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Abstract

Background: Sialic acids are negatively charged nine carbon backbone sugars expressed on mammalian cell
surfaces. Sialic acids are part of a larger family of nonulosonic acid (NulO) molecules that includes pseudaminic and
legionaminic acids. Microbial expression of sialic acids and other nonulosonic acids has been shown to contribute
to host-microbe interactions in a variety of contexts, including participation in colonization, immune subversion,
and behaviors such as biofilm formation, autoagglutination and motility. Previous research has suggested that some
spirochetes may also express these molecules.

Results: Here we use a combination of molecular tools to investigate the presence of NulO biosynthetic gene
clusters among clinical and saprophytic isolates of the genus Leptospira. Polymerase chain reaction and Southern
blotting suggested that a variety of leptospires encoded NulO biosynthetic pathways. High performance liquid
chromatography and mass spectrometry analyses provided biochemical evidence that di-N-acetylated NulO
molecules are expressed at relatively high levels by L. interrogans serovar Lai strain 55601, and at lower levels by
L. alexanderi serovar Manhao and L. fainei serovar Hurstbridge. Endogenous expression of N-acetylneuraminic acid
(Neu5Ac, the most common sialic acid) was documented in L. interrogans serovar Copenhageni strain L1-130.
Neu5Ac biosynthesis is also supported by a unique gene fusion event resulting in an enzyme with an N-terminal
N-acetylneuraminic acid synthase domain and a C-terminal phosphatase domain. This gene fusion suggests that
L. interrogans uses a Neu5Ac biosynthetic pathway more similar to animals than to other bacteria. Analysis of the
composition and phylogeny of putative NulO biosynthetic gene clusters in L. interrogans serovar Lai and serovar
Copenhageni revealed that both strains have complete biosynthetic pathways for legionamimic acid synthesis, a
molecule with the same stereochemistry as sialic acid. Lectin-based affinity purification of NulO-modified molecules,
followed by mass spectrometric identification suggests post-translational modification of surface lipoproteins,
including Loa22.

Conclusions: Leptospira species encode NulO biosynthetic pathways and synthesize multiple NulO molecules
including sialic acid. Additional studies are needed to clarify the exact context and functional significance of NulO
expression. These findings have implications for immune evasion during systemic leptospirosis.
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Background
Leptospirosis, the most common zoonotic illness affect-
ing humans, is caused by spirochetes of the genus
Leptospira [1,2]. Some Leptospira species live exclusively
in water or soil, while others cycle between environmen-
tal and mammalian reservoirs. Leptospira can colonize/
infect renal tubules of a wide variety of wild and domes-
ticated mammals. Human disease follows exposure to
water or soil contaminated with urine of infected ani-
mals. Leptospirosis can be asymptomatic, or manifest as
a mild flu-like illness. In another subset of individuals
(5-10 % of patients) Leptospira can produce more ser-
ious systemic infections resulting in pulmonary
hemorrhage, jaundice, renal failure, refractory shock,
myocarditis, and/or aseptic meningitis.
Despite its medical importance, few virulence determi-

nants of pathogenic Leptospira have been characterized in
any detail. Investigation of the organism is hampered by
its fastidiousness, slow growth in culture and the lack of
available genetic tools. To date, only Omp-A like lipopro-
tein Loa22 has been demonstrated to be necessary for
virulence, appearing to be cytotoxic and capable of indu-
cing apoptosis. [3-5] LipL32, a major outer membrane
protein of pathogenic Leptospira, is expressed in vivo and,
although it has been shown to bind to host extra-cellular
membrane, LipL32 does not seem to be required for acute
or chronic infection in vivo in animal models. [6,7] Other
potential virulence leptospiral factors include LigA and
LigB that contain immunoglobulin-like repeats associated
with adhesion to host cells in other gram-negative bac-
teria. Other proteins shown to have laminin binding activ-
ity in-vitro include LenA/LfhA/Lsf24 and related proteins
LenBCDEF. LenA seems to also bind factor H of comple-
ment, so it might have more than one role in virulence.
[8,9]. Leptospiral LPS, although not characterized in detail,
has some unique characteristics which could explain why
it is poorly recognized by the TLR4- MD2 complex. This
diminished recognition could contribute to leptospiral
survival in the bloodstream and dissemination. Other po-
tential virulence factors for which more evidence remains
to be published include mediators of motility and chemo-
taxis, including chemotaxis towards hemoglobin [10].
Sialic acids are a diverse family of acidic nine-carbon

backbone (nonulosonic) monosaccharides found in
abundance on the surfaces of mammalian cells and are
sometimes expressed by microbial pathogens. The most
common sialic acid in nature is N-acetylneuraminic acid
(Neu5Ac). Expression of Neu5Ac by pathogenic bacteria
has been linked mechanistically to complement and neu-
trophil evasion in disseminated infections with Strepto-
coccus and Neisseria and with the induction of
autoimmune neuropathy following infection with Cam-
pylobacter. Sialic acids are part of an even wider family
of di-N-acetylated nonulosonic acid (NulO) sugars,
which also includes pseudaminic and legionaminic acids.
Legionaminic acid was first described as part of the Le-
gionella lipopolysaccharide O-antigen [11], which is
thought to have roles in environmental and host associa-
tions [12]. Legionaminic and pseudaminic acids are also
found as post-translational modifications of flagellin,
best studied in Campylobacter and Helicobacter [13,14].
Even further, recent data suggest that in Helicobacter
proteins other than flagellins may also undergo glycosy-
lation [15]. Our recent genomic and phylogenetic ana-
lyses indicated the presence of NulO biosynthetic gene
clusters in the available genomes of L. interrogans [16].
In this study, we sought to investigate the presence of
NulO biosynthetic gene clusters in other Leptospira spe-
cies and to determine whether these genes produced
functional biosynthetic pathways. Here we define the
presence of putative nonulosonic acid biosynthetic gene
clusters in a variety of Leptospira species. Further bio-
chemical investigations show that some Leptospira are
capable of endogenous synthesis of nonulosonic acids,
including sialic acids.

Results and discussion
Nonulosonic acid biosynthetic gene clusters are present
among pathogenic and some intermediately pathogenic
Leptospira species
The genome sequences of L. interrogans serovar Copen-
hageni strain L1-130 and L. interrogans serovar Lai
strain 55601 contain genes predicted to synthesize sialic
acids or related molecules (Figure 1A). Using PCR and
Southern blotting, we evaluated the presence of this
gene cluster in other isolates of Leptospira, including
pathogenic, saprophytic, and intermediate strains. Poly-
merase chain reactions using primers designed from the
genome strains amplified genes in the pathogenic strains
L. interrogans serovar Copenhageni and Lai but not in
the saprophyte L. biflexa (Figure 1B). Interestingly, one
of the intermediate strains, L. licerasiae, gave a negative
result, while the other, L. fainei, gave a faint positive.
Control reactions using primers designed from 16S
rRNA gene showed amplification in all the samples, veri-
fying DNA integrity. A probe based on the neuA2 gene
of L. interrogans was used for southern blotting of gen-
omic DNA from a number of Leptospira reference
strains and isolates. These experiments confirm and ex-
tend the PCR data. Of particular interest is a pair of wild
rodent isolates of Leptospira in lanes 6 and 7
(MMD4847 identifies as L. licerasiae and MMD3731
identified as L. interrogans serovar Copenhageni).
Whereas the intermediately pathogenic L. licerasiae
strain did not give a positive result, the pathogenic sero-
var Copenhageni isolate gave a strong positive band.
Also, the intermediate strain L. fainei gave a positive re-
sult in southern blotting, further confirming the faint



Figure 1 Leptospira gene clusters predict nonulosonic acid biosynthesis A. The sequenced genome of L. interrogans serovar Copenhageni
L1-130 (top) and L. interrogans serovar Lai strain 56601 (bottom) encode a cluster of genes with predicted activities in the synthesis of sialic acids
(N-acetylneuraminic acid) or related molecules. B. PCR of sialic acid cluster genes shows DNA amplification in pathogenic Leptospira species.
Integrity of DNA was confirmed by amplification of the 16 S rRNA gene. C. Southern blots probed for the NeuA-2 region of the gene cluster
using a DIG-labeled oligonucleotide. Genomic DNAs from the following bacteria were probed as described in materials and methods: 1) S.
enterica, 2) L. interrogans serovar Lai strain 55601, 3) L. interrogans serovar Copenhageni strain L1-130, 4) L. biflexa serovar Patoc, 5) L. licerasiae (rat
isolate CEH 008), 6) L. licerasiae isolate MMD4847), 7) L. interrogans serovar Icterohaemorrhagiae (isolate MMD 3731), 8) L. fainei serovar
Hurstbridge, 9) S. enterica.
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positive result observed by PCR for this strain. Since low
sequence identity between primers or probes and the
target sequences from less closely related species could
produce a negative result in these experiments, other
more functional assays were utilized next.

DMB-derivatization and HPLC-MS analysis reveals
multiple varieties of nonulosonic acids expressed by
Leptospira
Strains were evaluated biochemically to determine
whether nonulosonic acid biosynthetic pathways were
functional in different species and strains of Leptospira.
Bacteria were hydrolyzed with mild acetic acid to release
nonulosonic acid species, and low molecular weight frac-
tions were fluorescently derivatized with 1,2-diamino-
4,5-methylene dioxybenzene (DMB), a molecule that
specifically reacts with alpha keto acids, including
NulOs. DMB-derivatized reaction products were sepa-
rated by high performance liquid chromatography
(HPLC) with a tandem electrospray ionization mass
spectrometer. As expected by the Gram-negative-like
structure of Leptospira, all samples displayed an early-
eluting HPLC peak corresponding to the retention time
and mass of 2-keto-3-deoxy-D-manno-octulosonic acid
(Kdo). Kdo is an 8-carbon α-keto acid present in the
core region of lipopolysaccharide in most Gram-negative



Figure 2 Leptospira express mainly di-N-acetylated nonulosonic acids. Nonulosonic acids were released from Leptospira isolates and
fluorescently derivatized with DMB followed by HPLC as described in Materials and Methods. Selected peaks were subjected to electrospray
ionization mass spectrometry. Pse and Leg refer to the di-N-acetylated nonulosonic acids pseudaminic and legionaminic acids, closely related
isomers with an identical DMB-derivatized mass of 451. Kdo is a related eight-carbon backbone monosaccharide common to the core region of
lipopolysaccharide. All MS data are shown from 400–500 m/z, except for representative MS data shown for peak b (Kdo), shown from
300–400 m/z. Each of these strains was analyzed in 2–3 independent experiments with similar results.
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bacteria. It serves as an internal positive control in these
assays (Figure 2 peak b, m/z 355) and allowed compari-
son between different HPLC runs. Masses of some
DMB-derivatized peaks did not readily correspond to
masses of known varieties of nonulosonic acids (for ex-
ample Figure 2 peak a, 407 and peak d, 440). It is not
known whether these masses represent nonulosonic
acids. In contrast, a consistent m/z of 433 (peak c) indi-
cates the presence of di-N-acetylated nonulosonic acids
and was found in pathogenic L. interrogans serovar Lai
and L. alexanderi, and intermediate strain L. fainei. In
all cases, the DMB-derivatized di-N-acetylated masses
were accompanied with characteristic masses corre-
sponding to the hydrated and hydrated sodium salt (m/z
451 and 473 respectively). These biochemical data show
that pathogenic and intermediately pathogenic strains of
Leptospira are capable of expressing di-N-acetylated
nonulosonic acids. However, in contrast, the pathogenic
strain L. santarosai was not found to synthesize
identifiable nonulosonic acid species at detectable levels
(Figure 2). We also performed analyses on L. biflexa ser-
ovar Patoc. In this case, we observed the presence of
Kdo by HPLC and mass spectrometry, but identifiable
NulO molecules were not present at detectable levels
(not shown).
Interestingly, HPLC analysis of the two different gen-

ome strains of L. interrogans (serovar Copenhageni
strain L1-130 and serovar Lai strain 56601) gave distinct
results. While L. interrogans serovar Lai expresses di-N-
acetylated nonulosonic acid (Figure 2, m/z 433), strain
L1-130 (serovar Copenhagenii) exhibited a peak with
mass and retention time consistent with Neu5Ac (m/z
408, hydrated 426, and hydrated sodium salt 448)
(Figure 3A-B). Additional MS2 analysis consistently
reduced this trio of masses almost exclusively to the par-
ent mass of 408 (Figure 3B), as expected based on the
behavior of standard Neu5Ac derivatized in parallel
(Figure 3C). Since the common animal sialic acids



Figure 3 Leptospira interrogans genome strain expresses sialic
acid (Neu5Ac). HPLC analysis demonstrates peaks consistent with
Kdo and Neu5Ac in Leptospira interrogans str. L1-130. Confirmation
of the L1-130 Neu5Ac peak assignment was performed by parallel
derivatization and LCMS analysis of Neu5Ac (Sigma). The structure of
DMB-derivatized Neu5Ac has a protonated exact mass (m+H) of
426.1. The dehydrated and sodium adduct have expected m+H
values of 408.1 and 448.1 respectively. This experiment was
performed twice with similar results.
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Neu5Ac and Neu5Gc were found in the standard culture
media used for Leptospira (EMJH, Figure 4A), experi-
ments were designed to exclude the possibility that L.
interrogans strain L1-130 may incorporate exogenous si-
alic acid from the culture media. Unfortunately, the lack
of a readily available genetic system for Leptospira rules
out gene deletion as an approach to demonstrate en-
dogenous synthesis. However, leptospires grown in
defined serum-free media without sialic acids (as con-
firmed by HPLC) still produced a Neu5Ac peak, con-
firming that L. interrogans strain L1-130 synthesizes
Neu5Ac and this sugar is not acquired from growth
media (Figure 4B).
Figure 4 Leptospira interrogans endogenously expresses N-
acetylneuraminic acid (Neu5Ac). L. interrogans was grown in EMJH
medium or in a chemically defined medium containing no
exogenous sialic acid (this was confirmed by HPLC, not shown).
Covalently bound Sias were released by mild acid hydrolysis and
analyzed by DMB-derivatization and HPLC as described in previous
figures and Materials and Methods. This experiment was performed
twice with similar results.
Composition and phylogenetic analysis of NulO
biosynthetic gene clusters and enzymes
Next we performed analysis of the composition and
phylogeny of the putative NulO biosynthetic gene clus-
ters and the enzymes they encode in L. interrogans sero-
vars Lai (strain 56601) and Copenhageni (strain L1-130).
Consistent with the biochemical analysis of L. interro-
gans, genomic analysis of the NulO gene cluster reveals
that the organism encodes a complete pathway for di-N-
acetylated nonulosonic acid biosynthesis (see Table 1 in
comparison with Figure 5). There are multiple distinct
open reading frames encoding synthesis of aminotrans-
ferases, NulO synthases, and CMP-NulO synthetases
(see Table 1 and Figure 5), suggesting that L. interrogans
may express multiple nonulosonic acid species, a con-
clusion supported by our biochemical investigations
(Figure 2 and Figure 3).
Phylogenetic comparisons were performed to provide

additional insights into the potential functions of Leptos-
pira nonulosonic acid biosynthesis enzymes. We
included in the phylogenetic analysis the well-
characterized enzymes of Campylobacter jejuni that par-
ticipate in parallel pathways of legionamimic, pseudami-
nic, and neuraminic acid synthesis [14,17-21]. A
schematic of these biosynthetic pathways is shown in
Figure 5, noting the structural differences between neur-
aminic (sialic), legionamimic, and pseudaminic acids.
These different NulOs are used by C. jejuni to modify a
variety of different surface structures including the O-
antigen of lipooligosaccharides, flagellin, and other sur-
face proteins. To add further resolution to our phylogen-
etic analysis, we also included NulO biosynthetic
enzymes from two Photobacterium profundum genome
strains (3TCK and SS9), previously demonstrated to
synthesize legionamimic and pseudaminic acids respect-
ively [16]. In addition, homologous enzymes from other
Leptospira genomes (L. noguchii str. 2006001870, L.



Table 1 L. interrogans encodes a complete pathway for legionaminic acid synthesis

Campylobacter enzymes
for legionaminic
acid biosynthesis
[14,17-21]

C. jejuni
Pathway number
(Figure 5)

L. interrogans
L1-130 & 56601
NCBI accession
numbers

Predicted
L. interrogans
Pathway number
(Figure 5)

Predicted enzymatic Function

PmtE (cj1329) 1 YP_002106 1 Glc-1-P guanyltransferase

NP_711792

GlmU 2 YP_000413 2 (housekeeping)

NP_714003 N-acetyltransferase

LegB (cj 1319) 3 YP_002111 3 4,6-dehydratase

NP_711787

LegC (cj1320) 4 YP_002110 4 Aminotransferase in
legionaminic acid synthesis
(Figure 6A)NP_711788

YP_002103 4, 13, or ? Aminotransferase

NP_711795

LegH (cj1298) 5 YP_002109 5 N-acetyltransferase

NP_711789

LegG (cj1328) 6 YP_002107 6 2-epimerase/NDP sugar
hydrolase in legionamimic
acid synthesisNP_711791

LegI (cj1327) 7 YP_002108 7 Legionaminic acid synthase
(Figure 6B)

NP_711790

YP_002104 10 Legionaminic or neuraminic
acid synthase (Figures 6B & 7)

NP_711794

LegF (cj1331) 8 YP_002102 8 or 11 CMP-Legionaminic acid or
neuraminic acid synthetases
(Figure 6C)NP_711796

YP_002112 8 or 11

NP_711786
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biflexa serovar Patoc, L. santarosai str. 2000030832, L.
borgpetersenii serovar Hardjo-bovis str. L550) were
included in the phylogenetic analysis to better place the
L. interrogans NulO enzymes into context with other
putative leptospiral NulO biosynthetic enzymes.
The phylogenetic analysis of L. interrogans NulO bio-

synthetic enzymes demonstrates that a subset of these
enzymes is more closely related to the C. jejuni legiona-
minic acid biosynthetic enzymes and more distantly
related to the pseudaminic acid biosynthetic enzymes
(Figure 6). Specifically, the aminotransferases YP_002110
and NP_711788 and the NulO synthetases YP_002108
and NP_711790 in L. interrogans serovars Copenhageni
and Lai respectively, are more closely related to legiona-
minic acid synthesis enzymes and more distantly related
to C. jejuni and P. profundum pseudaminic acid synthe-
sis enzymes (Figure 6A-B, note green and pink shading
indicates legionaminic acid pseudaminic acid pathways
respectively). A similar relationship was found for the
predicted epimerase/NDP-sugar hydrolases YP_002107
and NP_711791(not shown). Moreover, we find that
both homologs of the putative CMP-NulO synthetases
in L. interrogans (YP_002102 and YP_002112 in L1-130
and NP_711786 and NP_711796 in 56601) are more
closely related to legionaminic acid and neuraminic acid
synthetases than to CMP-pseudaminic acid synthetases
(Figure 6C). Note in this figure that CMP-Kdo synthases
were included to provide contrast and distinguish be-
tween enzymes that likely participate in CMP activation
of eight carbon sugars (i.e. Kdo) and nine carbon sugars
(i.e. NulOs). The sequences retrieved by BLAST of these
Leptospira genomes, together with their phylogeny, sug-
gest that a number of leptospires do not encode homo-
logs of CMP-NulO synthetases. In contrast, some
leptospires encode putative NulO biosynthesis enzymes
that are more closely related to the C. jejuni and P. pro-
fundum pseudaminic acid biosynthesis enzymes and
more distantly related to the legionaminic acid enzymes
(e.g. L. noguchii Figure 6A-B).
In contrast to bacterial NulO biosynthetic pathways

that synthesize Neu5Ac from ManNAc (N-acetyl man-
nosamine), the mammalian pathway relies on a NulO
synthase with unique specificity for 6-phosphate-
modified ManNAc, to generate 9-phosphate-modified



Figure 5 Schematic of pseudaminic, legionamimic, and neuraminic acid biosynthetic pathways. Studies of nonulosonic acid biosynthesis
at the enzymatic level have been carried out with greatest resolution using C. jejuni and H. pylori as model systems [14,17-21,35]. Note that
parallel arrows in this diagram indicate distinct, yet homologous enzymes. This schematic is based largely on the work of Schoenhofen et. al.
Please refer to [14,18] and references within for more detailed descriptions of the enzymes and intermediates of these pathways.
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Neu5Ac [22]. A set of adapter enzymes precede (kinase)
and follow (phosphatase) the NulO synthase in the ani-
mal pathway (see Figure 7). In some cases, ‘adapter’
enzymes have become fused into the same open reading
frame with one of the other nonulosonic acid biosyn-
thesis genes. One example is the mammalian UDP-
GlcNAc-2-epimerase, which is fused to a kinase that
phosphorylates ManNAc to generate the substrate for
the next step of the pathway, ManNAc-6-P. Interest-
ingly, when performing analyses of L. interrogans NulO
biosynthetic pathway, we noted that one of the NulO
synthases encoded by L. interrogans (YP_002104 in sero-
var Copenhageni and NP_711794 in serovar Lai) has a
unique C-terminal domain that is homologous to endo-
nucleases that cleave phosphodiester bonds. By infer-
ence, we suggest that the route for N-acetylneuraminic
acid biosynthesis in L. interrogans may be very similar to
the animal pathway, condensing phosphoenolpyruvate
with a phosphorylated 6-carbon intermediate to generate
a phosphorylated 9-carbon sugar, followed by
dephosphorylation catalyzed by the fused C-terminal
phosphatase domain (Figure 7). This enzyme is distantly
related to other NulO synthases and did not cluster with
animal neuraminic acid synthases when these enzymes
were included in the analysis (not shown), suggesting
that this biosynthetic route may be ancestral. This con-
clusion is supported by previous evolutionary analyses of
NulO pathways [16].

Nonulosonic acids are elaborated on Leptospira surface
lipoproteins
Finally, efforts were made to identify the type of molecule
(s) modified with sialic acids in L. interrogans strain L1-130.
Immobilized sialic acid-binding lectins from Sambucus
nigra agglutinin (SNA) and Maackia amurensis lectin
(MAL), which recognize sialic acids in α2-6 and α2-3-
linked sialic acids respectively, were used to affinity purify
sialic acid-modified molecules in lysates of the L1-130
strain. Wheat germ agglutinin (WGA) also recognizes sialic
acids, but is less specific, and also recognizes N-



Figure 6 Phylogenetic analysis of L. interrogans NulO biosynthetic enzymes. Amino acid sequence alignments of “aminotransferase,” “NulO
synthase,” and “CMP-NulO synthetase,” enzymes were performed using Clustal W and phylogenetic trees were built using the Neighbor-Joining
method. Campylobacter jejuni enzymes with characterized functions in bacterial neuraminic, legionaminic, and pseudaminic acid biosynthesis
[14,17-21] were compared to L. interrogans amino acid sequences encoded in the NulO biosynthetic gene cluster. Homologs of these enzymes
from P. profundum strains 3TCK and SS9 were also included as they are know to synthesize legionamimic acid pseudaminic acids respectively
[16]. Homologous enzymes from other selected Leptospira genomes (L. noguchii str. 2006001870, L. biflexa serovar Patoc, L. santarosai str.
2000030832, L. borgpetersenii serovar Hardjo-bovis L550) were also included in the phylogenetic analysis.
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acetylglucosamine residues. As a control, buffers used in
the solid phase assay were analyzed in parallel lanes of the
gel, revealing that the faint bands present at ~60 kDa were
part of the supplied buffers and not specific for sialylated L.
interrogans molecules. Silver staining after SDS-Page gel
electrophoresis of the eluted material from the affinity col-
umns shows clear bands at ~21 kDa and ~25 kDa that are
present at similar intensities in the MAL and SNA lanes
(Figure 8A). Other bands appear to be enriched by affinity
purification using one or the other lectin. For example, a
faint band at ~43 kDa is apparent in the material isolated
by MAL, but not by SNA. Alternatively, bands at ~15, ~37,
and ~41 kDa are much stronger in the SNA-purified sam-
ple. These finding suggests that L. interrogans may modify
surface structures with both α2-3- and α2-6-linked nonulo-
sonic acids (Figure 8A). However, future studies should



Figure 7 C-terminal phosphatase domain fused to putative N-acetylneuraminic acid synthase suggests an animal-like Neu5Ac
biosynthetic pathway in L. interrogans.

Ricaldi et al. BMC Microbiology 2012, 12:161 Page 9 of 12
http://www.biomedcentral.com/1471-2180/12/161
further investigate the molecule(s) modified by nonulosonic
acids in leptospires, as well as their exact context and
importance.
The affinity-purified material was subjected to DMB-

derivatization and HPLC analysis, which showed the
Neu5Ac peak, but not the Kdo peak (data not shown),
strongly suggesting that this material was free of LPS-
components. This does not rule-out that LPS may be
modified with NulOs, just that LPS was not present in this
affinity-purified preparation. We performed mass spec-
trometry to identify protein components in the affinity-
purified material. Three proteins were identified by mass
spectrometry (Figure 8B): Loa22, LipL32, and LipL41, all
of which have been described in previous publications as
surface-exposed lipid-linked outer membrane proteins of
L. interrogans [23-27]. Indeed, Loa22 and LipL31 are
among the most abundant proteins expressed on the Lep-
tospira cell surface [28]. Loa22 was identified with the
highest number of peptide matches. Loa22 is an outer
membrane protein encoded within all Leptospira genomes
sequenced to date. It has been observed to be upregulated
in vivo [27] and it is one of very few leptospiral proteins so
Figure 8 Proteomic analysis suggests nonulosonic acids are present o
PAGE gel of affinity purified sialylated molecules from L. interrogans lysate u
MAL, or SNA. B. Results of proteomic analysis to identify proteins purified in
far that has been shown to be necessary for virulence [3].
Additional studies are needed to define the precise context
of NulO expression on L. interrogans and understand its
potential significance in virulence.

Conclusions
Based on a combination of experimentation and in silico
genomic analysis, we have demonstrated the function of
NulO biosynthetic gene clusters in pathogenic and inter-
mediately pathogenic species of Leptospira, several of
which are capable of synthesizing di-N-acetylated NulO
species, as well as the true sialic acid, N-acetyneuraminic
acid, a finding of considerable consequence for the lepto-
spirosis field. This finding expands the number of import-
ant human pathogens that utilize endogenous biosynthetic
pathways to elaborate surface structures containing sialic
acids and related NulO molecules [16]. Sialic acids have
proven roles in complement evasion, intracellular survival,
and biofilm formation [29], and evidence is emerging that
some human pathogens with Neu5Ac on their surfaces
can engage sialic acid-binding receptors (Siglecs) on
leukocyte cell surfaces, resulting in phagocytosis or
n surface lipoproteins in L. interrogans L1-130 A. Silver-stained
sing spin-columns with immobilized sialic acid-binding lectins WGA,
A.
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dampening of bactericidal activities [30-32]. The roles of
other NulO molecules such as legionaminic and pseuda-
minic acids are less well defined, but these molecules have
been shown to play roles in behaviors such as autoaggluti-
nation, motility, and host colonization [33-37]. Curiously,
disease caused by L. interrogans includes bacteremia and
meningitis as components of the clinical disease spectrum,
similar to the well-characterized Neu5Ac-expressing
human bacterial pathogens Group B Streptococcus, Neis-
seria meningitidis, E. coli K1, and Haemophilus influenzae.
As genetic tools and small animal infection systems for
study of Leptospira are further refined, analysis of the con-
tribution of NulO biosynthesis to the virulence of this
neglected disease can be further elucidated.

Methods
Strains and culture conditions
Intermediately pathogenic strains L. licerasiae serovar
Varillal strains MMD3731, MMD4847 and CEH008
(isolated from rodents in Peru), L. fainei serovar
Hurstbridge strain BUT 6T and the saprophyte L.
biflexa serovar Patoc were used for these experi-
ments. Pathogenic Leptospira used in this study
included L. interrogans serovar Copenhageni strain
L1-130, L. interrogans serovar Lai strain 55601, and
L. interrogans serovar Icterohaemorrhagiae wild ro-
dent isolate MMD 3731 that were passaged fewer
than 5 times in vitro after re-isolation from hamster
liver to maintain virulence. L. santarosai and L. alex-
anderi serovar Manhao were originally isolated from
clinical cases of leptospirosis and now serve as refer-
ence laboratory strains. Generally, Leptospira were
cultivated at 30°C in Ellinghausen-McCullough-
Johnson-Harris (EMJH) medium (catalog #279510,
Becton Dickinson, Sparks, Maryland). Chemically-
defined, sialic acid-free medium, prepared as previ-
ously described and verified by HPLC to be sialic
acid free, was used to cultivate Leptospira in experi-
ments where the lack of exogenous sialic acids was a
necessary condition [38].

PCR of sialic acid cluster genes
Primers based on the genome of L. interrogans L1-
130 were designed for the detection of genes in the
sialic acid cluster as follows: sasfrontF (5′- TCC GGA
AAT GCG AAT GAT G-3′), sasfrontR (5′- CAC
CGG GCA AAA GAC TAA CCT - 3′), sasendF (5′-
CGG ATA TAG CGG ACG ATG TAA - 3′), sasendR
(5′- CGC CAA AAA GCC AAG GAA - 3′), neuA2F
(5′- TGA AGC GGC AAA AAG AGC - 3′), neuA2R
(5′- TGA AAT AAC ATG CCG ACA AAT A - 3′),
neuCfrontF (5′- CGC TAC GGG AAT GCA TCT
GTC TC - 3′), neuCfrontR (5′- CCC ATT CCC
CCA ACC AAA AA - 3′), neuCendF (5′- GGC GAG
GAT CCT TCT AAT GTT TTT - 3′) and neuCendR
(5′- ACT CGC TCC GCC TTC ACC A - 3′). PCR
reactions were prepared using 0.2 mM of each primer
in a 20 μL reaction with DNA from the pathogens L.
interrogans Lai, L. interrogans L1-130, the intermedi-
ates L. licerasiae and L. fainei and the saprophyte L.
biflexa serovar Patoc. NeuA2 and neuBfront reactions
used an annealing temperature of 52°C. NeuCfront,
neuCend, sasfront and sasend were run using an
annealing temperature of 58°C. A 16 S gene PCR re-
action using previously published primers fLIP and
rLIP1 was used as a control for integrity of DNA.
NeuA2 southern blot
Genomic DNA samples of Salmonella enterica, L.
interrogans serovar Lai str. 56601, L. interrogans sero-
var Copenhageni str. L1-130, L. biflexa serovar Patoc,
L. licerasiae strains CEH008 and MMD4847, L. inter-
rogans serovar Icterohaemorrhagiae str.MMD3731 and
L. fainei serovar Hurstbridge were prepared into plugs
using 1 % agarose and 0.5x TBE. These were sub-
jected to depurination and denaturing conditions.
DNA was then transferred to a positively charged
membrane via overnight capillary transfer with 20x
SSC. Finally the DNA was cross-linked to the mem-
brane using short wave DNA for 15 min. 10 mL of
pre-hybridization solution (QuikHyb, Stratagene) were
warmed to 40°C prior to hybridization. Hybridization
was done overnight at 40-42°C using the same solu-
tion and adding 10 mL of DIG-labeled PCR product
of primer neuA2F (5′ - TGA AGC GGC AAA AAG
AGC - 3′) and neuA2R (5 ′- TGA AAT AAC ATG
CCG ACA AAT A - 3′). 2xSSC at room temperature
and 1x SSC at 68°C were used for stringency washes.
A chemiluminescent substrate and an alkaline phos-
phatase conjugated anti-DIG antibody were used to
demonstrate binding of the probe.
Mild acid hydrolysis and DMB-derivatization of
nonulosonic acids
Mild (2 N) acetic acid hydrolysis was performed to
release surface nonulosonic acids from Leptospira.
4 N acetic acid was added to an equal volume of ex-
tensively washed and resuspended pellets followed by
3 h of incubation at 80°C. The resulting soluble frac-
tion was filtered to remove large molecular weight
components and derivatized with DMB (1,2-diamino-
4,5-methylene dioxybenzene), a reagent that reacts
with the α-keto acid portion of nonulosonic acids.
Final reaction conditions were 7 mM DMB, 18 mM
sodium hydrosulfite, 1.4 M acetic acid, and 0.7 M 2-
mercaptoethanol. Derivatization was carried out for 2
hours at 50°C in the dark.
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High performance liquid chromatography and mass
spectrometry
DMB-NulO derivatives were resolved by HPLC using a
reverse phase C18 column (Varian) eluted isocratically
at a rate of 0.9 ml/min over 50 minutes using 85 % MQ-
water, 7 % methanol, 8 % acetonitrile as previously
described [16,39,40]. In some experiments, HPLC was
performed without online mass spectrometry and detec-
tion of fluorescently labeled NulO sugars was achieved
using an online fluorescence detection using excitation
and emission wavelengths of 373 nm and 448 nm re-
spectively. In other experiments HPLC was combined
with online mass spectrometry using a Thermo-Finnigan
model LCQ ion trap mass spectrometer system. When
mass spectrometry was performed, the mobile phase also
included 0.1 % formic acid, and online UV detection of
DMB-NulO molecules preceded mass spectrometric
analysis. We note that similar HPLC-MS analyses have
been described previously DMB-derivatized α-keto acids
[39-41].

Phylogenetic analysis
We performed BLAST searches (blastp) against the
NCBI genome database using as seeds the sequences of
1) proteins encoded by Campylobacter jejuni pseudami-
nic, legionaminic, and neuraminic acid biosynthetic
pathways or 2) enzymes encoded in the Leptospira inter-
rogans NulO biosynthetic gene cluster (Figure 1A).
NCBI accession numbers are provided in Table 1 and a
schematic of the biosynthetic pathways is illustrated
in Figure 5. Complete protein sequences of homolo-
gous amino acids were aligned using ClustalW in Mac-
Vector 11.1.1 software and alignments were checked
manually. The Neighbor Joining (NJ) method was uti-
lized for phylogenetic tree construction using MacVec-
tor 11.1.1 software, including 1000 Bootstrap
replications to obtain confidence values for branches of
the NJ trees.

Solid-phase lectin binding
Whole cell lysates were prepared using three cycles of
freeze-thawing of PBS washed L. interrogans serovar
Copenhageni strain L1-130. In order to probe the abun-
dance and nature of the sialylated molecules on L. inter-
rogans, these lysates were fractionated using a lectin-
based solid phase assay (Q Proteome Sialic Acid kit,
Qiagen) using three immobilized sialic acid binding lec-
tins: wheat germ agglutinin (WGA), Sambucus nigra ag-
glutinin (SNA), and Maackia amurensis lectin (MAL),
according to manufacturer’s instructions. Molecules cap-
tured by each of these lectins were eluted according to
the manufacturers instructions. then analyzed by SDS-
PAGE followed by silver staining (SilverQuest Silver
Staining Kit, Invitrogen).
Mass spectrometry
To determine whether L. interrogans uses nonulosonic
acids for post-translational modification of proteins,
pooled affinity-purified material from above mentioned
experiment was subjected to denaturation, reduction,
and alkylation, followed by trypsin digestion and MS/MS
analysis using a nano-flow LC- tandem mass spectrom-
eter. Peptide mass fingerprints identified in the affinity-
purified material were used to identify L. interrogans
proteins by searching against the NCBInr bacterial gen-
ome database.
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