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Abstract

Background: Development of Salmonella enterica serovar Typhimurium (S. Typhimurium) live attenuated vaccine
carrier strain to prevent enteric infections has been a subject of intensive study. Several mutants of S. Typhimurium
have been proposed as an effective live attenuated vaccine strain. Unfortunately, many such mutant strains failed to
successfully complete the clinical trials as they were suboptimal in delivering effective safety and immunogenicity.
However, it remained unclear, whether the existing live attenuated S. Typhimurium strains can further be
attenuated with improved safety and immune efficacy or not.

Results: We deleted a specific non-SPI (Salmonella Pathogenicity Island) encoded virulence factor mig-14
(an antimicrobial peptide resistant protein) in ssaV deficient S. Typhimurium strain. The ssaV is an important SPI-II gene
involved in Salmonella replication in macrophages and its mutant strain is considered as a potential live attenuated
strain. However, fatal systemic infection was previously reported in immunocompromised mice like Nos2−/− and Il-10−/−

when infected with ssaV deficient S. Typhimurium. Here we reported that attenuation of S. Typhimurium ssaV mutant
in immunocompromised mice can further be improved by introducing additional deletion of gene mig-14. The ssaV,
mig-14 double mutant was as efficient as ssaV mutant, with respect to host colonization and eliciting Salmonella-
specific mucosal sIgA and serum IgG response in wild-type C57BL/6 mice. Interestingly, this double mutant did not
show any systemic infection in immunocompromised mice.

Conclusions: This study suggests that ssaV, mig-14 double mutant strain can be effectively used as a potential vaccine
candidate even in immunocompromised mice. Such attenuated vaccine strain could possibly used for expression of
heterologous antigens and thus for development of a polyvalent vaccine strain.
Background
Enteric infections represent a major threat to human
health worldwide affecting both children and adults in
developing and industrialized countries. These infections
are caused by a number of pathogens including Salmon-
ella, Shigella, Campylobacter species, Aeromonas, Plesio
monas, Vibrio, Yersinia entercolitica, E. coli 0157:H7 and
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Rotavirus. Among these enteric pathogens, Salmonella
enterica with more than 2500 serovars is considered as a
key pathogen that can infect a wide range of host species
and is the leading cause of acute gastroenteritis. The
increased mortality, morbidity and limited availability of
specific drugs against these infection demands an alterna-
tive to reduce the global disease burden. One such prom-
ising alternative is the development of live-attenuated
vaccines. These vaccines are attenuated forms of the
pathogen itself which can provide defense against the
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infection from the same pathogen. In case of Salmonella,
a facultative intracellular pathogen, specific cell mediated
immune response is critical to control and clear the pat-
hogen from the host [1-4]. In order to stimulate cellular
immunity with higher efficacy, live attenuated Salmonella
are preferred over the inactivated or killed vaccine candi-
dates [5-7]. Ideally, a live attenuated vaccine strain should
be able to withstand the host stress, provide defense
against the concerned pathogen and should successfully
colonize the host lymphoid tissues while retaining its
avirulent nature. Researchers have established mice models
in order to efficiently screen the possible vaccine attributes
of genetically modified Salmonella enterica strains or their
derivatives [8-12]. However, many live attenuated strains
are known to develop systemic infection when adminis-
tered to immune deficient individuals [13-15]. In order to
prevent the systemic infection in immune-compromised
patients, it is very crucial to attain sufficient attenuation.
Many attenuated Salmonella vaccine strains carrying de-
letion mutation either in the metabolic gene or in the vi-
rulence factors have been developed but with a little
success in the clinical trials [16]. This study primarily fo-
cuses on the development of an improved live-attenuated
S. Typhimurium strain. A number of S. Typhimurium mu-
tants developed, are known to elicit optimal immune
response but showed reduced survival efficacy [17-26].
Earlier studies have shown that only a few such mutants
have been actually tested in a pilot study in order to inves-
tigate their protection efficacy [27-29]. When tested, such a
few proposed vaccine strains resulted in developing dis-
eases in the hosts of variable immune status [20,30-32].
Therefore, the development of a safer immunogenic live-
attenuated S. Typhimurium strain is a need of an hour [33]
and can be accomplished by development of a suitably atten-
uated strainwith an avirulent property in immunocomprom-
ised individuals. Previous studies have shown that TTSS-2
deficient S. Typhimurium strains were highly attenuated and
conferred protection from further challenges of wild-type S.
Typhimurium by eliciting O-antigen specific serum IgG and
secretory IgA in C57BL/6mice [34-36]. In a recent study, the
ssaVmutant of S. Typhimurium was found to be virulent in
immune compromised C57BL/6 mice devoid of Nos2 and
Il-10 gene [37]. These twomice strains were used as they lack
key elements of the antibacterial defense like the inducible
nitric oxide (NO) synthase, a reactive oxygen species generat-
ing enzyme and interleukin-10 gene [38]. In this study, we
have also used CD40L KO mice to screen the attenuation of
proposed vaccine strain. This particular mousemodel is used
as it is partially immunocompromised in terms of generation
of different class of antibodies.
Virulence of TTSS-2 deficient S. Typhimurium in

immunocompromised mice unveils the role of other
factors favoring the replication and long-term survival of
S. Typhimurium in host tissues. Mig-14, an antimicrobial
peptide resistance protein, is one such important factor
that supports the long-term persistence of Salmonella in
the macrophages [39]. Mig-14 protein binds to the anti-
microbial peptides like CRAMPS to protect Salmonella
from antimicrobial peptides [40]. The presence of Mig-14
in the periplasmic localization inhibits the entry of anti-
microbial peptides to the cytoplasm of the bacterium,
eventually making macrophage a good niche for Salmon-
ella to replicate and survive. This study proposes a diverse
role for mig-14 in the survival of TTSS-2 deficient
Salmonella in immunocompromised mice like Nos2−/−,
Il-10−/− and CD40L−/− and explores the possible po-
tential of S. Typhimurium ssaV and mig-14 double
mutant as a safe vaccine carrier strain.
Methods
Bacterial strains and plasmids
Streptomycin resistant S. Typhimurium SB300 and
Salmonella Enteritidis P125109 (S. Enteritidis) strains
were taken as the wild-type controls [41,42]. Mutants
MT5 (SB300; ΔssaV) and MT4 (SB300; ΔssaV, Δmig-14)
were generated by lambda red-mediated recombinase
process [43]. Briefly, the host bacterial strain to be
mutated was transformed with plasmid pKD46 and
induced with arabinose (10 mM). The kanamycin
open reading frame was PCR-amplified from template
plasmid pKD4 using gene specific knockout primers
(Table 1). The cassette was introduced into host bac-
terial genome with the help of Exo, Bet and Gam
proteins from induced pKD46 plasmid of host bacter-
ial strain. The positive mutants were selected on LB
agar plates supplemented with kanamycin (50 μg/ml)
and mutation in the target gene was confirmed using
gene specific confirmatory primers in combination
with respective forward knock-out primer (Table 1).
Later, the antibiotic cassette was flipped by plasmid
pCP20 [43]. An ampicillin resistant plasmid (pM973)
was used to maintain the ampicillin resistant trait in
wild-type strain (SB300) while challenging vaccinated
mice groups with wild-type S. Typhimurium [44]. The
bacterial strains and the plasmids used in this study
are listed in Table 2.
Bacterial growth condition
Luria-Bertani medium supplemented with 0.3 M sodium
chloride (SPI-1 inducing medium) was used to grow all
the bacterial strains (Table 2) at 37°C for 12 h. Strains were
diluted 1:20 in fresh SPI-1 inducing medium and sub-
cultured for another 4 h until the bacteria attained their
early log phase. Bacterial cells were pelleted, washed in
ice-cold phosphate buffered saline (PBS) and approxi-
mately 5 × 107 CFU were suspended in 50 μl cold PBS for
use in the in vivo experiments. All the strains were tested



Table 1 Primers used in the study

Fw-ssaV AGT CGC AAT GCG TTC ATG GTT AG

Rw-ssaV TTC TTC ATT GTC CGC CAA CTC

KO-Fw-ssav AAT AAA ATT TCT GGA GTC GCA ATG
CGT TCA TGG TTA GGT GAG GGA TGT
GTA GGC TGG AGC TGC TT

KO-Rw-ssaV GCA TCA ATT CAT TCT TCA TTG TCC
GCC AAC TCC TCT TCG CTA AGG ATA
TGA ATA TCC TCC TTA GT

Conf-ssaV GCA AAG CTT TGC TGC CAT TAA TCC

Fw-mig14 GAG TTT TGG TGA AAA TAC AAG AAG

Rw-mig14 GTA TAG TGT AAG TGA ATT TCG AGT
AAT TG

KO-Fw-mig14 AGC AAA AAA ATA ATA CAA AAT AGC
ATT TTC AGT AAG CTA AGT CAG TGT
GTA GGC TGG AGC TGC TT

KO-Rw-mig14 GAA AAA TCT GGA CGT AAA AAA CAT
ATT TAC GTC CAG GCT TTC TTT ATA
TGA ATA TCC TCC TTA GT

Conf-mig14 CAT CAT CTG TTC CTG ACG CCA G
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for growth attenuation for 16 h in 10 ml of culture
medium at 37°C with 150 rpm under aerated conditions.
Ethical statement
All the animal experiments were performed in strict ac-
cordance with guidelines laid by the Institutional Animal
Ethics Committee (IAEC) of National Centre for Cell
Science (NCCS) Pune, India; Permit Number: 7/1999/
CPCSEA-09/03/1999.
Mouse lines
All experimental mice were specific pathogen free (SPF)
C57BL/6 maintained in individually ventilated cages (IVC)
(Tacket et al., 1992). Wild-type, Nos2−/− (B6.129P2-
Nos2tm1Lau/J), Il-10−/− (B6.129P2-Il10tm1cgn/J) and
CD40L−/− (B6.129S2-Cd40lgtm1Imx/J) mice were procured
from Jackson Labs (Bar Harbor, ME) and bred in the
Table 2 Bacterial strains and plasmids used in the study

Strains Genetic information

SB300 Salmonella Typhimurium, Smr

M1525 Salmonella Enteritidis 125109 wild type; Smr

MT4 S. Typhimurium ΔssaV,Δmig-14; Smr

MT5 S. Typhimurium ΔssaV; Smr

Plasmids Relevant genotype (S) and/or phenotype (

pM973 bla PssaH gfpmut2 plasmid with oripMB1

pKD46 Red recombinase expression plasmid; ParaB; or

pKD4 Template plasmid; FRT-aphT-FRT

pCP20 FLP recombinase expression plasmid
C57BL/6 background at the animal facility of National
Center for Cell Sciences (NCCS), Pune, India.

Mice infection experiment for assessment of strain
attenuation
The infection experiments were performed in strepto-
mycin pretreated SPF mice in IVC as described earlier
[45,46]. C57BL/6, iNos−/−, Il10−/− and CD40L−/− mice
were pretreated orally with 50 mg of streptomycin be-
fore infecting with wild-type and mutant strains. After
24 h, mice were infected with 5 × 107 CFU (oral
gavage) of the corresponding bacterial strain (i.e.
MT5, MT4 and SB300). The bacterial load in the
cecum, mesenteric lymph nodes (mLNs), liver and
spleen was determined by plating the respective tissue
homogenates on MacConkey agar plates supplemented
with appropriate antibiotics (Streptomycin, 50 μg/ml;
kanamycin, 50 μg/ml; ampicillin, 100 μg/ml). For stat-
istical analysis, samples without bacterial counts were
adjusted to the minimum detection level (10 CFU/
organ in the mLN, 20 CFU/organ in the spleen, 10/x
CFU/g, where x represents the net weight of the
cecum content or feces collected). Cecal pathology of
the infected mice was scored to analyze the degree of
inflammation [45].

Histopathological evaluation
Segments of the cecum, colon and ileum were embedded
in Optimum Cutting Temperature solution O.C.T. (Sakura
Finetek Inc., USA), snap-frozen in liquid nitrogen, and
stored at −80°C. The 5 μm thick tissue sections were
obtained on glass slides and stained with hematoxylin and
eosin (H&E) stains after drying for at least 2 h at room
temperature. The stained cryosections were evaluated on
the basis of a previously described scoring system for the
quantitative analysis of cecal inflammation [45,47]. The
sections were scored on the basis of the pathological
changes that include sub-mucosal edema (0–3), poly-
morphonuclear leukocyte infiltration (0–4), loss of goblet
cells (0–3) and epithelial ulceration (0–3). The cumulative
Background References

Wild type [41]

Wild type [42]

SB300 This study

SB300 This study

S) Resistance References

Ampr [44]

iR101 Ampr [43]

Kmr [43]

Cmr, Ampr [43]
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pathological scores ranged from 0 to 13 with arbitrary units
covering the inflammation levels that included intact
intestine without any sign of inflammation (pathoscore 0);
minimal sign of inflammation (pathoscore 1–2), which is
commonly found in the ceca of specific pathogen-free mice
and generally not considered as a pathological feature;
slight inflammation as a minimal sign of tissue pathology
(pathoscore 3–4); moderate inflammation (pathoscore 5–8);
and significant inflammation (pathoscore 9–13).

Vaccination and challenge experiment
For vaccination study, three groups of wild type C57BL/6
mice (n = 10; each group) were pretreated with strepto-
mycin according to the protocol described earlier [34].
Mice groups (3 groups; n = 5 mice each group) were vacci-
nated with MT5, MT4 strains and PBS respectively; the
mice group treated with PBS served as a negative control
group [34,48]. Fecal samples from each mice group were
collected weekly and plated on MacConkey agar plate for
analysis of fecal shedding of the vaccine strain. At day 30
post vaccination (p.v.), the histopathology of cecal mucosa
and bacterial loads of different tissues of vaccinated mice
(n = 5; each group) were analyzed. Further, the gut wash
and serum samples of vaccinated mice were collected to
assess serum IgG and gut secretory IgA (sIgA) by Western
blot. The remaining mice (n = 5) from each vaccinated
group were treated with ampicillin (25 mg by gavage) and
challenged after 24 h with wild-type S. Typhimurium
(SB300; 200 CFU) harboring ampicillin resistant plasmid
pM973. The colonization efficiency of the challenged
strain was evaluated at various host sites at day 3 post
challenge (p.c.).

Evaluation of serum and gut antibody response
To measure the mucosal immune response, serum IgG and
secretory gut IgA responses were quantified byWestern blot
as described previously [34,48]. Serum and gut washes were
collected at day 30 p.v from MT5 and MT4 immunized
mice and the PBS treated control mice. The protein frac-
tions of lysates from the overnight-grown S. Typhimurium
wild-type strain (SB300), ssaV mutant (MT5), ssaV and
mig-14 double mutant (MT4) and S. Enteritidis P125109
(M1525) wild-type strain were separated on polyacrylamide
gels and transferred to nitrocellulose membrane. The mem-
brane was treated with suitably diluted serum sample or gut
washes followed by incubation with conjugated α-mouse
IgG (for serum; Santa cruz) and α-mouse IgA (for gut wash;
Santa cruz). The blots were developed by ECL kit (Thermo
Scientific).

Statistical analysis
Statistical analyses were performed using the two-way
ANOVA (GraphPad Prism 5). p < 0.05 was considered
statistically significant.
Results and discussion
Additional mig-14 mutation in S. Typhimurium ssaV
mutant shows significant attenuation in
immunocompromised mice
The attenuation of MT5 and MT4 strains in various
immunocompromised mice was analyzed by normal
infection experiment at day 4 p.i. In our initial observa-
tions, equivalent loads of MT5 and MT4 strains were
detected in the cecal content of Nos2−/−, Il-10−/− mice
(Figure 1A) whereas, MT4 showed reduced colonization
in spleen and liver (Figure 1B, C and D) as compared to
MT5. Similar experiment was carried out to assess the
performance of MT4 in wt C57BL/6 and CD40L−/−

mice. It was observed that neither MT4 nor MT5 colo-
nized spleen and liver of CD40L−/− and wild-type
C57BL/6 mice (Figure 1C-D). However, MT4 (ssaV,
mig-14 mutant) colonized the mLN of wild-type mice as
efficiently as MT5 (ssaV mutant) (Figure 1B). We also
tested the attenuation profile in terms of competitive
index of mig14::aphT single mutant against wild-type
S. Typhimurium strain; it was appreciable that the
mig14::aphT single mutant has reduced ability to
colonize to systemic sites (Additional file 1: Figure S1
and Additional file 1: Figure S2); however, this reduced
colonization in liver and spleen was not as sharp as in case
of C57BL/6 mice infected with ssaV mutant MT5 (com-
pare Additional file 1: Figure S2 with Figure 1C,D). Overall
the data demonstrates that the deletion of mig-14 in the
ssaV knockout background does not allow S. Typhi-
murium to colonize the systemic sites like liver and spleen
in severely immunocompromised mice (Figure 1C and D).

MT4 protects wild-type C57BL/6 mice when challenged
with wild-type S. Typhimurium
The immunogenic potential of MT4 in wild-type C57BL/6
mice was analyzed by previously established vaccination
and challenge protocol using TTSS-2 deficient S. Typhi-
murium strain [34]. Three groups of wild-type C57BL/6
mice were vaccinated with MT4 (n = 10), MT5 (n = 10)
and PBS (negative control; n = 10). The fecal shedding was
analyzed as a measure of cecal colonization during vaccin-
ation period. Both, MT5 and MT4 strains reached a bac-
terial load of ~109 CFU/g (of cecal content) in the gut
lumen at the day 1 p.v.; however, the bacterial loads
slightly declined at day 14 and day 28 p.v. (Figure 2A).
Half the number of vaccinated mice (MT5, n = 5; MT4,
n = 5; PBS, n = 5) were sacrificed to analyze cecal inflam-
mation and the colonization levels in different systemic
sites at day 30 p.i. With both the strains, cecum co-
lonization was maintained up to ~107-9 CFU/g. The bac-
terial load in mLN was lower as compared to the acute
infection experiments (compare Figure 1B to 2B) whereas
cecal mucosa did not show any sign of disease (Figure 2C).
The remaining mice were analyzed for protection



Figure 1 Analysis of MT4 attenuation in comparison to MT5 in Nos2−/−, Il-10−/−, CD40L−/− and wild-type C57BL/6 mice. Streptomycin
pretreated mice were infected either with MT5 or MT4 (5x107 CFU by gavage; n = 5mice). Bacterial loads in cecum content (A), mLN (B), spleen
(C) and liver (D) were assessed by plating at day 4 p.i.. n.s., statistically not significant; *, statistically significant (p < 0.05, Two-way ANOVA).
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against a challenge with wild-type S. Typhimurium. At
day 30 p.v., the remaining vaccinated mice (MT4, n = 5;
MT5, n = 5; PBS, n = 5) were treated with 20 mg of
ampicillin to remove regrown gut flora and any residual
vaccine strain. Mice groups were then challenged with
wild-type S. Typhimurium at day 31st (200 CFU by
gavage). The wild-type S. Typhimurium was able to
colonize the lumen efficiently and reached the carrying
capacity by day 3 p.c. in all three immunized groups
(Figure 3A). Mice in the PBS treated control group suf-
fered from severe enteropathy (Figure 3B). In contrast,
the mice immunized with MT5 and MT4 strains did
not show any signs of mucosal inflammation (Figure 3B).
Furthermore, spleen and liver colonization by wild-type
S. Typhimurium was significantly reduced in both the
vaccinated groups (p < 0.05; Figure 3A). Thus, the data
indicates that MT4 strain conferred equivalent level of
protection from Salmonella inflicted disease as MT5
strain.
Mice immunized with MT4 and MT5 showed equivalent
response for both luminal IgA and serum specific IgG
Earlier it has been established that immune-protection
against S. Typhimurium is based on O-antigen specific lu-
minal sIgA along with serum IgA, IgM and IgG responses
[34]. To validate the immunogenic potential of MT4, the
antibody titers of IgG from serum and IgA from gut wash
samples of mice vaccinated with MT4 and MT5 strains
were detected by western blotting at the end of the day
30 p.v. (Figure 4). This experiment relies on the specific
antibody binding to specific antigens of the bacterium
(wild-type S. Typhimurium) as compared to a bacterium of
different serovar (wild-type S. Enteritidis). The intestinal
wash and serum samples from mice vaccinated with either
MT5 or MT4 exhibited equivalent antibody response of
Salmonella specific serum IgG and luminal secretory IgA.
We additionally tested the antibody response through flow
cytometry analysis and the data supported the finding that
MT4 or MT5 vaccination exhibits equivalent antibody



Figure 2 Vaccination experiment analyzing the attenuation of MT4 at day 30 p.v. For vaccination, C57BL/6 mice were treated with PBS
(n = 10; grey solid circles), MT5 (5x107CFU; n = 10; black solid circle) and MT4 (5x107 CFU; n = 10; open circle). (A) Fecal shedding as analyzed by
plating. PBS-controls: below detection limit (stripped line); (B) Colonization by the vaccine strains (MT5, n = 5 and MT4, n = 5) in cecal content,
mLN, spleen and liver; (C) Cecal pathology at day 30 p.v.. n.s., not significant; *, statistically significant (p < 0.05).
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response (Additional file 1: Figure S4). The T-cytotoxic and
T-helper cells play a critical role in the clearance of Salmon-
ella as well as in the production of specific antibodies dur-
ing the late phase of infection. We analyzed the effect of
MT5 and MT4 strains on T-cell population of the me-
senteric lymph node. We quantified the CD4+ and CD8+

T-cell population recovered from the mLN of the vacci-
nated mice after day 30 p.v. The T-cell population were
analyzed by flowcytometry and found to be almost equally
populated in the vaccinated mice but significantly more in
comparison to the PBS treated mice (Additional file 1:
Figure S3). This gives a sign that, the MT4 strain has an
ability to colonize and induce T-cell mediated innate and
adaptive immune response in the wild-type C57BL/6 mice.
Conclusions
S. Typhimurium with a nonfunctional SPI-2 is considered
as an avirulent and a potential vaccine strain [37]. In this
study we have experimentally proved that S. Typhimurium
diarrhea vaccine strain with nonfunctional SPI-2 system
can be further attenuated without impeding the immuno-
genicity in immunocompromised hosts. We additionally
mutated mig-14 in ssaV deficient S. Typhimurium strain.
The ssaV, mig-14 double mutant was found to be highly
attenuated in wild-type C57BL/6 mice and in immuno-
compromised mice like Nos2−/−, Il-10−/− and CD40L−/−.
These transgenic immunocompromised mice were se-
lected for this study because of their high susceptibility to
different infections [33,49,50]. One of the characteristic



Figure 3 Analysis of colonization and cecal pathology of the vaccinated mice after wild-type S. Typhimurium challenge. Mice
immunized with PBS, MT5 and MT4 (n = 5) were treated with ampicillin (25 mg by gavage), challenged with wild-type SB300 (ampr, smr) and
sacrificed three days later (day 3 p.c.). Disease parameters like colonization at various host-tissues (A) and cecal pathology (B) were determined.
n.s., not significant; *, statistically significant (p < 0.05).
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features of Salmonella infections in humans is that few
infected individuals can become chronic carriers. Such
individuals comprise about 1–6% of the total infected
population [19,24] acting as reservoirs, and restricting the
pathogen within the human populations. Previous studies
have established that the successive progression of host-
adapted Salmonella species has led to an increased viru-
lence because of their association with the host along with
increased invasiveness and long-term persistence [51,52].
The virulence factors essential for long-term persistence
of the pathogen in their respective hosts are therefore
likely to be important for its evolutionary success.
Mig-14 is an important factor for Salmonella resist-

ance to IFN-γ-mediated host responses and to different
anti-microbial peptide during the establishment of infec-
tion as well as survival in the macrophages [16]. It has
also been reported that mig-14 mutant can establish an
infection but cannot persist for longer periods in the host
system [53]. These reports support the contribution of
Mig-14 in Salmonella long-term virulence. Although the
mechanism of Mig-14 action is not completely established,
the binding of Mig-14 deficient Salmonella to cathelin-
related antimicrobial peptide (CRAMP) proves its active in-
volvement in Salmonella antimicrobial peptide resistance
[40]. Mechanistically, Mig-14 protein is a periplasmic pro-
tein which is tightly associated with the inner membrane of
Salmonella [53]. The transmission electron microscopy
study has revealed that the primary site of host CRAMP



Figure 4 Validation of antibody response (serum IgG and
intestinal sIgA). Serum and gut wash from mice treated with PBS
and vaccinated with MT4 and MT5 were collected, diluted to a
highest dilution of 1:120 (serum) and 1:9 (gut wash). The presence of
Salmonella specific IgG and secretory IgA were detected by Western
blots. The representative Western blot analysis of the antibody
responses was done by developing the blots of overnight grown
cultures of MT5, MT4, SB300 (wild-type S. Typhimurium) and M1525
(S. Enteritidis; negative control) with the serum and gut wash of the
immunized mice.
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activity is the bacterial cytoplasm. Study of inner membrane
localization of Mig-14 and cytoplasmic CRAMP activity,
possibly suggests the role of Mig-14 in preventing penetra-
tion of CRAMP into the cytoplasm [40]. Taken together,
these reports explain contribution of mig-14 towards patho-
gen survival by encountering host inflammatory responses
and promoting both acute and persistent bacterial infection.
Therefore, in the present study, mig-14 was taken as an
important virulence factor to be knocked out from the
existing live attenuated strain (MT5) with the goal to im-
prove the attenuation attributes in immunocompromised
mice.
In this study, we have assessed the degree of attenu-

ation of S. Typhimurium ssaV mutant (MT5) and ssaV,
mig-14 double mutant (MT4) in immunocompromised
mice, by infecting these two strains to Nos2−/−, Il-10−/−

and CD40L−/− C57BL/6 mice. The day 4 p.i. observation
showed a high degree of systemic attenuation of MT4
(ssaV, mig-14) strain in Nos2−/−, Il-10−/− mice in com-
parison to the MT5 (ssaV) strain. On the other hand
MT5 and MT4 strains were equally attenuated in
CD40L−/− mice. Interestingly, MT4 strain also retained
its capacity to colonize the mesenteric lymph node of
Nos2−/−, Il-10−/− and CD40L−/− mice, demonstrating its
ability to access the mLN but not the systemic sites. The
in vivo data showed that the attenuation of MT4 in im-
munocompromised mice could be due to the absence of
mig-14 in ssaV deficient S. Typhimurium. Furthermore,
the MT4 and MT5 strains were used to vaccinate the
wild-type C57BL/6 mice. Results showed that none of
the mice developed cecal inflammation at day 30 p.v.
However, both the strains (MT5 and MT4) equally colo-
nized the gut lumen of vaccinated mice groups. Apart
from this, at 30 day p. v., neither of the strain was found
in the systemic organs which diminishes the possibility
of late systemic dissemination and associated disease
symptoms. Interestingly, apart from MT5, we also found a
small population of MT4 strain in the mesenteric lymph
node of the immunized mice, showing the potential of
MT4 to stay in the lymphoid tissue for a longer period.
In a challenge experiment, the vaccinated mice were
protected when challenged with wild-type S. Typhimu-
rium, however, the PBS treated mice developed significant
inflammation and systemic dissemination of S. Typhi-
murium during subsequent Salmonella challenge.
In conclusion, the MT4 live-attenuated S. Typhi-

murium strain provides an efficient antibody mediated
immune response which can protect even immunocom-
promised hosts from lethal infection of Salmonella. Spe-
cific antibody response to any protein antigens requires
the involvement of both CD4+ and CD8+ T-cells along
with the B-cells. The T-cell dependent antigens require
the involvement of T-cells for the adaptive immune
response. T helper (CD4+) cells play a vital role in stimu-
lating the B-cells for the production of pathogen specific
antibody via clonal propagation. Additionally, the acti-
vated CD4+ and CD8+ T-cells are the major producers
of INF-γ which further activates the tissue and blood
macrophages. As T-cell contributes to the cell mediated
immune response, it is important to estimate the T-cell
propagation during the course of Salmonella infection.
In this study we have additionally estimated CD4+ and
CD8+ T-cells from the mLN of the immunized mice.
CD4+ and CD8+ T-cell population of the mice immu-
nized with MT4 strain found to be comparable with the
mice immunized with MT5 strain. Hence, it concludes
that the MT4 strain retains its ability to induce the clas-
sical innate and adaptive immune response even after a
strong attenuation. Therefore, we propose that incorpor-
ating additional “safety” features such as the deletion of
mig-14 can be of a general interest for the design of new
super live attenuated S. Typhimurium strain. This atten-
uated strain could also be used for developing the
recombinant vaccine against other enteric pathogens.
Additional file

Additional file 1: Figure S1. Evaluation of attenuation profile of mig14::
aphT mutant in comparison to wild-type strain of Salmonella
Typhimurium. Competitive index profile of mig-14::aphT mutant when
compared against wild-type strain. n.s. = not significant; * = p < 0.05).
Figure S2. Infection profile of mig14::aphT mutant in comparison to
wild-type strain of Salmonella Typhimurium .Infection profile and
systemic attenuation of mig14::aphT mutant. Bar indicates 200 μm.
n.s. = not significant; * = p < 0.05). Figure S3. Flowcytometric analysis of

http://www.biomedcentral.com/content/supplementary/1471-2180-13-236-S1.pdf
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T-cell population after Salmonella infection. The whole cells were isolated
from the mLN of the vaccinated mice. The cells were then suspended
in appropriate medium and processed for flow cytometric analysis
(see materials and methods). The cells were detected by using specific
conjugated antibodies against specific T-cells. Figure S4. Luminal and
serum specific antibody responses in mice immunized with MT5 and
MT4. Serum and gut wash from mice treated with PBS and vaccinated
with MT4 and MT5 were collected, diluted to a highest dilution of 1:120
(serum) and 1:9 (gut wash). The presence of Salmonella specific IgG and
secretory IgA were detected by bacterial flow cytometric (A) and Western
blot (B). Each coloured line indicates data obtained from individual mice
of respective group. The representative Western blot analysis of the
antibody responses was done by developing the blots from the
overnight cultures of MT5, MT4, SB300 (wt S. Typhimurium) and M1525
(S. Enteritidis; negative control) by using the sera and gut luminal sIgA of
the immunized mice.
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