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dependent manner
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Abstract

remains unclear.

of biofilm formation in S. aureus.

Background: Staphylococcus aureus is an important pathogen that causes biofilm-associated infection in humans.
Autoinducer 2 (Al-2), a quorum-sensing (QS) signal for interspecies communication, has a wide range of regulatory
functions in both Gram-positive and Gram-negative bacteria, but its exact role in biofilm formation in S. aureus

Results: Here we demonstrate that mutation of the Al-2 synthase gene luxS in S. aureus RN6390B results in
increased biofilm formation compared with the wild-type (WT) strain under static, flowing and anaerobic conditions
and in a mouse model. Addition of the chemically synthesized Al-2 precursor in the luxS mutation strain (AluxS)
restored the WT phenotype. Real-time RT-PCR analysis showed that Al-2 activated the transcription of icaR, a
repressor of the ica operon, and subsequently a decreased level of icaA transcription, which was presumably the
main reason why fuxS mutation influences biofilm formation. Furthermore, we compared the roles of the agr-
mediated QS system and the LuxS/Al-2 QS system in the regulation of biofilm formation using the AluxS strain,
RN6911 and the Aagr AluxS strain. Our data indicate a cumulative effect of the two QS systems on the regulation

Conclusion: These findings demonstrate that Al-2 can decrease biofilm formation in S. qureus via an icaR-activation
pathway. This study may provide clues for therapy in S. aureus biofilm-associated infection.

Background

Staphylococcus aureus is an opportunistic pathogen that
can adhere to many tissues and implants in humans to
form biofilms causing refractory chronic infections [1,2].
Many therapies have been proposed but the potential
efficacy is limited [3]. Given this situation, intensive
research into the molecular mechanism of biofilm forma-
tion in S. aureus could facilitate the development of novel
therapeutic devices.

Biofilms are complex communities of microorganisms
encased in slime that can attach to surfaces [4]. Protein,
polysaccharide, and extracellular DNA are supposed to be
important components of Staphylococcal biofilms [5-7].
Biofilm formation is established using at least two proper-
ties: the adherence of cells to a surface and accumulation to
form multi-layered cell clusters [8,9]. The latter process is
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closely related to polysaccharide intercellular adhesion
(PIA), a polysaccharide composed of -1,6-linked N-acetyl-
glucosamine residues in Staphylococci [10]. The intercellu-
lar adhesion (ica) locus is composed of four open reading
frames (ORFs) icaA, icaD, icaB and icaC in an operon
[11,12], and is responsible for generating PIA, which is
required for biofilm formation in S. aureus. Moreover,
decreased PIA level is considered to be the main factor
leading to the destructive ability of biofilm formation in S.
aureus RN6390B [13]. In recent years, many factors includ-
ing glucose, glucosamine, oleic acid, urea, anaerobiosis and
iron limitation have been identified as influencing the
expression of PIA [12,14-18]. In addition, it has been
demonstrated that IcaR represses ica expression by binding
to the icaA promoter region [19]. Furthermore, QS has
been recently shown to control the expression of the ica
operon [20].

Quorum sensing is a widespread system used by bacteria
for cell-to-cell communication, which regulates expression
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of multiple genes in a cell density-dependent manner
[21,22]. The unique QS system shared by Gram-positive
and Gram-negative bacteria is mediated by AI-2 [23],
which is a signalling molecule synthesized by the [uxS
gene [24,25]. AI-2 originates from the auto-cyclization of
precursor 4, 5-dihydroxy-2, 3-pentanedione (DPD) [26,27],
and has been reported to regulate luminescence, motility
and virulence [28-30]. Biofilm formation is known as the
"bacterial social behaviour”, in part owing to an orga-
nised mode of growth in a hostile environment. Many
studies have described the role of AI-2 in biofilm forma-
tion. For example, synthetic AI-2 directly stimulates
Escherichia coli biofilm formation and controls biofilm
architecture by stimulating bacterial motility [31]. Subse-
quently, several studies also indicated that AI-2 indeed
controls biofilm formation [32-34]. In contrast, some
researchers reported that addition of AI-2 failed to re-
store biofilm phenotype of the parental strain [35-40],
owing to the central metabolic effect of LuxS or diffi-
culty in complementation of AI-2 [41]. There exists a
conserved [uxS gene in S. aureus, and it has been proved
to be functional for generating AI-2 [42]. Previous work
indicated that AI-2-mediated QS modulated capsular
polysaccharide synthesis and virulence in S. aureus [43],
deletion of the luxS gene led to increased biofilm forma-
tion in Staphylococcus epidermis [20], and biofilm

Table 1 Strains and plasmids used in this study
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enhancement due to [uxS repression was manifested by
an increase in PIA [44].

In this study, we provide evidence that S. aureus AluxS
strain formed stronger biofilms than the WT strain
RN6390B, and that the [uxS mutation was complemented
by adding chemically synthesized DPD, the exogenous
precursor of AI-2. AI-2 activated the transcription of icaR,
and subsequently led to decreased icaA transcription, as
determined by real-time RT-PCR analysis. Furthermore,
the differences in biofilm-forming ability of S. aureus
RN6911, AluxS strain, and the AagrAluxS strain were also
investigated. Our data suggest that AI-2 could inhibit
biofilm formation in S. aureus RN6390B through the
IcaR-dependent regulation of the ica operon.

Methods

Bacterial strains, plasmids and DNA manipulations

The bacterial strains and plasmids used in this study
are described in Table 1. E. coli cells were grown in
Luria-Bertani (LB) medium (Oxoid) with appropriate
antibiotics for cloning selection. S. aureus strain
RN4220, a cloning intermediate, was used for propaga-
tion of plasmids prior to transformation into other
S. aureus strains. S. aureus cells were grown at 37°C in
tryptic soy broth containing 0.25% dextrose (TSBg)

Strain or plasmid Description Reference or source
RN6390B Standard laboratory strain NARSA®
RN4220 83254 1 NARSA
AluxS RN6390B /uxS:ermB This study
RN6911 RN6390B derivative; agr locus replaced with tetM cassette NARSA
AagrAluxS RN6911 luxSzermB, agr/luxS double mutant This study
AluxSpluxS Complemented strain of AluxS; Ap" Cm' This study
RN6390BG RN6390B/pgfp This study
AluxSG AluxS/pgfp This study
RN6911G RN6911/pgfp This study
AagrAluxSG AagrAluxS/pgfp This study
NCTC8325 Standard Laboratory strain NARSA
NCTC8325AluxS NCTC8325 luxSzermB 60

E. coli strains

TOP10 Cloning Invitrogen
Plasmids

PEASY-Blunt Clone vector, Kan" Ap' Transgen
pBTIuxS Vector used for fuxS mutagenesis, Ap" Cm' Em’ 60

pLI50 E. coli-S. aureus shuttle cloning vector, Ap" Cm" Addgene
pLIluxS pLI50 with JuxS and its promoter, Ap" Cm" 60

pgfp gfp expression with the promoter of S10 ribosomal gene, Ap’, Cm'

? NARSA, Network on Antimicrobial Resistance in Staphylococcus aureus.
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(Difco No. 211825). In the flow cell assay, biofilm bac-
teria were grown in tryptic soy broth without dextrose
(TSB) (Difco No. 286220). Medium was supplemented
when appropriate with ampicillin (150 pg/ml), kanamycin
(50 pg/ml), erythromycin (2.5 pg/ml) and chlorampheni-
col (15 pg/ml).

Construction of bacterial strains

To construct the AluxS strain from S. aureus RN6390B
and the Aagr AluxS strain from S. aureus RN6911, the
purified pBTluxS plasmid was used for allele replacement
by erythromycin-resistance gene insertional mutagenesis
as described previously [45]. Briefly, the appropriate up-
stream and downstream fragments of /uxS were amplified
from the genome of RN6390B, and the erythromycin-
resistance gene was amplified from pEC1 with the rele-
vant primers. The three fragments were ligated with each
other with the erythromycin-resistance gene in the mid-
dle, and then ligated with the temperature-sensitive
shuttle vector pBT2. The resulting plasmid pBTluxS [43]
was introduced by electroporation into S. aureus strain
RN4220 for propagation, and then transformed into S.
aureus RN6390B for [uxS mutation and S. aureus RN6911
for agr luxS double-gene mutation. All primers used in
this study are listed in Table 2.

To make the /uxS-complemented strain, the pLIluxS
plasmid, which contains the native promoter of [uxS and
its intact open reading frame, was constructed in our
previous work [43]. We purified the pLIluxS plasmid
and transformed it into the AluxS strain for complemen-
tation, thus constructing the AluxSpluxS strain. WT and
AluxS strains were also transformed with the empty

Table 2 Oligonucleotide primers used in this study

Primer Sequence
rt-165-f CGTGGAGGGTCATTGGA
rt-16S-r CGTTTACGGCGTGGACTA
rt-icaA-f TTTCGGGTGTCTTCACTCTAT
rt-icaA-r CGTAGTAATACTTCGTGTCCC
rt-icaR-f ATCTAATACGCCTGAGGA
rt-icaR-r TTCTTCCACTGCTCCAA
rt-clfB-f TTTGGGATAGGCAATCATCA
rt-clfB-r TCATTTGTTGAAGCTGGCTC
rt-fnbA-f ATGATCGTTGTTGGGATG
rt-fnbA-r GCAGTTTGTGGTGCTTGT
rt-fnbB-f ACAAGTAATGGTGGGTAC
rt-fnbB-r AATAAGGATAGTATGGGT
rt-map-f AAACTACCGGCAACTCAA
rt-map-r TGTTACACCGCGTTCATC
rt-efb-f TAACATTAGCGGCAATAG
rt-efb-r CCATATTCGAATGTACCA
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plasmid pLI50 constructing strains WTp and AluxSp,
which were used as the control. These strains trans-
formed with plasmid were cultured in medium with chlor-
amphenicol (15 pg/ml). The AI-2 precursor molecule,
DPD, of which the storage concentration is 3.9 mM
dissolved in water, was purchased from Omm Scientific
Inc., TX, USA.

Biofilm formation and analysis

Biofilm formation under static conditions was determined
by the microtitre plate assay based on the method
described previously [46]. Briefly, the overnight cultures
were made at a 1:100 dilution using fresh TSBg. The
diluted cell suspension was inoculated into flat-bottom
24-well polystyrene plates (Costar 3599, Corning Inc.,
Corning, NY), 1 ml for each well. The plates were incu-
bated at 37°C for different time courses and the wells were
rinsed gently with water five times to remove non-
adherent cells. Subsequently, the plates were stained with
0.5% crystal violet for 15 m, and then rinsed again with
water to remove unbound stain. After that, the plates were
dried, and the optical density at 560 nm (ODsey) was
determined with an enzyme-linked immunosorbent assay
reader in a 5x 5 scan model. To investigate the effect of
AI-2, the medium was supplemented with chemically
synthesized DPD with a concentration range of 0.39 nM
to 390 nM.

Biofilm formation was also examined in a flow cell
(Stovall, Greensboro, USA), which was assembled and
prepared according to the manufacturer's instructions.
Flow cell experiments and laser scanning confocal
microscope (CLSM) were performed as described previ-
ously [47]. Overnight cultures of different strains were
adjusted to ODggg of 6.5 and made at a 1:100 dilution in
fresh 2% TSB. Flow cells were inoculated with 4 ml of
these culture dilutions and incubated at 37°C for 1 h,
and then laminar flow (250 pl/m) was initiated. Biofilms
of different strains were cultivated at 37°C in 2% TSB in
three individual channels. The strains were transformed
with the GFP plasmid for fluorescence detection, thus
chloramphenicol was added to the flow cell medium to
maintain plasmid selection. CLSM was performed on a
Zeiss LSM710 system (Carl Zeiss, Jena, Germany) with a
20 x 0.8 n.a. apochromatic objective. Z-stacks were col-
lected at 1 um intervals. Confocal parameters set for
WT biofilm detection were taken as standard settings.
Selected confocal images stood for similar areas of inter-
est and each confocal experiment was repeated four
times. The confocal images were acquired from Zeiss
ZEN 2010 software package (Carl Zeiss, Jena, Germany)
and the three-dimensional biofilm images were rendered
with Imaris 7.0 (Bitplane, Zurich, Switzerland). Biofilm
biomass and average thickness were analysed with the
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COMSTAT program [48] and were indicated as the
mean * standard deviation calculated from three images
obtained from a given biofilm.

Ethical statement

The use and care of mice in this study was performed
strictly according to the Institutional Animal Care and Use
Committee guideline of University of Science and Tech-
nology of China (USTCACUC1101053).

In vivo model of catheter-associated biofilm formation
Biofilm formation was assessed in vivo using a murine
model of catheter-associated infection [49]. Briefly, male
BALB/c mice (6- to 8-weeks old) were obtained from
Shanghai Laboratory Animal Centre of Chinese Academy
of Sciences (Shanghai, China). The mice were anaesthe-
tised with 1% pentobarbital sodium (0.01 ml/g of body
weight) and surgically dissected. Specifically, a 1-cm 18G
FEP polymer catheter (Introcan, Melsungen, Germany)
was implanted subcutaneously in the dorsal area of the
mice. The wound was closed with surgical glue. After incu-
bation of 24 h, 5 x 10" colony-forming units (CFU) of the
test strains in a total volume of 100 pl were introduced dir-
ectly into the lumen of the catheters. Mice were euthanised
after 3 days of infection, and then the catheters were
removed carefully and washed briefly with phosphate-
buffered saline (PBS). Catheters were placed in 1 ml of
sterile PBS and sonicated for 30 s to remove the adherent
bacteria. The number of bacteria was determined by plat-
ing on tryptic soy agar (TSA).

Anaerobic conditions

Biofilm formation was also monitored under anaerobic
conditions. The Forma Anaerobic System (Thermo,
Waltham, USA) was used to provide strictly anaerobic
conditions for bacterial growth and related operations.
Overnight cultures were adjusted to ODggg of 6.5, and
then the bacterial cultures were carried into the anaer-
obic system for 1:100 dilution and inoculated into
24-well plates. Resazurin, which is used as an indicator
for anaerobic conditions, was added to final concen-
tration of 0.0002% (w/v). The plates were incubated at
37°C for 4 h and ODseg was determined after crystal
violet staining.

A standard anaerobic jar of 120 ml volume was used
to monitor the biofilm formation of the WT strain and
the mutants under anaerobic conditions. Medium and
containers with thorough scavenging were prepared as
follows. Water was boiled using a three-necked bottle to
degas the water while nitrogen was bubbled into the bot-
tle to keep the contents anaerobic. TSBg medium was
prepared with this degassed water. Then each anaerobic
jar was dispensed with 50 ml TSBg while nitrogen was
gassed into the jar to drive out the oxygen. The rubber
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plug was quickly stuffed up following by an aluminium
cap added, and then the jar containing TSBg was auto-
claved at 121°C, 15 m. After preparation of the medium,
biofilm formation under anaerobic conditions was exam-
ined and the operations were carried out in the anaer-
obic system.

Scanning electron microscopy (SEM)

Biofilm bacteria were grown on coverslips for five days,
and then the coverslips were cut from the flow-cell set-
tings and immediately fixed with 2.5% (vol/vol) glutaral-
dehyde in Dulbecco PBS (pH 7.2) overnight. According
to the methods described previously [50], the coverslips
were rinsed with PBS three times and dehydrated
through an ethanol series (30%, 50%, 75%, 85% and
95%). Samples were dried and gold-palladium coated
prior to SEM examination and micrographs were made
with a XL-30 SEM atx 1500 to x 5000 magnification
(FEIL Hillsboro, USA).

RNA isolation and real-time RT-PCR

All the bacteria used for RNA isolation to investigate the
expression of genes that affect biofilm formation were
those that grew statically in the 24-well plate. Bacteria in
the wells of biofilm formation at different time courses
(4 h, 8 h, 12 h) were collected and re-suspended in TE
(Tris-EDTA) buffer (pH 8.0) containing 10 g/l lysozyme
and 40 mg/l lysostaphin. After incubation at 37°C for
8 m, S. aureus cells were prepared for total RNA extrac-
tion using the Trizol method (Invitrogen), and the
residual DNA was removed with RNase-free DNase I
(TaKaRa). The concentration of RNA was adjusted to
100 ng/pl, and the samples were stored at -70°C.
cDNA templates were synthesized from 50 ng RNA
with PrimeScript” 1st strand cDNA Synthesis Kit
(TaKaRa) and gene-specific primers at 42°C for 15 m,
85°C for 5 s. Real-time PCR was performed with
the ¢cDNA and SYBR Premix Ex Taq (TaKaRa) using a
StepOne Real-Time PCR System (Applied Biosystems).
The quantity of ¢cDNA measured by real-time PCR
was normalised to the abundance of 16S cDNA.
Real-time RT-PCR was repeated three times in tripli-
cate parallel experiments.

Statistical analysis

The paired ¢ test was used for statistical comparisons
between groups. The level of statistical significance was
set at a P value of < 0.05.

Results

Al-2 inhibits biofilm formation in a concentration-
dependent manner under static conditions

Previous studies showed that biofilm formation was in-
fluenced by the LuxS/AI-2 system both in Gram-positive
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and Gram-negative bacteria [32,34]. The genome of S.
aureus encodes a typical [uxS gene, which plays a role in
the regulation of capsular polysaccharide synthesis and
virulence [43]. In this study, to investigate whether LuxS/
AI-2 system regulates biofilm formation in S. aureus, we
monitored the biofilm formation of S. aureus WT strain
RN6390B and the isogenic derivative AluxS strain using a
microtitre plate assay. As shown in Figure 1A, the WT
strain formed almost no biofilm after 4 h incubation at
37°C. However, the AluxS strain formed strong biofilms as
measured by quantitative spectrophotometric analysis
based on ODsg, after crystal violet staining (Figure 1A).
This discrepancy could be complemented by introducing a
plasmid that contains the /uxS gene (Figure 1B).

The effects of LuxS could be attributed to its central
metabolic function or the Al-2-mediated QS regulation,
which has been reported to influence biofilm formation in

A
1.2

A2 A3 A4

WT AluxS A1

1.0

0.81

0.6

oD,

0.4+

0.2

0.0- WTp AluxSp  AluxSpluxS

Figure 1 Biofilm formation under static conditions and
chemical complementation by DPD of different concentrations.
Biofilm growth of S. aureus WT (RN6390B), AluxS and AluxS
complemented with different concentrations of chemically
synthesized DPD in 24-well plates for 4 h under aerobic conditions
(A1: 0.39 nM, A2: 3.9 nM, A3: 39 nM, A4: 390 nM). The cells that
adhered to the plate after staining with crystal violet were measured
by ODseo.
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some strains [32-34]. To determine if AI-2, as a QS signal,
regulates biofilm formation in S. awureus, the chemically
synthesized pre-AI-2 molecule DPD at concentrations
from 0.39 nM to 390 nM was used to complement the
AluxS strain. The resulting data suggested that exogenous
AI-2 could decrease biofilm formation of the AluxS strain
and the effective concentration for complementation was
from 3.9 nM to 39 nM DPD (Figure 1A). As expected,
these concentrations were within the range that has been
reported [51]. The phenomenon that the higher concentra-
tion of AI-2 does not take effect on biofilm formation is
very interesting, which has also been found in other species
[51]. In the previous work [52,53], they indicated that AI-2
activity was associated with cyclic derivatives of this mo-
lecule that can be generated spontaneously. Therefore, it is
possible that the concentration of effective molecules is dif-
ferent as the DPD concentration changes. These findings
indicate that AI-2 could complement the effect of [uxS
mutation on biofilm formation and act in a concentration-
dependent manner in S. aureus.

Al-2 inhibits biofilm formation in flow cell

To further compare the different biofilm formation ability
owing to [uxS deletion, biofilm formation of WT and the
AluxS strains was assessed using a flow-cell assay. After 3
days of incubation, biofilms produced by WT strain were
undetectable as monitored by CLSM. In contrast, the
AluxS strain began to form intact and rough biofilms. At
the 5th day, the WT strain produced biofilms similar to
that formed by the AluxS strain 2 days before; meanwhile,
the AluxS strain formed thicker and stronger biofilms
(Figure 2A and B). Analysis of the biofilms by COMSTAT
is shown in Table 3. The AluxS strain exhibited signifi-
cantly increased total biomass and average thickness of
biofilms relative to those of the WT strain.

In the flow-cell assay, 3.9 nM DPD was added to the
culture medium at the beginning of the experiment. As
expected, examination with CLSM showed that the AluxS
strain complemented with 3.9 nM DPD did not produce
biofilms after 3 days of growth in the flow cell, and formed
biofilms similar to that of the WT strain at the 5th day
(Figure 2C and D). As shown in Table 3, they both formed
~10-um thick biofilms until the 5th day. These results
suggest that AI-2 supplementation decreases biofilm for-
mation under flow conditions.

Inactivation of JuxS results in increased biofilm formation
in vivo

To further verify the effect of AI-2 on biofilm formation
in vivo, a murine model of catheter-associated biofilm for-
mation was used. In this assay, mice were separately
infected with 5x10° CFU/ml of the WT strain and
the AluxS strain. After incubation for 3 days, the catheters
were taken out and the number of bacteria was counted.
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Day 5

Figure 2 Biofilm formation in flow cell and chemical
complementation by DPD. Biofilms of WT (RN6390BG) and AluxS
(AluxSG) were grown in a flow cell in 2% TSB with chloramphenicol
(15 pg/ml). Biofilm integrity and GFP fluorescence were monitored
at the 3rd day and the 5th day by CLSM. For chemical
complementation, 3.9 nM DPD was added to the TSB medium at
the beginning of the experiment. CLSM images are representative of
two separate experiments and each grid square represents 20 um
(A) WT. (B) AluxS. (C) WT supplemented with DPD. (D) AluxS
supplemented with DPD.

As shown in Figure 3, the AluxS strain exhibited signifi-
cantly increased capacity to form biofilms compared to
the WT strain (P=0.001) in vivo. These results suggest
that LuxS/AI-2 system is involved in the regulation of bio-
film formation in vivo, which is consistent with the con-
clusion in vitro.

Al-2 represses the transcription of icaA via the activation
of icaR

PIA is considered to be a major factor determining biofilm
formation in some bacteria [10,54,55]. To test if AI-2-

Table 3 Biofilm formation of WT and AluxS strains

Strains Biofilm biomass (um*/um?)  Average thickness (um)
Day 3 Day 5 Day 3 Day 5

WT 301+£0.2 11.71+1.25 381+0.35 11.51+092

AluxS 2016£1.59% 2567 +1.16% 2079+ 147% 26.18+043*

WT+AI2  011+001 1044051  0.12+£001  945+05

AluxS +Al-2 049+0.018 1431+£059  059+0.06 13.53+£05

P=0.001

7.0+

6.5

LgCFU/catheter

6-0 T T
WT AluxS

Figure 3 Biofilm formation of S. aureus in vivo. Biofilm formation
was assessed using a murine catheter-associated model of WT
(NCTC8325) and AluxS (NCTC8325AluxS). Overnight culture of 5 x
107 CFU was injected into the catheters, which were implanted
subcutaneously in the dorsal area of the mice. Results shown are the
number of bacteria counted from the catheters after incubation for
3 days. Each point stands for one independent mouse. P value refers
to a comparison between WT and AluxS and means statistically

* Significantly different results compared with WT (P < 0.01).

significant differences (P =0.001) by Student's t test.

mediated biofilm reduction is due to a change in PIA ex-
pression, the transcription of icaA was examined using
real-time RT-PCR with RNA isolated from biofilm bacteria
at different time points. Transcription of icaA reached its
peak at 4 h of biofilm formation and the maximum differ-
ence between the WT strain and the AluxS strain was also
highlighted at this time (data not shown). Thus, RNA was
isolated from 4 h biofilm bacteria of the WT strain, the
AluxS strain, and the AluxS strain complemented with
3.9 nM DPD. Expression of icaA was examined using real-
time RT-PCR. The resulting data showed that expression
of icaA was elevated in the AluxS strain, and it could be
complemented by 3.9 nM DPD (Figure 4A). As expected,
corresponding to the biofilm formation in Figure 1, thicker
biofilms were presented owing to the /uxS mutation while
the bacteria within the biofilms also displayed elevated
icaA transcription. Moreover, we examined the expression
of several main adhesion molecules. As shown in Add-
itional file 1: Figure S1, there were no obvious differences
between the WT, AluxS and AluxS transformed with the
pLIluxS plasmid for complementation (AluxSpluxS). Here,
the WT and AluxS strains were also transformed with an
empty PLI50 plasmid constructing the WTp strain and
AluxSp strain, which were used as the control. Besides, we
added sodium-metapeiodate into the well-developed bio-
films and found that biofilms dispersed after 2 h incubation
at 37°C. Taken together, our results suggest that PIA is the
main factor controlled by AI-2 in the regulation of biofilm
formation in S. aureus.
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Figure 4 Transcriptional regulation of icaA and icaR by Al-2.
Real-time RT-PCR of icaA and icaR transcription was measured. The
bacteria used for RNA extraction were those that were incubated at
4 h for biofilm formation under aerobic conditions. Error bars
indicate the variation between triplicate samples within the
real-time RT-PCR. The relative cDNA abundance of the WT sample
was assigned a value of 1. (A) Relative transcript levels of icaA of WT
(RN6390B), AluxS and AluxS complemented with 3.9 nM DPD under
aerobic conditions. (B) Relative transcript levels of icaR of WT
(RN6390B), AluxS and AluxS complemented with 3.9 nM DPD under
aerobic conditions.

It was reported that IcaR is a negative regulator of the
icaA locus [19], and that icaR could be regulated by Rbf,
SarA and SigB [56,57]. However, few studies indicate
that the signalling molecule AI-2 could be an activator
of icaR. We therefore investigated whether repression of
icaA by AI-2 was mediated by IcaR by examining the
icaR transcription in the biofilm bacteria of the WT
strain, the AluxS strain and the AluxS strain comple-
mented with 3.9 nM DPD. We found that the AluxS
strain displayed decreased transcription of icaR com-
pared to WT, and DPD supplementation could comple-
ment the effect of [uxS mutation (Figure 4B). These data
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indicate that the repression of icaADBC transcription by
AI-2 is through the activation of icaR. These results
allow us to conclude that AI-2 activates icaR, which
results in decreased icaADBC transcription and subse-
quently decreased biofilm formation.

Al-2 inhibits biofilm formation and represses the
transcription of icaA under anaerobic conditions

Hypoxia or anaerobic conditions is a common hostile
environment that the biofilm bacteria suffer in vivo
[3,58,59]. To determine whether or not AI-2 could also
affect biofilm formation under anaerobic conditions, the
microtitre plate assay was used to examine the biofilm
growth. After incubation of the plate for 4 h under anae-
robic conditions, we found that the AluxS strain displayed
increased biofilm formation compared to the WT strain,
and AI-2 supplementation restored the WT phenotype
(Figure 5A). Consistently, AI-2 repressed the transcription
of icaA under anaerobic conditions (Figure 5B).

The LuxS/Al-2 QS system and the agr-mediated QS
system have a cumulative effect on the regulation of
biofilm formation

It was reported that the agr QS system mediates biofilm
dispersal in S. aureus [60]. To determine whether the
LuxS/AI-2 QS system and the agr-mediated QS system
have a cumulative or complementary effect on the regula-
tion of biofilm formation, we constructed a Aagr AluxS
strain and compared the biofilm formation among the
WT strain and the mutants using different assays, includ-
ing the microtitre plate assay, flow cell, anaerobic jar and
SEM. Consistently, we found that the Aagr AluxS strain
displayed the strongest capacity for biofilm formation
among all the stains we investigated.

In the flow-cell assay, as shown in Figure 6A, the Aagr
AluxS strain formed stronger biofilms than RN6911, as
shown by CLSM, indicating that mutation of /uxS indeed
influences biofilm formation and that the two systems seem
to play a cumulative effect. Moreover, similar results were
obtained in the microtitre plate assay and the anaerobic jar
assay under anaerobic conditions (Figure 6B and D).

To accurately describe the distinct biofilm formation
resulting from /uxS deletion, SEM was used for evaluating
the structure and surface appearance of the mature biofilm.
Therefore, the coverslips of the flow-cell chamber on which
5 days biofilms of WT and the AluxS strain grew were cut
out. SEM analysis showed that the AluxS strain produced a
compact biofilm structure with increased coverage than
that of the WT strain (Figure 6C). On closer inspection, we
found that the AluxS strain displayed stronger intercellular
adhesion and this was also reflected in the Aagr AluxS
strain. The Aagr AluxS strain showed stronger intercellular
adhesion ability than RN6911 (Figure 6C), indicating a pos-
sible result of elevated expression of PIA. Interestingly,
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Figure 5 Analysis of biofilm formation and the icaA
transcription under anaerobic conditions. (A) Biofilm formation
of WT (RN6390B), AluxS and AluxS complemented with 3.9 nM DPD
under anaerobic conditions. (B) Relative transcript levels of icaA of
WT (RN6390B), AluxS and AluxS complemented with 3.9 nM DPD
under anaerobic conditions.

AluxS A2

microscopic analysis of the biofilm structure revealed that
the agr mutation led to biofilms that adopted a "ridged" ap-
pearance with many channels, rather than the relatively
smooth, confluent layer normally detected in the WT and
AluxS strains, presumably because the thicker biofilms with
a dense compact structure restrict the growth of bacteria
inside. Based on these results, we speculate that the LuxS/
AI-2 QS system and the agr-mediated QS system play a
cumulative effect on the regulation of biofilm formation in
S. aureus. It has been reported that induction of the agr
system in established S. aureus biofilms detaches cells in an
ica-independent manner and they also demonstrate that
the dispersal mechanism requires extracellular protease
activity [60]. Therefore, it seems that the influences of
the LuxS/AI-2 QS system and the agr-mediated QS system
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on biofilm formation are through different pathways in
S. aureus.

Discussion

Most previous studies of biofilm formation have been
performed under one or two conditions to present this
phenotype. However, biofilm is a kind of "smart commu-
nity" that seems able to cope with different environments.
Therefore, a single condition may lead to misunderstan-
ding regarding the elaborate function of a specific gene.
To provide sufficient and rigorous evidence, we demon-
strate that the LuxS/AI-2 system is involved in the regula-
tion of biofilm formation under different conditions. In
contrast to the most commonly used microtitre plate
assay, flow cell is increasingly used for detecting biofilm
growth, of which the dynamic three-dimensional image
could be monitored by CLSM dynamically. This setting
simulates the environment of flowing surfaces in vivo,
such as some interfaces between body fluids and implants.
The result under this condition may offer more accurate
information about flow surroundings in vivo. In addition,
we also investigated biofilm formation under anaerobic
conditions, which the biofilm bacteria undergo. The oxy-
gen partial pressure of air-equilibrated medium is high
in vitro, whereas hypoxic environments may prevail in
body implants and human tissues distant from arterial
blood flow [58,61]. Moreover, most locations in which the
biofilm bacteria accumulate are usually niches of local low
oxygen because of inflammatory cell aggregation [59,62].

The mouse model was used here to compare biofilm for-
mation of the WT and the AluxS strains and our data were
consistent with the in vitro data. Nevertheless, there are
few studies regarding AI-2 complementation in the mouse
model to date, and the specific mechanism of these signal
molecules in vivo remains elusive. In general, we offer con-
sistent results under different conditions to emphasise that
the conclusion drawn is consistent and worthy of reference
in most cases.

LuxS and AI-2 affect biofilm development, whereas the
results may be different in the same strain due to various
factors. Previous work has shown that AI-2 was produced
in rich medium under aerobic and anaerobic conditions
peaking during the transition to stationary phase, but cul-
tures retained considerable AI-2 activity after entry into
the stationary phase under anaerobic conditions. In
addition, the S. aureus RN6390BAluxS strain showed re-
duction in biofilm formation in TSB containing 1% glu-
cose and 3% sodium chloride under anaerobic conditions
[42]. However, in our study, analysis of biofilm growth
in vitro and in vivo led to the conclusion that the AluxS
strain exhibited increased biofilm formation compared to
the WT strain. Importantly, the [uxS mutation could be
complemented by chemically synthesized DPD, indicating
the effect of AI-2-mediated QS on biofilm formation in
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AagrAluxS

Figure 6 Additive effect played by the LuxS/AI-2 QS system and the agr-mediated QS system. (A) The AagrAluxSG and RN6911G grew

AagrAluxS

AluxS

Aagr AagrAluxS

biofilms in the flow cell, and the representative images were measured by CLSM at the 3rd and 5th day of biofilm formation. Strains are indicated
in the figure. (B) Overnight cultures of WT (RN6390B), Aagr (RN6911), AluxS and Aagr AluxS were inoculated in 24-well plate and formed biofilms
under anaerobic conditions. (C) WT, Aagr, AluxS and Aagr AluxS formed 5 days biofilms in a flow cell on the upper surface of the coverslips,
which were cut and examined by scanning electron microscopy. (D) The anaerobic jar was used for monitoring the biofilm formation of the WT,

Aagr, AluxS and Aagr AluxS, ODsg, was measured after crystal violet staining.

S. aureus. Hardie and Heurlier [41] summarised six
main factors that influence the experimental results for
doing research on the LuxS/AI-2 system: experimental
design; genetic complementation; chemical complemen-
tation; conditioned supernatant complementation; and
complementation with molecules linked to AI-2 pro-
duction and that independent of [uxS status. With
detailed analysis, we found that the inconsistency of the
results is in part owing to the different growth medium
provided to the biofilm bacteria, especially the different
concentrations of glucose and sodium chloride, which are
both important factors enhancing biofilm formation [63].
In addition to the present evidence of Al-2-regulated bio-
film formation in S. aureus, we found that the transcription
of icaR is activated by AI-2, which is barely reported, al-
though we have not yet identified the mechanism of the
interaction between them. This is partly because the
detailed mechanism of transport and action of AI-2 has
only been described in several strains and different
mechanisms are applied to different species, although AI-2
has been proven to act as a signalling molecule that could
regulate series of gene expression. The first mechanism
revealed was in Vibrio harveyi, which responds to AI-2 by
initiating a phosphorylation cascade [64]. In Salmonella

typhimurium [65] and E. coli [66,67], AI-2 seems to be
taken up by an ABC transporter. However, the mechanism
of AI-2 transport and functional performing in Staphylo-
cocci was still unknown. Therefore, the detailed mechan-
ism through which AI-2 functions in S. aureus should be
highlighted here, and the interaction between AI-2 and
IcaR requires further study.

In addition to PIA, we do not observe any obvious
increase of extracellular protein (Additional file 2: Figure
S2) or bacterial autolysis in the AluxS strain (Additional
file 3: Figure S3). Our results showed no significant diffe-
rences in the transcriptional levels of several main adhe-
sion molecules. Moreover, previous work indicated that S.
aureus strains 8325-4 and RN4220 formed PIA-dependent
biofilms [68]. We thus propose that AI-2 signalling
represses the icaA expression, and subsequently leads to
decreased biofilm formation in S. aureus.

More and more studies concerning multispecies bio-
films gradually uncover the mechanisms of the interaction
and communication of the different species inside the
biofilms. One of the most popular approaches of the sig-
nalling regulation is directed towards the AI-2-controlled
QS system for its extensive use of interspecies. The plaque
biofilms on tooth surfaces consist of various oral bacteria
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including S. aureus and involve complex microbial inter-
actions [69-71]. There is evidence that AI-2-mediated QS
may play a significant role in oral biofilm formation [50].
As reported by others, airway infections by Pseudo-
monas aeruginosa afflicting patients with cystic fibro-
sis (CF) are among the most enigmatic of biofilm
diseases [2]. S. aureus is also found to be a major
pathogen associated with P. aeruginosa in CF lung in-
fection [72]. Previous work has shown that PIA is
expressed in lungs infected with S. aureus, whereas
CP8 is not expressed because of limited oxygen [73].
Here, we provide evidence that AI-2 can regulate
icaA expression under anaerobic conditions, suggest-
ing a potential role of AI-2 in influencing S. aureus
infection in lungs. However, few studies about biofilm
formation cooperated by S. aureus and the other spe-
cies are reported. Therefore, could S. aureus and the
other species in their focus areas form multispecies bio-
films? Could AI-2 play an important role in this process? It
is interesting to discuss the actual complex-flora inter-
action in human and social behaviour of the bacteria.
Therefore, revelation of the AI-2-regulated biofilm forma-
tion in S. aureus possesses instructive meaning for these
related studies.

Conclusions

These findings demonstrate that AI-2 can decrease biofilm
formation in S. aureus via an icaR-activation pathway.
This study may provide clues for therapy in S. aureus
biofilm-associated infection.

Additional files

Additional file 1: Relative transcript levels of several adhesions.
The levels of transcription of these genes including map, fnbA, fnbB, cifB,
efb were measured by real-time RT-PCR in S. aureus WTp, AluxSp and
AluxS complemented with a plasmid containing luxS gene for genetic
complementation (AluxSpluxS). As the control, WT and AluxS were
transformed with empty plasmid PLI50, constructing WTp and AluxSp.

Additional file 2: Extracellular protein loaded on SDS-PAGE.

The levels of extracellular-protein expression of biofilm bacteria, which
were incubated at 37°C for 4 h and 24 h, were measured.

Additional file 3: Triton X-100-stimulated autolysis. The autolysis of
WT, AluxS and AluxSpluxS induced in 0.05 M Tris—HCl buffer containing
0.05% (vol/vol) Triton X-100 were measured.
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