the AI-2 based QS system [12]. In Vibrio spp. AI-2
binds to LuxP, a periplasmic AI-2 receptor that is associ-
ated with the LuxQ sensor kinase-phosphatase. At low
population density only basal amounts of diffusible sig-
nal molecules are produced, and in this situation LuxQ
will act as a kinase resulting in a phosphorylation of the
response regulator LuxO through a cascade involving
LuxU. Phosphorylation activates LuxO resulting in the
production of small regulatory RNAs [13]. These small
RNAs, together with the chaperone protein Hfq, will
destabilize mRNA encoding the response regulator LuxR.
However, when population density is sufficiently high,
AI-2 will bind to LuxP and as a result LuxQ will act as a
phosphatase, leading to a dephosphorylation of LuxO
[14]. Since dephosphorylated LuxO is inactive, no small
regulatory RNAs will be formed and the LuxR mRNA
remains stable, resulting in the production of LuxR and
ultimately an altered gene expression pattern. AI-2 based
QS was found to play an important role in regulating the
production of several virulence factors, biofilm formation
and stress responses in several Vibrio spp. [15-17] and it
was found to be associated with virulence as shown in sev-
eral in vivo assays [18,19]. In contrast, in Vibrio cholerae,
CAI-1 was found to be the principle signal molecule in vir-
ulence regulation [8]. Because of this involvement in vir-
ulence, inhibitors of AI-2 based QS have been proposed as

novel antipathogenic agents. While there is a growing
interest in and evidence for the use of these antipatho-
genic substances to interfere with interspecies QS in the
control of virulence and biofilm formation, only a few
inhibitors of AI-2 based QS are known, including halo-
genated furanones and cinnamaldehyde [20-23]. Halo-
genated furanones have previously been shown to disrupt
AHL and AI-2 based quorum sensing in Vibrio spp. by
decreasing the DNA-binding activity of the response regu-
lator LuxR [24-26]. Halogenated furanones can attenuate
the virulence of several Vibrio spp. in gnotobiotic brine
shrimp Artemia franciscana and their use results in a
reversal of the negative effects of Vibrio harveyi BB120
towards rotifers [27,28]. Unfortunately, the toxicity of
halogenated furanones towards both brine shrimp and
rotifers limits their use. In contrast, cinnamaldehyde is a
non-toxic synthetic flavouring substance that is widely
used in food, beverages, chewing gum, and the perfume
and food chemistry, and is generally recognised as safe
[29]. Cinnamaldehyde concentrations in food range from
4 ppm to more than 300 ppm [30]. Although cinnamal-
dehyde is known to be a QS-inhibitor [21], its exact mech-
anism of action remains to be elucidated. The goal of the
present study was to determine the mechanism of action
of cinnamaldehyde and to evaluate its effect on virulence
of Vibrio spp. in vitro and in vivo.

Results and discussion
Effect of cinnamaldehyde and cinnamaldehyde derivatives 
on microbial growth
When used in concentrations up to 150 μM, cinnamalde-
hyde and most cinnamaldehyde derivatives (Fig. 1) had
no inhibitory effect on the growth of strains in the present
study (data not shown). The same was true for 4-NO2-cin-
namaldehyde, but only in concentrations up to 50 μM. In
all further experiments, 100 μM was used (except for 4-
NO2-cinnamaldehyde, 25 μM), unless otherwise men-
tioned.

Effect of cinnamaldehyde and 2-NO2-cinnamaldehyde on 
bioluminescence
To rule out direct interference with the bioluminescence
system of Vibrio harveyi, a constitutively bioluminescent
strain was constructed. A plasmid containing luxCDABE
genes under lacZ promotion was conjugated into
Escherichia coli DH5α (a strain defective in AI-2 produc-
tion). The bioluminescence was not inhibited by cin-
namaldehyde and cinnamaldehyde derivatives (data not
shown) and these results indicate that the enzymes of
Vibrio harveyi involved in bioluminescence are not inhib-
ited by cinnamaldehyde or cinnamaldehyde derivatives.
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Effect of cinnamaldehyde and cinnamaldehyde derivatives 
on AI-2 based QS
Since bioluminescence is a QS regulated phenotype in
Vibrio harveyi, we evaluated the effect of the different com-
pounds on bioluminescence in this species. In a first
screening we used Vibrio harveyi BB170. It was observed

that all of the compounds blocked the AI-2 QS system in
a concentration-dependent way (Fig. 2). At 100 μM, cin-
namaldehyde and 2-NO2-cinnamaldehyde were found to
be the most active compounds, yielding an inhibition of
65 ± 13% and 62 ± 7%, respectively. 2-MeO-cinnamalde-
hyde, 4-MeO-cinnamaldehyde and 4-Me2N-cinnamalde-

Cinnamaldehyde and cinnamaldehyde derivatives used in this studyFigure 1
Cinnamaldehyde and cinnamaldehyde derivatives used in this study.

     
Compound abbreviation R1 R2 MW 

    (g/mol) 

Cinnamaldehyde CA H H 132.16 
4-methoxy-cinnamaldehyde 4-MeO-CA OMe- H 162.19 
2-methoxy-cinnamaldehyde 2-MeO-CA H OMe- 162.19 

4-nitro-cinnamaldehyde 4-NO2-CA NO2- H 177.16 
2-nitro-cinnamaldehyde 2-NO2-CA H NO2- 177.16 

4-dimethyl-amino-
cinnamaldehyde 

4-Me2N-CA Me2N- H 175.23 
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Effect of cinnamaldehyde and cinnamaldehyde derivatives on AI-2 based QSFigure 2
Effect of cinnamaldehyde and cinnamaldehyde derivatives on AI-2 based QS. Bioluminescence in Vibrio harveyi 
BB170 as a function of the concentration of cinnamaldehyde and cinnamaldehyde derivatives. Bioluminescence measurements 
were performed 6 h after the addition of the compounds. Bioluminescence of the control (without addition of compound) was 
set at 100% and the responses for other samples were normalised accordingly. The error bars represent the standard devia-
tion.
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hyde were found to be less active at this concentration,
with inhibitions of 14 ± 5%, 34 ± 9% and 17 ± 1%, respec-
tively. The effect of 4-NO2-cinnamaldehyde was only eval-
uated at lower concentrations because of its growth
inhibitory effect. It was found to be the most active com-
pound at concentrations of 25 and 50 μM, with inhibi-
tions of 12 ± 11% and 33 ± 7%, respectively. In general,
the QS inhibition assay detected several active QS inhibi-
tors and some striking structure-activity relationships. The
inhibitory effect was highly dependent on the substitution
pattern of the aromatic ring. Replacement of the dimeth-
ylamine (Me2N) substituent with a methoxy (MeO) or a
nitro (NO2) group enhanced the activity. In both the
methoxy and the nitro series the activity dropped (approx-
imately ± 10–20%) upon moving the substituent from the
para to the ortho position. In general, no cinnamaldehyde
derivative was found to be more active than the unsubsti-
tuted cinnamaldehyde at concentrations of 100 μM and
only one compound, 2-NO2-cinnamaldehyde, was found
to result in the same level of inhibition. At lower concen-
trations, 4-NO2-cinnamaldehyde was significantly more
active than the unsubstituted cinnamaldehyde, but the
growth inhibitory effect of this compound prohibited its
testing at higher concentrations.

Effect of cinnamaldehyde and cinnamaldehyde derivatives 
on the bioluminescence of Vibrio harveyi QS mutants
Bioluminescence in Vibrio harveyi BB170 is mainly con-
trolled by AI-2, as this strain is not responsive to AHL
stimulation [7]. Hence we limited the possible target of
cinnamaldehyde and cinnamaldehyde derivatives to the
AI-2 QS system. To determine the molecular target within
the AI-2 QS pathway we measured the effect of cinnamal-
dehyde and cinnamaldehyde derivatives on the biolumi-
nescence in different QS mutants. Vibrio harveyi MM30
has a mutation in the luxS gene, making it incapable of
producing AI-2. However, this strain will react to exoge-
nously added AI-2 with activation of the QS transduction
system leading to bioluminescence. Inhibition of biolu-
minescence in this mutant would suggest the absence of
an inhibitory effect on LuxS. Further we evaluated the
effect of the test compounds on the production of AI-2 in
Escherichia coli K12. The Vibrio harveyi JAF553 and JAF483
mutants contain a point mutation in the luxU and luxO
genes, respectively, thereby preventing their phosphorelay
capacity. Vibrio harveyi BNL258 has a Tn5 insertion in the
hfq gene, resulting in a non-functional Hfq protein. Vibrio
harveyi strains JAF553, JAF483 and BNL258 are all consti-
tutively luminescent and inhibition of bioluminescence
in one of these indicates that the cinnamaldehyde com-
pounds act downstream of the mutated protein. Cin-
namaldehyde and 2-NO2-cinnamaldehyde were found to
block bioluminescence in Vibrio harveyi MM30 (Fig. 3),

Effect of cinnamaldehyde and 2-NO2-cinnamaldehyde on the bioluminescence of wild type Vibrio harveyi BB120 and the different Vibrio harveyi QS mutantsFigure 3
Effect of cinnamaldehyde and 2-NO2-cinnamaldehyde on the bioluminescence of wild type Vibrio harveyi BB120 
and the different Vibrio harveyi QS mutants. The percentage of bioluminescence of the Vibrio harveyi wild type BB120 and 
the mutants MM30, JAF553, JAF483 and BNL258 with 100 μM cinnamaldehyde (white bars) or 100 μM 2-NO2-cinnamaldehyde 
(black bars) are presented. Measurements were performed 6 h after the addition of the compounds. Bioluminescence of the 
control (without addition of compound) was set at 100% and the response for the other samples were normalised accordingly. 
The error bars represent the standard deviation.
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suggesting that these compounds do not exert their effect
at the level of AI-2 production but rather at the level of the
QS transduction system. Affirmatively, the supernatants
of Escherichia coli K12 treated with cinnamaldehyde and
cinnamaldehyde derivatives revealed no difference in AI-
2 activity compared to the control (data not shown). Cin-
namaldehyde and 2-NO2-cinnamaldehyde were found to
block bioluminescence to the same extent in all other
mutants tested (Fig. 3). This suggests that the target of cin-
namaldehyde and cinnamaldehyde derivatives is the
downstream component of the AI-2 signalling transduc-
tion pathway, the transcriptional regulatory protein LuxR.

Effect of cinnamaldehyde on LuxR protein levels and on 
LuxR DNA-binding activity
Using purified LuxR protein, the presence of 0.19 mM and
0.75 mM cinnamaldehyde resulted in a maximal differ-
ence in LuxR DNA shift compared to the untreated control
(Fig. 4a). These data indicate that in vitro binding of the
transcriptional regulator LuxR to its promoter sequence is
affected in the presence of cinnamaldehyde. Surprisingly,
when adding higher concentrations of cinnamaldehyde
(1.9 mM) no difference in shift could be observed any-
more. This inconsistency was also observed for high

furanone concentrations and may be due to aspecific
interactions with DNA and/or protein, although the exact
reasons for this remain unknown (C. Miyamoto, unpub-
lished data). Purified LuxR was also used to test whether
cinnamaldehyde resulted in protein degradation. Three
samples of LuxR containing varying amounts of cin-
namaldehyde (0.19, 0.75 and 1.9 mM) and an untreated
control were stained following electrophoresis on a 10%
SDS-PAGE gel and were shown not to have been affected
by cinnamaldehyde (Fig. 4b). To test whether the DNA-
binding ability was also altered in vivo, lysates of Vibrio
harveyi cells that were grown in the presence and absence
of various cinnamaldehyde concentrations were also
tested for their ability to cause a mobility shift of LuxR
DNA (data not shown). Surprisingly, no effects were
observed with concentrations < 1 mM. Using 1 mM cin-
namaldehyde, there was about 4-fold less shift of LuxR
DNA for the same amount of total protein in the lysate of
Vibrio harveyi BB120 treated with cinnamaldehyde. There
are several possible explanations for this apparent contra-
diction in terms of cinnamaldehyde concentrations
required to cause a band shift. First of all, there may be
considerable differences between the extra- and intracellu-
lar cinnamaldehyde concentrations, possibly explaining
why we observed a shift with 0.19 mM cinnamaldehyde
when purified LuxR protein was used but that higher con-
centrations were required when cell lysates were used. Sec-
ondly, there are no data on how much inhibition of
binding of LuxR to its promotor is required in order to
observe phenotypic changes (e.g. changes in biolumines-
cence). It may very well be that relatively minor changes
in LuxR DNA binding (caused by relatively low cinnamal-
dehyde concentrations) are sufficient to cause reductions
in bioluminescence but would go unnoticed in the gel
shift assay. Combined, our data indicate that in the pres-
ence of cinnamaldehyde binding of the transcriptional
regulator LuxR to its promoter sequence is affected, while
leaving the protein intact. However, further research is
needed to explain the differences between the in vitro and
in vivo situation in terms of the cinnamaldehyde concen-
tration required to observe this effect. Interestingly, the
best-studied QS inhibitors, halogenated furanones, also
interfere with binding of LuxR to its promoter sequence
without degrading the protein [26].

Effect of cinnamaldehyde and cinnamaldehyde derivatives 
on Vibrio anguillarum protease and pigment production
Cinnamaldehyde and 2-NO2-cinnamaldehyde were
found to decrease protease activity by 34 ± 2% and 49 ±
5%, respectively after 24 h (Fig. 5). 4-MeO-cinnamalde-
hyde was the only other cinnamaldehyde derivative to
cause a significant decrease in protease activity (25 ± 6%)
(Fig. 5). A time dependent inhibition of pigment produc-
tion was found for cinnamaldehyde and 2-NO2-cin-
namaldehyde. After 48 h, inhibition in pigment

LuxR DNA-binding as determined by mobility shifts and LuxR protein levels as determined by SDS-PAGEFigure 4
LuxR DNA-binding as determined by mobility shifts 
and LuxR protein levels as determined by SDS-
PAGE. A. Autoradiograph after 5% polacrylamide gel elec-
trophoresis of 32P-labelled LuxR promoter DNA containing 
the LuxR binding sites, mixed with purified LuxR in the pres-
ence (0.19, 0.75 and 1.9 mM) and absence of cinnamaldehyde. 
B. SDS-PAGE of purified LuxR protein in the presence (0.19, 
0.75 and 1.9 mM) or absence of cinnamaldehyde.
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production was 25 ± 7% and 40 ± 2% for cinnamaldehyde
and 2-NO2-cinnamaldehyde (Fig. 6). In contrast, none of
the other cinnamaldehyde derivatives were able to signif-

icantly reduce pigment production after 48 h (data not
shown). Previously, it was shown that several virulence
factors in Vibrio anguillarum, including pigment and pro-

Effect of cinnamaldehyde and cinnamaldehyde derivatives on the protease activity of Vibrio anguillarum LMG 4411Figure 5
Effect of cinnamaldehyde and cinnamaldehyde derivatives on the protease activity of Vibrio anguillarum LMG 
4411. Cinnamaldehyde and cinnamaldehyde derivatives were tested at 100 μM, except 4-NO2-cinnamaldehyde (25 μM). The 
effect of cinnamaldehyde or cinnamaldehyde derivatives on protease activity was compared to an untreated control. The error 
bars represent the standard deviation. *: Signal significantly different from the control (p < 0.05).
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Effect of cinnamaldehyde and 2-NO2-cinnamaldehyde on the pigment production of Vibrio anguillarum LMG 4411Figure 6
Effect of cinnamaldehyde and 2-NO2-cinnamaldehyde on the pigment production of Vibrio anguillarum LMG 
4411. Cinnamaldehyde and 2-NO2-cinnamaldehyde were tested at 100 μM. Vibrio anguillarum LMG 4411 was allowed to pro-
duce pigment in the absence (solid symbol) or presence of cinnamaldehyde (open symbol, square) or 2-NO2-cinnamaldehyde 
(open symbol, triangle). Three ml samples were taken at multiple time points. The effect of cinnamaldehyde or 2-NO2-cin-
namaldehyde on pigment production was estimated by measuring the absorbance at 405 nm. The error bars represent the 
standard deviation.
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tease production, were regulated by QS. It was found that
a mutation in vanT (the luxR homologue in Vibrio anguil-
larum) resulted in a significant decrease in total protease
activity due to loss of expression of the metalloprotease
EmpA [16]. Loss of protease activity could have several
implications for the virulence of Vibrio spp. The protease
Vvp of Vibrio vulnificus, which is homologous to EmpA, is
thought to play an essential role in the colonisation of
mucosal surfaces [31]. In addition, EmpA protease from
Vibrio anguillarum is important for virulence during infec-
tion of the Atlantic salmon (Salmo salar) and contributes
to hemorrhagic skin damage [32,33]. Several other phe-
notypes, including pigment production, were also found
to be affected in a Vibrio anguillarum vanT mutant [16].

Effect of cinnamaldehyde and cinnamaldehyde derivatives 
on biofilm formation
Cinnamaldehyde was previously shown to inhibit
Escherichia coli biofilms. Since cinnamaldehyde signifi-
cantly reduced swimming motility in Escherichia coli it was
hypothesized that reduced biofilm formation could be
explained in part by an inability of the strain to reach the
substratum [34]. However it should be noticed that no
link with QS was described and cinnamaldehyde was used
in high concentrations (> 2000 μM). Cinnamaldehyde
and some cinnamaldehyde derivatives decreased biofilm
formation in Vibrio anguillarum LMG 4411 and Vibrio vul-

nificus LMG 16867 (Fig. 7). Cinnamaldehyde reduced
total biomass (as measured by crystal violet staining, CV)
with 26 ± 7% and 27 ± 13% in Vibrio anguillarum LMG
4411 and Vibrio vulnificus LMG 16867, respectively. 2-
NO2-cinnamaldehyde and 4-MeO-cinnamaldehyde
resulted in a significant decrease in biomass of Vibrio
anguillarum LMG 4411 (decrease of 34 ± 16% and 20 ±
12%, respectively). No effect of cinnamaldehyde deriva-
tives on Vibrio vulnificus LMG 16867 biomass was
observed (Fig. 7). The cell-viability assay revealed no sig-
nificant decrease in the number of metabolically active
cells in Vibrio anguillarum LMG 4411 and Vibrio vulnificus
LMG 16867 biofilm following treatment. In summary,
cinnamaldehyde has an effect on total biofilm biomass
but not on the number of viable cells. This suggests that
cinnamaldehyde may have an effect on the production
and/or accumulation of the exopolysaccharide (EPS)
matrix (which is also stained with CV). To investigate this
hypothesis, EPS was stained using Calcofluor white. Cal-
cofluor white is a fluorescent dye which binds β1–3 and
β1–4 carbohydrate linkages and which has been used to
study EPS in a variety of organisms [35-37]. The staining
was carried out on biofilms treated with cinnamaldehyde
as this compound overall had most effect on biofilm bio-
mass as assessed using CV. The use of cinnamaldehyde
resulted in a lower fluorescent signal compared to an
untreated control (81 ± 13% and 69 ± 27% in Vibrio

Effect of cinnamaldehyde and cinnamaldehyde derivatives on Vibrio spp. biofilmsFigure 7
Effect of cinnamaldehyde and cinnamaldehyde derivatives on Vibrio spp. biofilms. Biomass was quantified through 
CV staining. Cell-viability was quantified through CTB staining. CV signals are presented as a percentage compared to 100% 
control not receiving treatment (black bars = Vibrio vulnificus; white bars = Vibrio anguillarum). CTB signals are presented as a 
percentage compared to a 100% control not receiving treatment (vertical striped bars = Vibrio vulnificus; horizontal striped bars 
= Vibrio anguillarum). *: Signal significantly different compared to 100% control (p < 0.05).
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anguillarum LMG 4411 and Vibrio vulnificus LMG 16867,
respectively). These data support the hypothesis that the
effect of cinnamaldehyde on biofilm formation can be
explained by reduced EPS production and/or accumula-
tion.

Protection of Artemia from Vibrio harveyi
For many pathogenic Vibrio spp., the production of pro-
tease, pigment and their capacity to form biofilms con-
tribute to their virulence [31-33]. We investigated the
ability of cinnamaldehyde and 2-NO2-cinnamaldehyde,
the two most active inhibitors, to protect Artemia shrimp
against the virulent Vibrio harveyi BB120 strain. To this
end, we followed the survival of Artemia after exposure to
Vibrio harveyi BB120, with and without addition of com-
pounds (Fig. 8). Cinnamaldehyde and 2-NO2-cinnamal-
dehyde alone had no effects on Artemia shrimp (data not
shown). As expected, high mortality rates were observed
when exposing Artemia to Vibrio harveyi BB120. In con-
trast, cinnamaldehyde and 2-NO2-cinnamaldehyde were
able to completely protect Artemia against virulent Vibrio
harveyi BB120 when used at concentrations of 100 μM and
150 μM (Fig. 8). At these concentrations, there was no
effect on the growth of Vibrio harveyi BB120, ruling out
that the protective effect of cinnamaldehyde and 2-NO2-
cinnamaldehyde was due to inhibition of the bacterial
pathogen. These results suggest that cinnamaldehyde and

cinnamaldehyde derivatives may be useful as antipatho-
genic compounds.

Effect of cinnamaldehyde on the starvation response
The effect of cinnamaldehyde on the starvation response
of Vibrio vulnificus LMG 16867 and Vibrio anguillarum
LMG 4411 was investigated. In the control experiment no
decrease in the number of culturable cells after 24 h of
starvation was observed (Fig. 9). Upon treatment with cin-
namaldehyde, however, cell numbers were significantly
reduced (53 ± 3% and 57 ± 7% for Vibrio vulnificus LMG
16867 and Vibrio anguillarum LMG 4411, respectively) (p
< 0.05). After 48 h, cell numbers were even further
reduced in the cinnamaldehyde treated cultures (87 ± 3%
and 63 ± 18% for Vibrio vulnificus LMG 16867 and Vibrio
anguillarum LMG 4411, respectively), while there was only
a 77 ± 5% and 4 ± 28% reduction in number of culturable
cells in the control for Vibrio vulnificus LMG 16867 and
Vibrio anguillarum LMG 4411, respectively. Bacteria are
known for their ability to survive and respond to changes
in their surroundings. One of these adaptations is the star-
vation response found in many marine bacteria. Vibrio
spp. are known to survive for a long time without the
addition of supplemental nutrition and this starvation
response allows cells to survive adverse conditions. QS is
thought to play a role in this response to stress conditions
[38]. Our data indicate that inhibition of AI-2 based QS

Effect of cinnamaldehyde and 2-NO2-cinnamaldehyde on the survival of ArtemiaFigure 8
Effect of cinnamaldehyde and 2-NO2-cinnamaldehyde on the survival of Artemia. White bars represent the survival 
of Artemia without challenge with Vibrio harveyi BB120. Black bars represent the percentage survival of Artemia after challenge 
with Vibrio harveyi BB120 in untreated conditions. Striped bars represent the percentage of survival of Artemia after challenge 
with Vibrio harveyi BB120 when treated with cinnamaldehyde or 2-NO2-cinnamaldehyde (horizontal: 100 μM stripes; vertical 
stripes: 150 μM, respectively). *: Survival significantly different from the treatment with pathogen alone (p < 0.01).
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Effect of cinnamaldehyde on Vibrio spp. starvation responseFigure 9
Effect of cinnamaldehyde on Vibrio spp. starvation response. The cells were allowed to starve in the presence (hori-
zontal striped bars = Vibrio vulnificus; vertical striped bars = Vibrio anguillarum) and absence (black bars = Vibrio vulnificus; white 
bars = Vibrio anguillarum) of cinnamaldehyde. The number of CFU/ml was determined after 24 h and 48 h on TSA plates con-
taining 2% NaCl. Data are presented as a percentage of the initial count. Error bars represent standard deviations.

Effect of cinnamaldehyde on antibiotic susceptibility of Vibrio vulnificus LMG 16867Figure 10
Effect of cinnamaldehyde on antibiotic susceptibility of Vibrio vulnificus LMG 16867. Effects of chloramphenicol 
(squares) and doxycycline (triangles) on the growth of Vibrio vulnificus LMG16867 in the presence (open symbols) and absence 
(solid symbols) of cinnamaldehyde (100 μM) are presented. The absorbance at 590 nm was measured after 24 h of growth. 
Error bars represent standard deviations.
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suppresses the starvation response and makes cells more
susceptible to starvation-associated stress conditions. This
is in agreement with a previously published study [17] in
which starvation survival in Vibrio vulnificus was reduced
by mutation of LuxR in the QS system and by halogenated
furanones.

Effect of cinnamaldehyde on antibiotic susceptibility
We have examined the association between QS and anti-
biotic susceptibility in two Vibrio spp. Two antibiotics
with a different mode of action were chosen. Chloram-
phenicol, previously used as prophylactic in aquaculture,
targets the 50S ribosomal subunit [39,40]. Doxycycline,
an antibiotic targeting the 30S ribosomal subunit, is the
recommended antibiotic therapy for Vibrio vulnificus
infections [41]. Vibrio vulnificus LMG 16867 showed an
increased antibiotic susceptibility when treated with cin-
namaldehyde (Fig. 10). This difference was most pro-
nounced when using chloramphenicol. In contrast, in
Vibrio anguillarum LMG 4411, no differences were
observed between cinnamaldehyde treatment and control
(data not shown). Previously, it was found that QS inhi-
bition could alter the susceptibility of a strain towards
antimicrobial agents. Vibrio cholerae strains with various
mutations in the AI-2 signal transduction system
appeared to be more sensitive to treatment with hydrogen
peroxide [42]. Similarly, a Streptococcus anginosus LuxS
mutant was found to be more susceptible towards ampi-
cillin and erythromycin than the wild type strain [43].

Conclusion
Cinnamaldehyde and several derivatives were shown to
interfere with AI-2 based QS by decreasing the ability of
LuxR to bind to its target promoter sequence. These com-
pounds, used in sub-inhibitory concentrations, did not
only affect in vitro the production of multiple virulence
factors and biofilm formation, but also reduced in vivo the
mortality of Artemia shrimp exposed to Vibrio harveyi
BB120. In addition, cinnamaldehyde reduced the ability
to cope with stress factors like starvation and exposure to
antibiotics. Our results indicate that cinnamaldehyde and
cinnamaldehyde derivatives are potentially useful antip-
athogenic lead compounds for treatment of vibriosis.

Methods
Cinnamaldehyde and cinnamaldehyde derivatives
Cinnamaldehyde (Sigma-Aldrich, Bornem, Belgium) and
cinnamaldehyde derivatives [4-MeO-cinnamaldehyde
(VWR International, West Chester, USA), 2-MeO-cin-
namaldehyde (Wako Pure Chemical Industries, Osaka,
Japan), 4-NO2-cinnamaldehyde, 2-NO2-cinnamaldehyde
and 4-Me2N-cinnamaldehyde (Acros Organics, Geel, Bel-
gium)] (Fig. 1), were diluted in DMSO (0.5% v/v). The
stock solutions were stored at -20°C. Control solutions

(CS) contained the same amount of DMSO, without cin-
namaldehyde or cinnamaldehyde derivatives.

Bacterial strains, plasmid and growth conditions
The strains and plasmid used in this study are shown in
Table 1. All strains were routinely cultured in Marine-
Broth (MB) (BD, Sparks, MD, USA) in the presence of
appropriate antibiotics, except for Escherichia coli DH5α
and K12, which were grown in Luria-Bertani broth (LB)
(BD). The medium was supplemented with 100 μg/ml
ampicillin (Sigma-Aldrich) for Escherichia coli DH5α con-
taining the pBluelux plasmid. Vibrio anguillarum LMG
4411, Vibrio vulnificus LMG 16867 and the various Vibrio
harveyi strains were cultured overnight at 30°C on a rotary
shaker. Escherichia coli DH5α and K12 were cultured over-
night at 30°C and 37°C, respectively, without agitation.
Minimal inhibitory concentrations were determined for
each compound by using a microdilution assay in flat bot-
tomed 96-well microtiter plates (TPP, Trasadingen, Swit-
zerland), using MB and LB medium for all vibrios and
both Escherichia coli strains, respectively. The plates were
incubated for 24 h and the absorption at 590 nm was
measured using a Victor Wallac2 multilabel counter (Per-
kin Elmer Life and Analytical Sciences, Boston, MA, USA).

Effect of cinnamaldehyde and cinnamaldehyde derivatives 
on bioluminescence
To determine whether any of the compounds had an
effect on bioluminescence not related to inhibition of QS,
Escherichia coli DH5α was transformed with the pBluelux
plasmid, containing luxCDABE under control of a lacZ
promoter and the effect on bioluminescence was meas-
ured. The pBluelux plasmid was transformed in
Escherichia coli DH5α as follows. Overnight cultures were
suspended in a 50 mM CaCl2 solution at 0°C. The pBlue-
lux plasmid was added and the solution was incubated for
15 min. After this, the solution was transferred to 42°C for
90 sec and the cell suspension was plated on Trypton soy
agar (TSA) (Oxoid, Basingstoke, Hampshire, UK) contain-
ing 100 μg/ml ampicillin (Sigma-Aldrich) for selection of
transformants. For the bioluminescence assay an over-
night culture was diluted to OD590 nm of approximately
0.1 and 100 μl of cell suspension was added to each well
of a black 96-well microtiter plate (Perkin Elmer). The
effect on bioluminescence for the active compounds was
compared to controls not receiving the active molecules.

Bioassay for LuxS inhibition
In order to determine whether any of the compounds
tested had an effect on production of AI-2, AI-2 activity
was measured in supernatants of Escherichia coli K12 cul-
tures grown for 16 h with or without compounds. Over-
night cultures of Escherichia coli K12 were centrifuged
(5000 rpm, 5 min, room temperature) and filter sterilised
(0.22 μm, Whatman GmbH, Dassel, Germany). The
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supernatants were used immediately or stored at -20°C.
AI-2 levels were determined in a Vibrio harveyi BB170
assay as described previously [21]. In brief, an overnight
culture of the reporter strain was diluted 1:5000 into fresh
sterile MB medium and 90 μl of this cell suspension was
added to the wells of a black 96-well microtiter plate (Per-
kin Elmer). Ten μl of the appropriate sterile supernatants
was then added to the wells, the microtiter plates were
incubated at 30°C and bioluminescence was measured
hourly using a Wallac Victor2 multilabel counter (Perkin
Elmer). Bioluminescence was expressed as the fraction of
bioluminescence measured in the positive control reac-
tion. Confirmation of these results was obtained using
Vibrio harveyi MM30, a Δ LuxS mutant, instead of Vibrio
harveyi BB170. The effect on bioluminescence for the
active compounds was compared to controls not receiving
the active molecules.

Other Vibrio harveyi bioassays
Using Vibrio harveyi strains BB120, JAF553, JAF483 and
BNL258, we determined whether the molecular target of
our compounds was located in the AI-2 signalling trans-
duction pathway. The bioluminescence assay as described
above was used with minor modifications. In brief, the

positive control reaction received 10 μl of Escherichia coli
K12 supernatant, without addition of the test molecule.
Negative control reactions received 10 μl sterile MB-
medium. Other wells received 10 μl of Escherichia coli K12
supernatants (containing AI-2) and appropriate amounts
of the test molecule.

Effect of cinnamaldehyde on LuxR protein levels and 
DNA-binding activity
Mobility shift assays and SDS-PAGE assays were per-
formed as described previously [26] with minor modifica-
tions. Vibrio harveyi BB120 cells were grown in the
presence and absence of cinnamaldehyde and all cell
lysates were taken at different optical densities (OD600 nm
= 1.2, 1.6, 1.8 and 2.1). Previously purified LuxR [44] was
used for mobility shift and SDS-PAGE assay. For SDS-
PAGE the following protein standard (Bio-rad) was used:
250, 150, 100, 75, 50, 37, 25, 20, 15 and 10 kDa.

Quantification of protease activity
Vibrio anguillarum LMG 4411 was grown overnight in MB.
Protease activity was quantified following inoculation of
cultures into medium containing 2.0% Bacto agar
(Oxoid), 2.0% NaCl (Novolab, Geraardsbergen, Belgium)

Table 1: Strains and plasmid used in this study. 

Strain/plasmid Relevant features Reference or source

Vibrio harveyi strains

BB120 Wild type from which strains BB152, BB170, MM30, JAF553, JAF483 and BNL258 are derived [9]
BB170 luxN::Tn5 [7]
MM30 luxS::Tn5 [10]
JAF553 luxU H58A linked to KanR [48]
JAF483 luxO D47A linked to KanR [14]
BNL258 hfq::Tn5lacZ [49]

Vibrio anguillarum

LMG 4411 Isolated from young sea trout (Salmo trutta) BCCM/LMG

Vibrio vulnificus

LMG 16867 Isolated from tankwater from eelfarm BCCM/LMG

Escherichia coli strains

DH5α AI-2 - strain [23]
K12
ATCC 25404

AI-2+ strain [23]

Plasmid

pBlueLux pBluelux polylinker and luxCDABE S. Atkinson

BCCM/LMG: Belgian Co-ordinated Collections of Micro-organisms/Laboratory of Microbiology collection (Ghent University, Belgium); ATCC: 
American Type Culture Collection
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and 3.0% Skim Milk powder (Oxoid). Appropriate
amounts of test compounds and CS were added to the
mixtures, 0.5 ml of these mixtures was added to the wells
of a 24-well microtiter plate (TPP, Trasadingen, Switzer-
land) and the plate was incubated at 30°C. Clearing was
measured spectrophotometrically with a Wallac Victor2

multilabel counter after 24 h.

Quantification of pigment production
Vibrio anguillarum LMG 4411 was grown overnight at
30°C in MB. The overnight culture was then diluted to
OD590 nm = 0.05 in Tryptone Soy Broth (TSB) (Oxoid)
containing 5 mM L-tyrosine (Sigma-Aldrich) with or with-
out test compound and incubated at 30°C with shaking.
At various time points, 3 ml samples were taken from the
cultures and supernatants were collected by centrifugation
(5000 rpm, 4 min, room temperature), followed by filter
sterilisation (0.22 μm). Pigment production was followed
by measuring the absorbance at 405 nm.

Biofilm formation assay
Vibrio anguillarum LMG 4411 (doubling time Td: 3.2 h)
and Vibrio vulnificus LMG 16867 (Td: 5.3 h) were grown
overnight in MB, centrifuged, resuspendend in double
concentrated Marine Broth (2xMB) and diluted to an
OD590 nm = 0.1 in 2xMB. Fifty μl of the diluted bacterial
suspension was transferred to the wells of a round-bot-
tomed 96-well microtiter plate (TPP). Negative controls
received 50 μl of CS. Positive controls received 50 μl of the
test compound in appropriate concentrations. Bacteria
were allowed to adhere and grow without agitation for 4
h at 30°C. After 4 h, plates were emptied and washed with
sterile physiological saline (PS). After this washing step,
negative control wells were filled with 50 μL 2xMB and 50
μl CS. Other wells were filled with 50 μl 2xMB and 50 μl
compound solution and the plate was incubated for 24 h
at 30°C. Biofilm biomass was quantified by crystal violet
(CV) staining, as described previously [45]. In brief, plates
were rinsed with sterile PS, biofilms were fixed by adding
100 μl 99% methanol for 15 min, after which the metha-
nol was removed and plates were air-dried. Biofilms were
then stained with 100 μl CV (Pro-lab Diagnostics, Rich-
mond Hill, ON, Canada). After 20 min, CV was removed
and wells were filled with 150 μl 33% acetic acid (Sigma-
Aldrich). The absorbance was measured at 590 nm using
a Wallac Victor2 multilabel counter and results were
expressed as the percentages compared to the signal of the
control not receiving treatment. For quantification of the
number of metabolically active (i.e. living) cells in the
biofilm, a resazurin assay was used [45]. In brief, wells
were rinsed after 24 h biofilm formation and 100 μl PS
was added, followed by addition of 20 μl CellTiter-Blue
(CTB) (Promega, Leiden, The Netherlands) solution. After
60 min, fluorescence (ex560 nm/em590 nm) was measured
using a Wallac Victor2 multilabel counter. For the quanti-

fication of EPS, a Calcofluor white staining (Sigma-
Aldrich) was used. In brief, wells were rinsed after 24 h
biofilm formation and 100 μl phosphate buffered saline
(PBS) containing 0.5 μl 5 mM CFW was added to the
wells. After 60 min, fluorescence (ex405 nm/em500 nm) was
measured using a Wallac Victor2 multilabel counter.

Artemia Challenge tests
All experiments were performed with high quality hatch-
ing cysts of Artemia franciscana (EG® Type, batch 6940,
INVE Aquaculture, Baasrode, Belgium). 200 mg of cysts
were hydrated in 18 ml of tap water during 1 h. Sterile
cysts and nauplii were obtained via decapsulation as
described previously [46]. Challenge tests were performed
as described previously [18] with minor modifications.
Briefly, after hatching, groups of 20 nauplii were trans-
ferred to new sterile 50 ml tubes that contained 20 ml of
0.22 μm filtered and autoclaved artificial seawater. Vibrio
harveyi BB120 was washed in filtered and autoclaved arti-
ficial seawater after incubation and added to the Artemia
culture water at a concentration of approximately 105

CFU/ml. A suspension of autoclaved LVS3 bacteria in fil-
tered and autoclaved artificial seawater was added as feed
in a concentration of approximately 107 CFU/ml culture
water. After the addition of 100 μM or 150 μM of cin-
namaldehyde or 2-NO2-cinnamaldehyde (or an appropri-
ate volume of solvent), the falcon tubes were put back on
the rotor and kept at 28°C. Artemia cultures to which only
autoclaved LVS3 bacteria were added were used as con-
trols. The survival of Artemia was scored 48 h after the
addition of the strains. All manipulations were done
under a laminar flow hood in order to maintain sterility
of the cysts and nauplii. Each treatment was done in trip-
licate.

Starvation assay
Vibrio anguillarum LMG 4411 and Vibrio vulnificus LMG
16867 strains were grown overnight in MB, the cells were
collected by centrifugation (5000 rpm, 4 min), washed in
PS and resuspended in artificial seawater (ASW) [47] con-
taining 0.1% MB (with and without test compound).
These suspensions were incubated at 30°C without shak-
ing. At various time points, 1 ml samples were taken and
the number of culturable cells was determined by plating
serial dilutions on TSA (Oxoid) plates containing 2%
NaCl. Results were expressed as the percentage survival
compared to the untreated control.

Effect of cinnamaldehyde on antibiotic resistance
Fifty μL of double concentrated TSB (2xTSB) containing
4% NaCl with or without chlorampenicol (Sigma-
Aldrich) or doxycycline (Sigma-Aldrich) (added in the
range of 0.001 μg/ml – 25 μg/ml) were dispensed into
flat-bottomed 96-well microtiter plates (TPP). An equal
amount of cinnamaldehyde was added (final concentra-
Page 12 of 14
(page number not for citation purposes)



BMC Microbiology 2008, 8:149 http://www.biomedcentral.com/1471-2180/8/149
tion of 100 μM). For the controls, equal amounts of CS
were added to the wells. Vibrio vulnificus LMG 16867 or
Vibrio anguillarum LMG 4411 was added in a final concen-
tration of 105 CFU/ml. The plates were incubated over-
night at 30°C and growth was evaluated after 24 h by
absorbance measurements at 590 nm using a Wallac
Victor2multilabel counter.

Statistics
Independent samples t-tests were performed using the
SPSS software, version 15.0 (SPSS, Chicago, IL, USA).
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