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Abstract

Background: Transcriptional regulation by alternative sigma (σ) factors represents an important mechanism that
allows bacteria to rapidly regulate transcript and protein levels in response to changing environmental conditions.
While the role of the alternative σ factor σB has been comparatively well characterized in L. monocytogenes, our
understanding of the roles of the three other L. monocytogenes alternative σ factors is still limited. In this study, we
employed a quantitative proteomics approach using Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) to
characterize the L. monocytogenes σL, σH, and σC protein regulons. Proteomic comparisons used a quadruple
alternative σ factor mutant strain (ΔBCHL) and strains expressing a single alternative σ factor (i.e., σL, σH, and σC;
strains ΔBCH, ΔBCL, and ΔBHL) to eliminate potential redundancies between σ factors.

Results: Among the three alternative σ factors studied here, σH provides positive regulation for the largest number
of proteins, consistent with previous transcriptomic studies, while σL appears to contribute to negative regulation of
a number of proteins. σC was found to regulate a small number of proteins in L. monocytogenes grown to
stationary phase at 37°C. Proteins identified as being regulated by multiple alternative σ factors include MptA,
which is a component of a PTS system with a potential role in regulation of PrfA activity.

Conclusions: This study provides initial insights into global regulation of protein production by the L.
monocytogenes alternative σ factors σL, σH, and σC. While, among these σ factors, σH appears to positively regulate
the largest number of proteins, we also identified PTS systems that appear to be co-regulated by multiple
alternative σ factors. Future studies should not only explore potential roles of alternative σ factors in activating a
“cascade” of PTS systems that potentially regulate PrfA, but also may want to explore the σL and σC regulons under
different environmental conditions to identify conditions where these σ factors may regulate larger numbers of
proteins or genes.
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Background
The foodborne pathogen Listeria monocytogenes uses
complex regulatory mechanisms to adapt to a variety of
environmental conditions and to cause listeriosis, a life-
threatening infection, in humans and animals. A key
mechanism used by L. monocytogenes to regulate tran-
script and protein levels in order to adapt to changing
environmental conditions is through alternative sigma
(σ) factors. Alternative σ factors reprogram the RNA
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reproduction in any medium, provided the or
polymerase holoenzyme to recognize specific promoters
and hence allow for rapid induction of transcription of
potentially large groups of genes under specific environ-
mental conditions [1]. In L. monocytogenes, four alterna-
tive σ factors, σB, σC, σH, and σL, have been identified.
However, σC has only been described in L. monocyto-
genes strains that group into lineage II, a well defined
phylogenetic group that includes serotypes 1/2a and 1/
2c [2-4]. A number of studies that have explored σB-me-
diated stress response as well as σB-mediated gene ex-
pression and protein production in L. monocytogenes
[1,5-16] have shown that this alternative σ factor
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controls a large regulon and contributes to both stress
response and virulence.
σH, σL, and σC have not been as extensively character-

ized as σB in L. monocytogenes, at least partially because
studies to date have only identified limited phenotypic
consequences of null mutations in these σ factors in L.
monocytogenes. Among these three alternative σ factors,
σH appears to control the largest regulon; Chaturongakul
et al. (2011) identified 97 and 72 genes as positively and
negatively regulated by σH, respectively, in L. monocy-
togenes strain 10403S [7]. While a L. monocytogenes
EGD-e sigH mutant was reported to have significantly
impaired growth in minimal medium and under alkaline
stress conditions as well as slightly reduced virulence po-
tential in a mouse model [17], phenotypic studies in a L.
monocytogenes 10403S ΔsigH strain did not find evi-
dence for an effect of this mutation on virulence in a
guinea pig model, cell invasion and intracellular growth,
or resistance to heat stress [7]. With regard to σL, 31
and 20 genes were identified as positively and negatively
regulated, respectively, by this σ factor, in L. monocy-
togenes 10403S [7]. A more recent study in L. monocy-
togenes EGD-e identified 237 and 203 genes as positively
regulated by σL when the parent and ΔsigL mutant
strains were grown at 3°C and 37°C, respectively; most
of the 47 genes that showed positive regulation by σL

under both temperatures were located within prophage
A118 [18]. Phenotypic and gene expression studies also
support a potential contribution of σL to L. monocyto-
genes growth under different stress conditions, most not-
ably osmotic and low temperature stress [19,20]. L.
monocytogenes σL has also been reported to be involved
in resistance to the antimicrobial peptide mesentericin
Y105 [21]. Finally, studies conducted to date on the L.
monocytogenes σC regulon typically identified few genes
as σC-dependent. Chaturongakul et al. (2011) were only
able to identify and confirm, by qRT-PCR, a single gene
(lmo0422) as σC-dependent; lmo0422, which encodes
LstR, a lineage II specific thermal regulator, is in the
same operon as sigC and this finding is consistent with
previous data suggesting that the sigC operon is auto-
regulated [3,7]. Zhang et al. (2005) also found some evi-
dence that σC may contribute to thermal resistance in
the L. monocytogenes lineage II strain 10403S, when
grown to log phase [3]; by contrast, Chaturongakul et al.
(2011) did not find any evidence for reduced heat resist-
ance when an independent L. monocytogenes 10403S
ΔsigC strain was grown to stationary phase prior to heat
exposure [7].
Previous studies [7] have suggested considerable over-

lap between different L. monocytogenes alternative σ fac-
tor regulons (e.g., between the σB and the σH regulon),
suggesting the potential for redundancies as well as
compensation for deletion of a single alternative σ factor
by other σ factors. We thus hypothesized that an experi-
mental approach that eliminates these potential redun-
dancies is needed to gain a better understanding of the
roles of σC, σH, and σL in regulating production of spe-
cific proteins in L. monocytogenes. As an experimental
approach, we selected to create an L. monocytogenes
10403S quadruple mutant with a non-polar deletion of
all four genes that encode alternative σ factors (i.e.,
strain ΔBCHL) as well as corresponding mutants with
deletions of three alternative σ factors (ΔBCH, ΔBCL,
and ΔBHL), which thus expressed only σL, σH, and σC,
respectively. These strains were then used for proteomic
comparisons between the quadruple mutant strain and
the three different strains expressing only a single alter-
native σ factor. We particularly focused on exploring the
contributions of these alternative σ factors to regulating
protein production as, despite availability of a number of
proteomics data sets on the σB regulon [15,16], only a
single proteomics study on the σL regulon is available
[22]. While alternative σ factors directly regulate tran-
scription of genes, it is increasingly clear that alternative
σ factors also make important indirect contributions to
protein production via mechanisms other than transcrip-
tional activation of a σ factor dependent promoter up-
stream of a protein encoding gene, including through
regulation of non-coding RNAs or through direct tran-
scriptional up-regulation of a protein that in turn, dir-
ectly or indirectly, affects production of other proteins
[23]. The goal of this proteomics study was thus to spe-
cifically identify additional post-transcriptional regula-
tory pathways that are linked to the action of alternative
σ factors in L. monocytogenes.

Results and discussion
Proteomic comparisons between L. monocytogenes mu-
tants expressing only σL, σH, and σC and a quadruple
mutant that does not express any alternative σ factors,
all grown to stationary phase at 37°C, showed that (i) σH

provides, among these three alternative σ factors, posi-
tive regulation for the largest number of proteins, con-
sistent with previous transcriptomic studies [7]; (ii) σL

appears to contribute to negative regulation of a number
of proteins; (iii) σC regulates a small number of proteins
in L. monocytogenes grown to stationary phase at 37°C;
and (iv) proteins regulated by multiple alternative σ fac-
tors include MptA, which has a potential role in regula-
tion of PrfA.

σH positively regulates a large number of proteins and
appears to directly and indirectly contribute to transport
and metabolism of β-glucosides
Our proteomic comparison identified 15 proteins as
positively regulated by σH, as supported by higher pro-
tein levels (Fold change (FC) ≥ 1.5; p-valuec (pc) < 0.05)
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in L. monocytogenes ΔBCL as compared to the ΔBCHL
strain (Table 1); four of these 15 proteins also showed
higher levels in the parent strain (which expresses all
four alternative σ factors) as compared to the quadruple
mutant. Overall, positive fold changes for these proteins
(in ΔBCL versus ΔBCHL) ranged from 1.55 to 3.39.
These 15 proteins represented nine role categories (e.g.,
“energy metabolism”; “amino acid biosynthesis”; “trans-
port and binding proteins”, see Figure 1); a Monte Carlo
simulation of Fisher’s exact test did not find a significant
association between positively regulated genes and role
categories (p = 0.06); however, individual Fisher’s exact
tests did show overrepresentation of proteins in the role
category “amino acid biosynthesis” among the 15 pro-
teins that were found to be positively regulated by σH

(with a significant p-value; p < 0.01; Odds Ratio = 6.26).
Some of the 15 proteins positively regulated by σH have
likely roles in stress adaptation and virulence, includ-
ing Lmo1439 (superoxide dismutase, SodA) [24] and
Lmo0096 (mannose-specific PTS system IIAB compo-
nent, MptA), which has been linked to regulation of the
virulence gene regulator PrfA [25]. Previously reported
transcriptomic studies [7] only identified the coding
gene for one of these 15 proteins (i.e., Lmo1454) as σH-
dependent; lmo1454 (rpoD) was also identified as pre-
ceded by a σH consensus promoter, suggesting direct
transcriptional regulation by σH. In addition, the coding
gene for Lmo2487, one of these 15 proteins, is in an op-
eron with lmo2485, which was previously reported to be
positively regulated by σH, even though no upstream σH

consensus promoter was identified, suggesting indirect
regulation [7]. RNA-Seq data from our group (unpub-
lished data) found clear evidence (FC > 5 and likelihood
of being positively regulated by σH > 0.95) for σH-
dependent transcript levels for only two of the genes en-
coding these 15 proteins, including lmo1454 and
lmo0239; importantly, RNA-Seq data allow for quantifi-
cation with similar sensitivity as qRT-PCR [14]. lmo1454
thus has been consistently identified as a gene that is
directly up-regulated by σH, as supported by proteomics
and transcriptomic studies and identification of an
upstream σH-dependent promoter. Many of the other
proteins identified here as showing σH-dependent pro-
duction, on the other hand, appear to be regulated indir-
ectly by σH, possibly at the post-transcriptional level.
While future efforts will be needed to confirm σH-
dependent production of these proteins (e.g., through
Western blot or translational reporter fusions) and to
explore the mechanisms of regulation, our data identi-
fied and further characterized a σH-dependent pathway
that involves indirect effects of σH. Specifically, we found
that both Lmo0027 (a component of a β-glucoside spe-
cific PTS system) and BglA (a β-glucosidase) showed
higher protein levels in the presence of σH. As lmo0027
is preceded by a σH consensus promoter, these findings
suggest a model where σH directly activates transcription
of lmo0027, which facilitates PTS-based import of
beta-glucosides into the cell. We hypothesize that these
β-glucosides then lead to an increase in the levels of
BglA (through a yet to be defined mechanism), facilitat-
ing the use of β-glucosides in downstream pathways in-
volved in energy acquisition (e.g., glycolysis, the pentose
phosphate pathway).
Our proteomic comparison also identified four pro-

teins that showed lower levels in the strain expressing
σH, suggesting (indirect) negative regulation by σH; three
of these four proteins also showed lower levels in the par-
ent strain (which expresses all four alternative σ factors)
as compared to the quadruple mutant. None of the genes
encoding these proteins showed significantly higher tran-
script levels in a ΔsigH strain in a transcriptomic study
[7]. However, the coding gene for Lmo1877, one of these
four proteins, is in an operon with lmo1876, which was
previously reported to be negatively regulated by σH [7].
Overall, global indirect down-regulation of proteins by
σH does not seem to play an important role in stationary
phase L. monocytogenes 10403S.

σL appears to contribute to negative regulation of a
number of proteins
Our proteomic comparison identified only two proteins
(Lmo0096 and Lmo2006) as positively regulated by σL,
as supported by higher protein levels (FC ≥ 1.5; pc <
0.05) in L. monocytogenes ΔBCH as compared to the
ΔBCHL strain (Table 2). Both of these proteins also
showed higher levels in the parent strain (which ex-
presses all four alternative σ factors) as compared to the
quadruple mutant. Lmo0096 (MptA) is annotated as the
mannose-specific PTS system IIAB component, while
Lmo2006 (AlsS) is annotated as an acetolactate syn-
thase. Both lmo0096 and lmo2006 have previously been
reported to be positively regulated by σL at the transcrip-
tomic level [18]. Lmo0096 was also reported as showing
lower levels in an L. monocytogenes EGD-e rpoN (σL)
mutant in a 2-DE based proteomic analysis [22] and the
lmo0096 gene was found to be preceded by a putative σL

consensus promoter in the same study, further sup-
porting positive regulation of the gene encoding this
protein by σL.
A total of 56 proteins showed lower levels in the pres-

ence of σL (in the comparison between the ΔBCH and
the ΔBCHL strain), suggesting indirect negative regula-
tion of these proteins by σL (Table 2); two of the genes
encoding these proteins had previously been shown to
have higher transcript levels in a ΔsigL null mutant as
compared to a parent strain, further supporting negative
regulation by σL [7]. Twenty-one of the proteins with
evidence for negative regulation by σL also showed lower



Table 1 Proteins found to be differentially regulated by σH, as determined by a proteomic comparison between L. monocytogenes 10403S ΔBCL and ΔBCHL
Proteina Fold change

ΔBCL/ΔBCHL
Description Gene

name
Role categoryb Sub-Role categoryb Promoterd Sigma

factor

Proteins with positive fold change (> 1.5) and p < 0.05 (indicating positive regulation by σH)

Lmo0027 1.55 beta-glucoside-specificPTS system
IIABC component

lmo0027 Transport and binding proteins Carbohydrates, organic
alcohols, and acids

aggacacgtgtatgcgtggagtcctcgaatga SigmaH

Amino acid biosynthesis Aromatic amino acid family

Energy metabolism Pyruvate dehydrogenase

Lmo0096 3.39 mannose-specific PTS system IIAB
component ManL

mptA Energy metabolism Pyruvate dehydrogenase tggcacagaacttgca SigmaL

Amino acid biosynthesis Aromatic amino acid family

Transport and binding proteins Carbohydrates, organic
alcohols, and acids

Lmo0239 1.82 cysteinyl-tRNA synthetase cysS Protein synthesis tRNA aminoacylation ttgcaaggaattttattgctgttataatag SigmaA

Lmo0319 1.77 beta-glucosidase bglA Energy metabolism Sugars N/A N/A

Lmo0356 2.16 YhhX family oxidoreductase lmo0356 Energy metabolism Fermentation tggctaagtacagcgctagtgtagtactat SigmaA

Energy metabolism Electron transport

Central intermediary metabolism Other

Lmo1001 1.65 hypothetical protein lmo1001 Unclassified Role category not yet assigned N/A N/A

Lmo1070 2.18 similar to B. subtilis YlaN protein lmo1070 Hypothetical proteins Conserved ttgcgtggcaaataaattatgctatact SigmaA

Lmo1255 1.60 trehalose-specific PTS system IIBC
component

lmo1255 Energy metabolism Pyruvate dehydrogenase ttgcgctttcaactgatttatagtatagt SigmaA

Amino acid biosynthesis Aromatic amino acid family

Transport and binding proteins Carbohydrates, organic
alcohols, and acids

Lmo1439 1.66 superoxide dismutase sodA Cellular processes Detoxification ttgcaagcatttagggagcatggtaggct SigmaA

gtttaacttttgagtttcagggaaa SigmaB

Lmo1454c 1.85 RNA polymerase sigma factor RpoD rpoD Transcription Transcription factors gttttaaaaccgctaaatgatggtat SigmaB

aggacttttgctttttgtggcgaatat SigmaH

ttgactttttagcaaaaatacagtatctt SigmaA

Lmo2006 1.60 acetolactate synthase catabolic alsS Amino acid biosynthesis Aspartate family ttgcaataattcttttgagtagtataat SigmaA

Amino acid biosynthesis Pyruvate family

Lmo2064 2.01 large conductance
mechanosensitive channel protein

mscL Cellular processes Adaptations to atypical
conditions

tttcacatcgcagttagatgttttatact SigmaA
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Table 1 Proteins found to be differentially regulated by σH, as determined by a proteomic comparison between L. monocytogenes 10403S ΔBCL and ΔBCHL
(Continued)

Lmo2487 1.65 hypothetical protein lmo2487 Hypothetical proteins Conserved N/A N/A

Lmo2614 2.05 50S ribosomal protein L30 rpmD Protein synthesis Ribosomal proteins: synthesis
and modification

ttgattactacccctaacccgtgtataat SigmaA

Lmo2621 1.63 50S ribosomal protein L24 rplX Protein synthesis Ribosomal proteins: synthesis
and modification

ttgattactacccctaacccgtgtataat SigmaA

Proteins with negative fold change (< -1.5) and p < 0.05 (indicating negative regulation by σH)

Lmo1877 −1.61 formate-tetrahydrofolate ligase fhs Amino acid biosynthesis Aspartate family

Protein synthesis tRNA aminoacylation

Amino acid biosynthesis Histidine family

Purines, pyrimidines, nucleosides, and
nucleotides

Purine ribonucleotide
biosynthesis

Biosynthesis of cofactors, prosthetic
groups, and carriers

Pantothenate and coenzyme A

Lmo2094 −7.35 hypothetical protein lmo2094 Energy metabolism Sugars

Lmo2097 −3.17 galactitol-specific PTS system IIB
component

lmo2097 Energy metabolism Pyruvate dehydrogenase

Amino acid biosynthesis Aromatic amino acid family

Transport and binding proteins Carbohydrates, organic
alcohols, and acids

Lmo2098 −2.33 galactitol-specific PTS system IIA
component

lmo2098 Energy metabolism Pyruvate dehydrogenase

Amino acid biosynthesis Aromatic amino acid family

Transport and binding proteins Carbohydrates, organic
alcohols, and acids

aProtein names are based on the L. monocytogenes EGD-e locus.
bRole Categories and Sub-Role categories are based on JCVI classification [26].
cReported as positively and directly regulated by σH in Chaturongakul et al., 2011 [7].
dPromoters were identified based on RNA-Seq data (Orsi et al., unpublished) or previously published data. -10 and -35 (σA, σB, σH) and -12 and -24 (σL) regions are underlined. N/A indicates that a promoter was
not identified.
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Figure 1 Functional role category classification of alternative σ factor dependent proteins. Functional role category classification of σH

positively-regulated (blue), σH negatively-regulated (red), σC positively-regulated (green), σC negatively-regulated (purple), σL positively-regulated
(turquoise), and σL negatively-regulated (gray) proteins; and proteins with higher levels in L. monocytogenes parent strain 10403S (PAR.) compared
to ΔBCHL (yellow) and lower levels in PAR. compared to ΔBCHL (orange). Role category numbers correspond to: (1) Amino acid biosynthesis; (2)
Biosynthesis of cofactors, prosthetic groups, and carriers; (3) Cell envelope; (4) Cellular processes; (5) Central intermediary metabolism; (6) Energy
metabolism; (7) Fatty acid and phospholipid metabolism; (8) Hypothetical proteins; (9) Protein fate; (10) Protein synthesis; (11) Purines,
pyrimidines, nucleosides, and nucleotides; (12) Regulatory functions; (13) Transcription; (14) Transport and binding proteins; (15) Unclassified; (16)
Unknown function; (17) Viral functions. One protein may be classified into more than one role category. Statistical analysis of contingency tables
for regulons with > 10 proteins (i.e., proteins positively regulated by σH; proteins negatively regulated by σL; proteins with higher or lower levels
in the parent strain) found that role categories were not randomly distributed among proteins negatively regulated by σL and proteins with
lower levels in the parent strain.
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protein levels in the parent strain as compared to the
ΔBCHL strain (Additional file 1: Table S1), further
supporting their negative regulation. Four of these 21
proteins as well as three other proteins found to be
negatively regulated by σL in this study were also
reported as showing higher transcript levels in an L.
monocytogenes EGD-e rpoN (σL) mutant [22] (Table 2),
supporting their negative regulation by σL. Overall, the
56 proteins identified here as negatively regulated by σL

represented 13 role categories (e.g., energy metabolism,
transport and binding proteins, central intermediary
metabolism), including 31 proteins in the energy metab-
olism role category; statistical analyses showed overrep-
resentation of the role category “energy metabolism”
(p < 0.01; Odds Ratio = 5.6) among these 56 proteins.
Specific proteins identified as negatively regulated by σL

included flagellin (FlaA), chemotaxis protein CheA, and
a glutamate-γ-aminobutyric acid (GABA) antiporter
(Lmo2362, GadC, GadT2), which have known roles in
stress adaptation or virulence in L. monocytogenes [1,27].
σC regulates a small number of proteins
Previous studies indicated a role for σC in L. monocytogenes
thermal adaptive response as well as in cold adaptation
[3,13], however only a few genes have been identified as
part of the σC regulon [7]. Similarly, we were only able to
identify one protein, Lmo0096, that showed higher protein
levels (FC ≥ 1.5; pc < 0.05) in the presence of σC (i.e., the
comparison between the ΔBHL and the ΔBCHL strain;
Table 3). Lmo0096 has been previously reported to be
induced under cold stress in L. monocytogenes [28], sup-
porting a role of σC in response to temperature stress in
the bacterium. By comparison, the transcriptomic study by
Chaturongakul et al., 2011 only identified lmo0422, which
is in the same operon as sigC (lmo0423), as positively regu-
lated by σC [7].
We also identified two proteins, Lmo2094 and Lmo1902,

that showed higher protein levels in the absence of σC,
suggesting negative regulation of these proteins by σC

(Table 3). By comparison, the transcriptomic study by
Chaturongakul et al. (2011) identified three different



Table 2 Proteins found to be differentially regulated by σL, as determined by a proteomic comparison between L. monocytogenes 10403S ΔBCH and ΔBCHL
Proteina Fold change ΔBCH/

ΔBCHL
Description Gene

name
Role categoryb Sub-Role categoryb

Proteins with positive fold change (> 1.5) and p < 0.05 (indicating positive regulation by σL)

Lmo0096d,f 64.16 mannose-specific PTS system IIAB component
ManL

mptA Energy metabolism Pyruvate dehydrogenase

Amino acid biosynthesis Aromatic amino acid family

Transport and binding proteins Carbohydrates, organic alcohols,
and acids

Lmo2006g 3.41 acetolactate synthase catabolic alsS Amino acid biosynthesis Aspartate family

Amino acid biosynthesis Pyruvate family

Proteins with negative fold change (< -1.5) and p < 0.05 (indicating negative regulation by σL)

Lmo0027c,e −3.62 beta-glucoside-specific PTS system
IIABC component

lmo0027 Transport and binding proteins Carbohydrates, organic alcohols,
and acids

Amino acid biosynthesis Aromatic amino acid family

Energy metabolism Pyruvate dehydrogenase

Lmo0130 −3.64 hypothetical protein lmo0130 Unclassified Role category not yet assigned

Lmo0178 −2.07 hypothetical protein lmo0178 Regulatory functions Other

Lmo0181 −3.25 multiple sugar transport system
substrate-binding protein

lmo0181 Transport and binding proteins Unknown substrate

Lmo0260 −1.68 hydrolase lmo0260 Hypothetical proteins Conserved

Lmo0278 −1.67 maltose/maltodextrin transport system
ATP-binding protein

lmo0278 Transport and binding proteins Carbohydrates, organic alcohols,
and acids

Lmo0319c,e −2.96 beta-glucosidase bglA Energy metabolism Sugars

Lmo0343 −3.94 transaldolase tal2 Energy metabolism Pentose phosphate pathway

Lmo0344 −4.69 short chain dehydrogenase lmo0344 Energy metabolism Biosynthesis and degradation of
polysaccharides

Lmo0345 −6.04 ribose 5-phosphate isomerase B lmo0345 Energy metabolism Pentose phosphate pathway

Lmo0346 −2.74 triosephosphate isomerase tpiA2 Energy metabolism Glycolysis/gluconeogenesis

Lmo0348 −2.41 dihydroxyacetone kinase lmo0348 Fatty acid and phospholipid metabolism Biosynthesis

Energy metabolism Sugars

Lmo0391 −1.67 hypothetical protein lmo0391

Lmo0401 −2.16 alpha-mannosidase lmo0401 Unclassified Role category not yet assigned

Lmo0517e −3.21 phosphoglycerate mutase lmo0517 Energy metabolism Glycolysis/gluconeogenesis

Lmo0521 −2.23 6-phospho-beta-glucosidase lmo0521 Energy metabolism Sugars
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Table 2 Proteins found to be differentially regulated by σL, as determined by a proteomic comparison between L. monocytogenes 10403S ΔBCH and ΔBCHL
(Continued)

Lmo0536 −1.97 6-phospho-beta-glucosidase lmo0536 Central intermediary metabolism Other

Lmo0574 −1.65 6-phospho-beta-glucosidase GmuD lmo0574 Central intermediary metabolism Other

Lmo0640 −1.78 oxidoreductase lmo0640 Energy metabolism Fermentation

Central intermediary metabolism Other

Energy metabolism Electron transport

Lmo0643 −2.61 transaldolase lmo0643 Energy metabolism Pentose phosphate pathway

Lmo0689 −1.71 chemotaxis protein CheV lmo0689 Cellular processes Chemotaxis and motility

Lmo0690 −2.44 flagellin flaA Cellular processes Chemotaxis and motility

Lmo0692 −1.66 chemotaxis protein CheA cheA Cellular processes Chemotaxis and motility

Lmo0813 −2.04 fructokinase lmo0813 Energy metabolism Sugars

Lmo0930 −1.88 hypothetical protein lmo0930 Unclassified Role category not yet assigned

Lmo1242 −1.59 hypothetical protein lmo1242 Hypothetical proteins Conserved

Lmo1254 −2.10 alpha-phosphotrehalase lmo1254 Energy metabolism Biosynthesis and degradation of
polysaccharides

Lmo1348 −2.42 glycine cleavage system T protein gcvT Energy metabolism Amino acids and amines

Lmo1349 −2.68 glycine cleavage system P-protein gcvPA Energy metabolism Amino acids and amines

Central intermediary metabolism Other

Lmo1350e −2.11 glycine dehydrogenase subunit 2 gcvPB Central intermediary metabolism Other

Energy metabolism Amino acids and amines

Lmo1388e −2.02 ABC transport system tcsA Unclassified Role category not yet assigned

Lmo1389 −2.32 simple sugar transport system
ATP-binding protein

lmo1389 Transport and binding proteins Carbohydrates, organic alcohols,
and acids

Lmo1538e −1.89 glycerol kinase glpK Energy metabolism Other

Lmo1699 −1.92 Methyl-accepting chemotaxis protein lmo1699 Cellular processes Chemotaxis and motility

Lmo1730 −2.55 lactose/L-arabinose transport system
substrate-binding protein

lmo1730 Transport and binding proteins Carbohydrates, organic alcohols,
and acids

Lmo1791 −1.75 hypothetical protein lmo1791

Lmo1812 −1.70 L-serine dehydratase iron-
sulfur-dependent alpha subunit

lmo1812 Energy metabolism Amino acids and amines

Energy metabolism Glycolysis/gluconeogenesis

Lmo1856 −1.65 purine nucleoside phosphorylase deoD Purines, pyrimidines, nucleosides, and
nucleotides

Salvage of nucleosides and nucleotides
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Table 2 Proteins found to be differentially regulated by σL, as determined by a proteomic comparison between L. monocytogenes 10403S ΔBCH and ΔBCHL
(Continued)

Lmo1860 −1.64 peptide-methionine (S)-S-oxide reductase msrA Protein fate Protein modification and repair

Lmo1877 −2.14 formate-tetrahydrofolate ligase fhs Amino acid biosynthesis Aspartate family

Protein synthesis tRNA aminoacylation

Amino acid biosynthesis Histidine family

Purines, pyrimidines, nucleosides,
and nucleotides

Purine ribonucleotide biosynthesis

Biosynthesis of cofactors, prosthetic groups,
and carriers

Pantothenate and coenzyme A

Lmo1954e −1.97 phosphopentomutase deoB Purines, pyrimidines, nucleosides,
and nucleotides

Salvage of nucleosides and nucleotides

Lmo1993 −1.81 pyrimidine-nucleoside phosphorylase pdp Purines, pyrimidines, nucleosides,
and nucleotides

Salvage of nucleosides and nucleotides

Lmo2094 −28.99 hypothetical protein lmo2094 Energy metabolism Sugars

Lmo2097 −12.12 galactitol-specific PTS system IIB component lmo2097 Energy metabolism Pyruvate dehydrogenase

Amino acid biosynthesis Aromatic amino acid family

Transport and binding proteins Carbohydrates, organic alcohols,
and acids

Lmo2098 −3.96 galactitol-specific PTS system IIA component lmo2098 Energy metabolism Pyruvate dehydrogenase

Amino acid biosynthesis Aromatic amino acid family

Transport and binding proteins Carbohydrates, organic alcohols,
and acids

Lmo2160 −2.37 sugar phosphate isomerase/epimerase lmo2160 Hypothetical proteins Conserved

Lmo2161 −2.58 hypothetical protein lmo2161 Hypothetical proteins Conserved

Lmo2362 −1.87 glutamate/gamma-aminobutyrate antiporter lmo2362 Transport and binding proteins Amino acids, peptides and amines

Lmo2425 −1.59 glycine cleavage system H protein gcvH Energy metabolism Amino acids and amines

Lmo2481 −1.52 pyrophosphatase PpaX ppaX Central intermediary metabolism Other

Lmo2529 −1.72 ATP synthase F1 beta subunit atpD2 Energy metabolism ATP-proton motive force interconversion

Lmo2648 −2.50 hypothetical protein lmo2648 Unclassified Role category not yet assigned

Lmo2664 −1.72 L-iditol 2-dehydrogenase lmo2664 Central intermediary metabolism Other

Energy metabolism Glycolysis/gluconeogenesis

Energy metabolism Electron transport

Energy metabolism TCA cycle

Energy metabolism Fermentation
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Table 2 Proteins found to be differentially regulated by σL, as determined by a proteomic comparison between L. monocytogenes 10403S ΔBCH and ΔBCHL
(Continued)

Lmo2696 −2.68 dihydroxyacetone kinase L subunit lmo2696 Energy metabolism Sugars

Fatty acid and phospholipid metabolism Biosynthesis

Lmo2697 −3.10 dihydroxyacetone kinase lmo2697 Hypothetical proteins Conserved

Lmo2743 −2.71 transaldolase tal1 Energy metabolism Pentose phosphate pathway
aProtein names are based on the L. monocytogenes EGD-e locus.
bRole Categories and Sub-Role categories are based on JCVI classification [26].
cReported as negatively regulated by σL in Chaturongakul et al., 2011 [7].
dReported as downregulated in a rpoN (σL) mutant compared to wildtype L. monocytogenes EGD-e in Arous et al., 2004 [22].
eReported as upregulated in a rpoN (σL) mutant compared to wildtype L. monocytogenes EGD-e in Arous et al., 2004 [22].
fPreceded by a putative σL promoter; tggcacagaacttgca; -12 and -24 regions are underlined.
gPreceded by a putative σA promoter; ttgcaataattcttttgagtagtataat; -10 and -35 regions are underlined.
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Table 3 Proteins found to be differentially regulated by σC, as determined by a proteomic comparison between L.
monocytogenes 10403S ΔBHL and ΔBCHL
Proteina Fold change

ΔBHL/ΔBCHL
Description Gene

name
Role categoryb Sub-Role categoryb

Proteins with positive fold change (> 1.5) and p < 0.05 (indicating positive regulation by σC)

Lmo0096c 3.19 mannose-specific PTS system
IIAB component ManL

mptA Energy metabolism Pyruvate dehydrogenase

Amino acid biosynthesis Aromatic amino acid family

Transport and binding
proteins

Carbohydrates, organic alcohols,
and acids

Proteins with negative fold change (< -1.5) and p < 0.05 (indicating negative regulation by σC)

Lmo2094 −1.82 hypothetical protein lmo2094 Energy metabolism Sugars

Lmo1902 −1.61 3-methyl-2-oxobutanoate
hydroxymethyltransferase

panB Biosynthesis of cofactors,
prosthetic groups, and carriers

Pantothenate and
coenzyme A

aProtein names are based on the L. monocytogenes EGD-e locus.
bRole Categories and Sub-Role categories are based on JCVI classification [26].
cPreceded by a putative σL promoter; tggcacagaacttgca; -12 and -24 regions are underlined.
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genes, representing two operons (lmo1854; lmo2185 and
lmo2186), that showed lower transcript levels in the parent
strain compared to the ΔsigC mutant, suggesting nega-
tive regulation by σC [7]. While our data are consistent
with previous findings of a limited σC regulon in L.
monocytogenes 10403S, it is possible that σC- dependent
gene regulation only occurs under specific conditions (e.g.,
heat stress [3]) and that more complete identification of
the σC regulon requires transcriptomic and proteomic
studies under specific conditions that remain to be defined.
In addition, future experiments using an L. monocytogenes
strain that expresses sigC from an inducible promoter
may also allow for identification of additional proteins
that show σC-dependent production; this strategy applied
to other alternative σ factors may also allow for identifica-
tion of additional proteins that show σH- or σL-dependent
production.

Proteins regulated by multiple alternative σ factors
include MptA, which has a potential role in regulation
of PrfA
Our data reported here also provided an opportunity to
gather further insight into genes and proteins that are
co-regulated by multiple σ factors and, consequently,
into regulatory networks among different alternative σ
factors. To facilitate these analyses, we also compared
the protein levels between the L. monocytogenes parent
strain and the ΔBCHL strain (which does not express
any alternative σ factors). This analysis identified (i) 33
proteins that showed significantly higher levels (FC ≥
1.5; pc < 0.05) in the parent strain as compared to the
ΔBCHL strain (Additional file 1: Table S1) and (ii) 44
proteins that show lower levels in the parent as com-
pared to the ΔBCHL mutant (Additional file 1: Table
S1). Approximately 40% of the proteins that showed dif-
ferential production (either up or down) are involved in
energy metabolism and transport and binding functions
(Figure 1). Among the 33 proteins that showed higher
levels in the parent strain, (i) two were also found to be
positively regulated by σH; (ii) one was also positively regu-
lated by σH and σL, and (iii) one was also positively regu-
lated by σH, σL and σC (Figure 2; Table 4). In addition, 12
of the 29 proteins that were found to be positively regu-
lated in the parent strain, were also found to be positively
regulated by σB in a recent proteomics study, which com-
pared L. monocytogenes parent strain 10403S and ΔsigB
mutant grown to stationary phase under the same condi-
tions as used here [23]. While these 12 proteins likely rep-
resent proteins that are positively regulated by σB, the
other 17 proteins that showed higher levels in the parent
strain as compared to the ΔBCHL strain, but were not
identified as positively regulated by any of the alternative σ
factors, represent candidate proteins for redundant co-
regulation by multiple alternative σ factors. Future experi-
ments using an L. monocytogenes strain that only
expresses σB (i.e., a ΔCHL strain) may help to not only fur-
ther define the σB regulon, but also allow for further re-
finement of genes and proteins co-regulated by multiple
alternative σ factors. Regulatory redundancy among mul-
tiple alternative σ factors has also previously been demon-
strated through analyses of Bacillus subtilis alternative σ
factor mutants; in particular, certain phenotypes displayed
by a B. subtilis triple alternative σ factor deletion mutant
were not found among single or double mutants of each
of the three alternative σ factors, suggesting regulatory
overlaps [29].
Among the 44 proteins that showed lower levels in the

parent strain as compared to the ΔBCHL mutant
(Additional file 1: Table S1), (i) two also showed evi-
dence for negative regulation by σH and σL (Lmo2097
and Lmo1877); (ii) one also showed evidence for nega-
tive regulation by σH, σL, and σC (Lmo2094; located in



Figure 2 Venn diagram of proteins identified as showing higher protein levels in comparisons of (i) L. monocytogenes parent strain
10403S (PAR.) and ΔBCHL; (ii) ΔBCH and ΔBCHL (identifying genes positively regulated by σL); ΔBCL and ΔBCHL (identifying genes
positively regulated by σH); and ΔBHL and ΔBCHL (identifying genes positively regulated by σC). Twelve of the 29 proteins that were
found to be positively regulated in the parent strain were also found to be positively regulated by σB in a recent proteomics study, which
compared L. monocytogenes parent strain 10403S and a ΔsigB mutant [23]; these proteins include Lmo2748, Lmo2213, Lmo2158, Lmo2047,
Lmo1830, Lmo0913, Lmo0796, Lmo0794, Lmo0722, Lmo0654, Lmo0539, and Lmo0265. The 17 proteins that show higher levels in the parent
strain as compared to the ΔBCHL strain, but were not identified as positively regulated by any of the alternative σ factors include Lmo1540,
Lmo2610, Lmo1422, Lmo1421, Lmo1602, Lmo1426, Lmo1428, Lmo2205, Lmo2398, Lmo1601, Lmo0554, Lmo1634, Lmo0110, Lmo2558, Lmo0783,
Lmo0134, and Lmo0098.

Table 4 Proteins found to be differentially regulated by
at least two of the three alternative sigma factors
studied here

Regulation byb Regulation
by σBc

Differential levels in
comparison between
parent and ΔBCHLProteina σH σL σC

Lmo0027 + - NDR NDR -

Lmo0096 (MptA) + + + NDR +

Lmo0319 (BglA) + - NDR NDR -

Lmo1877 (Fhs) - - NDR NDR -

Lmo2006 (AlsS) + + NDR NDR +

Lmo2094 - - - NDR -

Lmo2097 - - NDR NDR -

Lmo2098 - - NDR NDR NDR
aWhere available, protein name is shown in parenthesis.
bProteins that were identified here as positively (+) or negatively (−) regulated
(absolute FC > 1.5; p < 0.05) by a given σ factor are shown; NDR (“not
differentially regulated”) indicates that a protein was not found to be
differentially regulated between strains with and without a given alternative
σ factor.
cData for proteins differentially regulated by σB were obtained from Mujahid
et al. [23]; this study compared protein levels between the 10403S parent
strain and an isogenic ΔsigB strain.
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the same operon as lmo2097). Among these 44 proteins,
statistical analyses showed overrepresentation of three
role categories, including (i) “energy metabolism” (p <
0.01; Odds Ratio = 3.02), (ii) “biosynthesis of cofactors,
prosthetic groups, and carriers” (p = 0.04; Odds Ratio =
2.72), and (iii) “purines, pyrimidines, nucleosides, and
nucleotides” (p = 0.04; Odds Ratio = 3.29), as well as un-
derrepresentation of the role category “hypothetical pro-
teins” (p = 0.01; Odds Ratio = 0.208).
Overall, our data provide additional evidence that a

number of genes and proteins are co-regulated by more
than one σ factor. This is consistent with previous micro-
array studies [7] that have reported considerable overlaps
between σ factor regulons in L. monocytogenes, in par-
ticular between the σH and the σB regulon. We also iden-
tified some proteins with particularly striking patterns of
co-regulation, including (i) members of the lmo2093-
lmo2099 operon, specifically Lmo2094, which was found
to be negatively regulated by σH, σL, and σC and
Lmo2097 and Lmo2098, which were found to be nega-
tively regulated by σH and σL (Table 4) and (ii) MptA
(Lmo0096), which was found to be positively regulated
by σH, σL, and σC (Table 4). Lmo2094 shows particularly
striking negative regulation of protein production by σH,
σL, and σC with respective fold changes of −7.35, -28.99,
and −1.82. Although Lmo2094 is annotated as a fuculose-
phosphate aldolase, it is part of an operon in which
most of the other genes with assigned functions are anno-
tated as being involved in the galactitol degradation
pathway. Specifically, the lmo2093 to lmo2099 operon
encodes components of a putative PTS galactitol family
permease [30], including the PTS system galactitol-specific
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enzyme IIC (Lmo2096), IIB (Lmo2097), and IIA (Lmo2098)
components, as well as a transcription antiterminator
(Lmo2099), a tagatose-6-phosphate kinase/1-phosphofruc-
tokinase (Lmo2095), an L-fuculose-phosphate aldolase
(Lmo2094), and a hypothetical protein (Lmo2093). There-
fore, it is possible that Lmo2094 is also involved in this
pathway functioning as a tagatose-1,6-biphosphate aldolase.
This enzyme converts tagatose-1,6,-biphosphate into glyc-
eraldehyde 3-phosphate and dihydroxyacetone phosphate,
which allows both tagatose and galactitol to be used as en-
ergy sources for glycolysis [31].
MptA, a component of a permease of the PTS man-

nose–fructose–sorbose family, which is another one of
the seven PTS families of L. monocytogenes [30], showed
the highest fold change in the ΔBCH strain as compared
to the ΔBCHL strain, supporting σL dependent protein
levels (FC = 64.16); fold changes supporting σH and σC

dependent protein levels were 3.39 and 3.19, respec-
tively. MptA is encoded by a gene that is part of a three-
gene operon (mptACD [32], which also has been designated
as manLMN [25]); these three genes encode a mannose-
specific PTS system IIAB component, a mannose-specific
PTS system IIC component, and a mannose-specific PTS
system IID component, respectively [25,32]. Recently, it
was suggested that during glucose uptake, MptA dephos-
phorylates, which directly, or indirectly, inhibits PrfA, the
major positive regulator of L. monocytogenes virulence
genes [25]. These findings thus provide for a hypothesis
that redundant upregulation of MptA, through multiple
alternative σ factors, may provide a critical initial step to-
wards inactivation of PrfA.

Conclusions
Transcriptional regulation through the interplay be-
tween alternative σ factors represents an important
component of L. monocytogenes stress response sys-
tems and the ability of this pathogen to regulate gene
expression during infection. In addition to transcrip-
tional regulation, alternative σ factors may also regu-
late protein production post-transcriptionally and/or
post-translationally. To allow for further insights into
the roles of different alternative σ factors in L.
monocytogenes, we thus completed a global evalu-
ation of alternative σ factor-dependent protein pro-
duction patterns in L. monocytogenes stationary phase
cells. In concert with previous transcriptomic studies,
our data not only provide a further refinement of our un-
derstanding of the alternative σ factor regulons in this
important pathogen, but also provide clear evidence for
co-regulation, by multiple σ factors, of different PTS sys-
tems, including one PTS system that has been suggested
to be linked to regulation of PrfA. Co-regulation by mul-
tiple σ factors can provide sensitive means for fine-tuning
of gene expression and protein production under different
environmental conditions, as well as redundancy that can
ensure gene expression and protein production under dif-
ferent conditions. Consistent with the goals of this study,
many of the proteins that were identified as showing pro-
duction dependent on the presence of alternative σ factors
appear to represent indirect regulation by a given σ factor,
which will require future confirmation by protein based
methods (e.g., Western blots, translational fusions).

Methods
Bacterial strains, mutant construction, and growth
conditions
Splicing by overlap extension (SOE) PCR and allelic ex-
change mutagenesis was used to construct ΔBCL, ΔBHL,
ΔBCH, and ΔBCHL mutant strains in an L. monocytogenes
10403S background as described previously [13] (Add-
itional file 2: Table S2). All mutations were confirmed by
PCR amplification and sequencing of the PCR product.
Strains were grown to stationary phase in BHI at 37°C as
described previously [33].

Protein isolation, iTRAQ labeling, and Nano-scale reverse
phase chromatography and tandem mass spectrometry
(nanoLC-MS/MS)
Protein isolation, digestion, and iTRAQ labeling were
performed as previously described [33]. Briefly, proteins
were isolated from a 25 ml culture of L. monocytogenes
stationary phase cells. A noninterfering protein assay kit
(Calbiochem) and 1D SDS-PAGE were used to verify
protein concentration and quality. A total of 100 μg pro-
tein of each sample was denatured, reduced, and the
cysteine residues were blocked. Protein samples were
then digested with sequence-grade-modified trypsin at
37°C for 16 h, and protein digestion efficiency was assessed
by SDS-PAGE. Tryptic peptides from L. monocytogenes
parent strain 10403S and ΔBCL, ΔBHL, ΔBCH, and
ΔBCHL mutant strains were each labeled with iTRAQ re-
agents, according to the manufacturer’s protocols.
Four labeled protein samples were combined for a sin-

gle run and fractionated via Isoelectric focusing OffGel
electrophoresis (OGE) using an Agilent 3100 OFFGEL
Fractionator (Agilent, G3100AA), and subsequent nanoLC-
MS/MS was carried out using a LTQ-Orbitrap Velos
(Thermo-Fisher Scientific) mass spectrometer as previously
described [33]. Two separate biological replicates of the
entire proteomics experiment were run for each strain.

Protein identification and data analysis
All MS and MS/MS raw spectra from iTRAQ experi-
ments were processed using Proteome Discoverer 1.1 for
subsequent database search using in-house licensed
Mascot Daemon; quantitative processing, protein identi-
fication, and data analysis were conducted as previously
described [33].
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The biological replicates of each experiment were
analyzed independently. As described in [33], the
Wilcoxon signed rank test was applied to peptide ra-
tios for each identified protein to determine signifi-
cant changes between strains. The Fisher’s Combined
Probability Test was then used to combine FDR
adjusted Wilcoxon p-values from each replicate into
one test statistic for every protein to obtain a com-
bined p-value (p-valuec). Proteins with peptide ratios
exhibiting a Fisher’s Combined Probability Test p-valuec <
0.05 and an iTRAQ protein ratio ≥ 1.5 in both replicates
were considered significantly differentially expressed. Stat-
istical analyses were conducted using R statistical software.
A Monte Carlo simulation of Fisher’s exact test

was used to determine whether the distribution of
role categories among proteins identified as differen-
tially regulated by a given σ factor was different from
the role category distribution that would be expected
by chance (based on the role category primary anno-
tation for all L. monocytogenes EGD-e genes [26]).
Individual Fisher’s exact tests were then used to de-
termine whether individual role categories were over-
or under- represented; uncorrected p-values were
reported, allowing readers to apply corrections if
deemed appropriate. Analyses were performed using
all role categories assigned to a given gene in the
JCVI-CMR L. monocytogenes EGD-e database. Analyses
were only performed for regulons that contained 10 or
more proteins (i.e., proteins positively regulated by σH;
proteins negatively regulated by σL; proteins with higher
or lower levels in the parent strain).
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