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The streptococcal collagen-like protein-1 (Scl1) is
a significant determinant for biofilm formation by
group a Streptococcus
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Abstract

Background: Group A Streptococcus (GAS) is a human-specific pathogen responsible for a number of diseases
characterized by a wide range of clinical manifestations. During host colonization GAS-cell aggregates or
microcolonies are observed in tissues. GAS biofilm, which is an in vitro equivalent of tissue microcolony, has only
recently been studied and little is known about the specific surface determinants that aid biofilm formation. In this
study, we demonstrate that surface-associated streptococcal collagen-like protein-1 (Scl1) plays an important role in
GAS biofilm formation.

Results: Biofilm formation by M1-, M3-, M28-, and M41-type GAS strains, representing an intraspecies breadth, were
analyzed spectrophotometrically following crystal violet staining, and characterized using confocal and field
emission scanning electron microscopy. The M41-type strain formed the most robust biofilm under static
conditions, followed by M28- and M1-type strains, while the M3-type strains analyzed here did not form biofilm
under the same experimental conditions. Differences in architecture and cell-surface morphology were observed in
biofilms formed by the M1- and M41-wild-type strains, accompanied by varying amounts of deposited extracellular
matrix and differences in cell-to-cell junctions within each biofilm. Importantly, all Scl1-negative mutants examined
showed significantly decreased ability to form biofilm in vitro. Furthermore, the Scl1 protein expressed on the
surface of a heterologous host, Lactococcus lactis, was sufficient to induce biofilm formation by this organism.

Conclusions: Overall, this work (i) identifies variations in biofilm formation capacity among pathogenically different
GAS strains, (i) identifies GAS surface properties that may aid in biofilm stability and, (jii) establishes that the Scl
surface protein is an important determinant of GAS biofilm, which is sufficient to enable biofilm formation in the
heterologous host Lactococcus. In summary, the GAS surface adhesin Scl1 may have an important role in biofilm-

associated pathogenicity.

Background

Microbial biofilm formation is an important virulence
mechanism, which allows immune evasion and survival
against antibiotic treatments [1,2]. Many bacterial noso-
comial infections are associated with biofilms formed on
contaminated medical devices. Dispersal of biofilm has
also been proposed to augment infection spread [3-8].
For group A Streptococcus (GAS), biofilm research is an
emerging field and little is known about the specific
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surface determinants that aid in biofilm formation. GAS
is characteristically associated with significant human
morbidity and it is responsible for the clinically com-
mon superficial throat and skin infections, such as phar-
yngitis and impetigo, as well as invasive soft tissue and
blood infections like necrotizing fasciitis and toxic shock
syndrome [9]. Although GAS biofilm has not been asso-
ciated with implanted medical devices, tissue microcolo-
nies of GAS encased in an extracellular matrix were
demonstrated in human clinical specimens [10]. Studies
reported to date support the involvement of GAS sur-
face components in biofilm formation, including the M
and M-like proteins, hyaluronic acid capsule, pili and
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lipoteichoic acid [11-13]. As shown by Cho and Caparon
[11], multiple genes are upregulated during biofilm for-
mation and development, including the streptococcal
collagen-like protein-1 (Scll).

The scll gene encoding the Scll protein has been
found in every GAS strain investigated and its transcrip-
tion is positively regulated by Mga [14-18], indicating
that Scll is co-expressed with a number of proven viru-
lence factors. Structurally, the extracellular portion of
Scll protein extends from the GAS surface as a homo-
trimeric molecule composed of distinct domains that
include the most outward N-terminal variable (V) region
and the adjacent collagen-like (CL) region composed of
repeating GlyXaaYaa (GXY) sequence. The linker (L)
region is close to the cell surface and contains a series
of conserved direct repeats. The Scll protein can bind
selected human extracellular matrix components [19]
and cellular integrin receptors [20-22], as well as plasma
components [23-27].

In this study, we investigated the importance of Scll
in GAS biofilm using defined isogenic wild-type and
sclI-inactivated mutant strains of GAS. We report that
(i) the pathogenically diverse M41-, M28-, M3- and M1-
type GAS wild-type strains have varying capacities to
produce biofilm on an abiotic surface; (ii) Scll plays an
important role during the main stages of biofilm forma-
tion with Scll-negative mutants having an abrogated
capacity for adhesion, microcolony formation and bio-
film maturation; and (iii) variations in surface morphol-
ogy as well as in extracellular matrix associated with
bacterial cells suggest two distinct but plausible mechan-
isms that potentially stabilize bacterial microcolonies.
We additionally show that expression of Scll in Lacto-
coccus lactis is sufficient to support a biofilm phenotype.
Overall, this work reveals a significant role for the Scll
protein as a cell-surface component during GAS biofilm
formation among pathogenically varying strains.

Results

Wild-type GAS strains have heterogeneous capacity for
biofilm formation on abiotic surfaces

Biofilm formation was compared between M41-, M28-,
M3- and M1-type GAS strains representing distinct epi-
demiological traits (Figure 1). To assess biofilm forma-
tion after 24 h, we wused spectrophotometric
measurements recorded following crystal violet staining
(Figure 1a). Both the M41- and M28-type strains pro-
duced more biomass as compared with M1 strain.
Furthermore, the M3-type strain produced the lowest
absorbance values in a crystal violet assay, indicative of
lower cell biomass, as compared with the other wild-
type strains. These experiments confirm previous obser-
vations [1,28] that GAS strains have varying capacity to
form biofilm in vitro.
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The failure of M3-type strain MGAS315 to produce
substantial cellular biomass in the above assay was intri-
guing because sequence analysis of the sc/1.3 allele
found in MGAS315 revealed the presence of a TAA
stop codon in the 11th GXY repeat of the Scl1.3-CL
region containing a total of 25 GXY triplets [29]. This
premature stop codon results in a truncated Scl1.3 var-
iant composed of 102 amino acids (~11.4 kDa), which
does not contain the cell wall-membrane (WM) asso-
ciated region, thus, preventing it from anchoring to the
bacterial cell surface (Figure 1b). This prompted us to
investigate the biofilm formation by five additional M3-
type strains, all harboring the same sc/1.3 allele. Five
additional M3-type strains, MGAS335, MGAS1313,
MGAS2079, MGAS274 and MGAS158, all harboring
the same sc/1.3 allele [29] also produced poor biofilm
under static conditions, as measured by crystal violet
staining. Confocal laser scanning microscopy (CLSM) of
three representative strains (MGAS315, MGAS2079, and
MGAS158) corroborated results obtained from the crys-
tal violet assay, indicating that these M3-type strains
lack the ability to form appreciable biofilm structure.
Our data suggest that the lack of capacity for biofilm-
formation among M3-type GAS strains examined here
might be correlated, at least in part, with lack of sur-
face-attached Scll.3 protein.

Microscopic evaluation reveals differences in biofilm
surface morphology

We next conducted microscopic analysis of the biofilms
formed by the wild-type (WT) M41-, M28-, and M1-
type GAS strains. First, we examined the overall struc-
tural characteristics of biofilms formed after 24 h using
CLSM (Figure 4d-f; Additional file 1: Figure Sla-f). The
average biofilm thickness (see Methods section) differed
among all three strains with M1 producing considerably
thinner biofilm (mean value of 9 um) compared to M28
(12 pm) and M41 (15 pum), a result consistent with
lower spectrophotometric absorbance values (Figure 1a).
In addition to measured differences in biofilm thickness,
closer examination of the X-Y orthogonal Z-stack views,
representing biofilm cross-sections, revealed architec-
tural differences among the M41, M28, and M1 bio-
films. The M1 biofilm, although the thinnest, seems to
consist of densely-packed cells that form continuous
layers, while the M28 and especially M41 biofilms seem
to be less dense but exhibit more elevated supracellular
assembly. We therefore used field emission scanning
electron microscopy (FESEM) to define more accurately
these supracellular differences observed by CLSM
between the biofilms produced by the WT M1 and M41
GAS (Figure 4). FESEM exposed notable architectural
differences between biofilms formed by these two
strains. The M41 (Figure 4, panel a) biofilm was
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Figure 1 Variation in biofilm formation among GAS strains. (a) Wild type M41-, M28-, M3-, and M1-type GAS strains were grown 24 h under
static conditions and analyzed spectrophotometrically following crystal violet staining (top). Visual representation of corresponding wells is
shown below. (b) Schematic representation (not to scale) of Scl1.3 protein of M3-type GAS. Translated GXY repeats within the collagen-like (CL)
region are shown with an asterisk representing the location of the premature stop codon resulting in a truncated protein. V, variable region; L,
linker region; WM, wall-membrane associated region. Below, spectrophotometric measurements of 24-h biofilms following crystal violet staining
are graphed for M3-type GAS strains. Absorbance values (ODgg) are averages of at least three experiments done in triplicate wells.
Corresponding confocal analyses of 24-h biofilms of MGAS315, MGAS2079, and MGAS158 are shown. Images are X-Y orthogonal Z-stack views

and average vertical thickness is indicated in micrometers (top right).

characterized by more diverse surface architecture with
the evidence of depressions or crypts, whereas the M1
biofilm (panel b) seems to lack such pronounced surface
characteristics. At higher magnification, the M41 cells
have a studded cell surface morphology with protrusions
linking both sister cells and cells in adjacent chains
(panel c). In contrast, the M1 cells had a relatively
smoother appearance likely due to the rich bacterial-
associated extracellular matrix (BAEM) surrounding
these cells and covering their surface (panel d). BAEM
material, which was clearly seen at higher resolution
between the M1-type cells, was not as evident between
cells of the M41-type GAS.

GAS biofilms differ in production of bacterial-associated
extracellular matrix

The production of BAEM has been shown to be an
integral component in the structural integrity of a bio-
film, imparting protection from dehydration, host
immune attack, and antibiotic sensitivity [30,31]. GAS
cells encased in a glycocalyx were first identified by

Akiyama et al. in skin biopsies obtained from impetigo
patients. We therefore compared the production of
BAEM within biofilms employing GFP-expressing GAS
strains of the M1 and M41 type (Figure 3). Cells were
grown to form biofilms on glass cover slips for 24 h
and stained with TRITC-concanavalin A (ConA), a
fluorescently-labeled lectin that binds to the extracellu-
lar polysaccharides in biofilms [32]. Fluorescent micro-
scopy was performed to compare matrix production
(red staining) by GAS strains (green). Visual screening
of both biofilms indicated that the M41-type strain
formed a more dispersed extracellular matrix as com-
pared to the M1 strain, which had a dense, more clo-
sely associated matrix. In addition, averages of at least
10 fields of ConA stained matrix by CLSM support
our FESEM observations that more BAEM is deposited
within the biofilm by the M1 GAS cells as compared
to M41 GAS. This is in agreement with the report
from Akiyama et al that showed a substantial FITC-
ConA stained matrix associated with T1-type GAS
microcolonies in vivo and in vitro [10].
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Figure 2 Field emission scanning electron microscopy of GAS biofilms. 24-h biofilms of the M1- and M41-type GAS strains were grown on
glass cover slips and analyzed by FESEM. (a-b) Architecture of GAS microcolonies shown at low magnification. (c-d) Cell surface morphology and
cell-to-cell junctions observed at higher magnification. Enlargements of cell-to-cell junctions are shown below.

(b)

Scl1 protein significantly contributes to biofilm formation
by GAS

Variations in GAS pathogenicity and capacity to form
biofilm are driven by specific proteins and components
present on the cell surface or are secreted by the organ-
ism. It has been shown that deletion of the M and M-
like surface proteins or capsule, as well as increased
expression of the secreted SpeB protease decreases bio-
film formation dramatically for some strains of GAS
[12,33,34]. Therefore, we investigated the role of Scll in
biofilm formation by comparing biofilms formed by
GAS WT and scll-inactivated (Ascll) mutant strains
(Figure 4; Additional file 1: Figure Sla-f). Bacterial bio-
mass was evaluated spectrophotometrically following
crystal violet staining at 1, 6, 12, and 24 h time points,
representing different stages of biofilm formation, and
absorbance values rendered for the WT and AsclI iso-
genic mutant strains were compared. The M41Ascl1
mutant showed a 29-35% decrease in biofilm formation
(the ODggg value obtained for the WT strain at each

time point was considered 100%), which was sustained
throughout all time points. This reduction was statisti-
cally significant at initial adherence (1 h), as well as dur-
ing biofilm development (6-12 h) and at maturation (24
h) (Figure 4a; P < 0.05 at 1 and 12 h, P < 0.001 at 6 and
24 h). Complementation of Scl1.41 expression in the
M41Ascll mutant (M41 C) restored its ability to form
biofilm to WT levels. Similarly, the M28Asc/I mutant
had a significantly decreased capacity for biofilm forma-
tion in the range of 29-44% as compared to WT strain
(Figure 4b; P < 0.05 at 1 and 6 h, P < 0.001 at 3, 12 and
24 h). Likewise, there was a statistically significant
decrease in M1Ascl1 biofilm biomass by ~42-75% com-
pared to the WT strain (Figure 4c; P < 0.001 at 1-24 h).
CLSM analysis of corresponding 24-h biofilms of these
strains confirmed our crystal violet staining results at 24
h. The AscllI mutants had substantially decreased aver-
age biofilm thickness by more than 50% (mean values)
as compared to the parental WT organisms (Figure 4d-
f). While these low average biofilm thickness values
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Figure 3 Production of bacterial-associated extracellular matrix.
GFP-expressing wild type (WT) M41- and M1-type GAS strains were
grown on glass cover slips for 24 h and stained with TRITC-conjugated
concanavalin A (ConA). Confocal laser scanning microscopic (CLSM)
images were separated to represent green GFP-expressing GAS cells
(left images) and red ConA-TRITC staining (right images) for detection
of extracellular matrix associated with each strain. Images are from one
representative experiment.

measured for the M1Asc/41 (6 pM) and M28Ascll (5
uM) correspond to residual biofilms made by those
mutants (Additional file 1: Figure Sla-d), by comparison,
the M1Ascll (4 uM) was shown not to produce a con-
tinuous biofilm layer under these conditions (Additional
file 1: Figure Sle-f). Our data support the hypothesis
that the Scll protein plays an important functional role
during GAS biofilm formation and that Scll contribu-
tion varies among GAS strains with different genetic
backgrounds.

Scl1 expression affects surface hydrophobicity

The surface hydrophobicity of GAS has been shown to
influence the adherence to abiotic surfaces. The pre-
sence of pili [13], M and M-like proteins, and lipotei-
choic acid contributes to cell surface hydrophobic
properties [12,35], which in turn may influence biofilm
formation by GAS. Here, we have investigated the con-
tribution of Scll to surface hydrophobicity of M41-,
M28-, and M1-type GAS strains using a modified hexa-
decane binding assay [12,36,37]. As shown in Table 1,
the M28-type GAS strain MGAS6143 gave the highest
actual hydrophobicity value of 94.3 + 0.73, followed by
the M41-type strain MGAS6183 (92.6 + 0.86). In con-
trast, the overall surface hydrophobicity of the M1-type
GAS strain MGAS5005 (80.3 + 0.89) was significantly
lower compared to both M28 and M41 strains (P <
0.001 for each comparison). Inactivation of sc/1.41 in
M41-type GAS resulted in a modest, although
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statistically significant, reduction in the hydrophobicity
index (100% for WT vs. 92% for mutant, P < 0.001). In-
trans complementation of the Scll.41 expression in
M41AsclI-C restored the hydrophobic phenotype of the
cells to WT level (hydrophobicity index ~105%). In
comparison, the contribution of the Scll.1 and Scl1.28
proteins to surface hydrophobicity is more substantial,
as evidenced by a ~21% and ~22% reduction of the
hydrophobicity indices of the mutants as compared to
the corresponding WT strains, respectively (P < 0.001
for both). Thus, the Scll-mediated GAS-cell surface
hydrophobicity reported here may contribute to the abil-
ity of this organism to form biofilm, as suggested for
other cell surface components [12,35].

Scl1 is sufficient to support biofilm formation in
Lactococcus lactis
To assess whether Scll expression is sufficient to confer
the ability for biofilm formation, we chose to express this
protein in a heterologous L. lactis system [38,39]. The
wild-type L. lactis strain MG1363 was transformed with
plasmid pSL230 encoding the Scl1.41 protein [22] or
with the shuttle vector pJRS525 alone. As shown in Fig-
ure 5a, PCR amplification of the sc/1.41 gene employing
specific primers yielded no product from the WT L. lactis
MG1363 (lane 1) and the MG1363::pJRS525 transfor-
mant (lane 2). A product of the expected size of 1.4 kb
was amplified from the pSL230 plasmid DNA control
(lane 4,) as well as was amplified from the MG1363::
pSL230 transformant (lane 3). Surface expression of
Scl1.41 was confirmed by immunoblot analysis of cell-
wall extracts prepared from L. lactis WT, and the
MG1363:pJRS525 and MG1363::pSL230 transformants,
as well as MGAS6163 (WT M41 GAS). As shown in Fig-
ure 5b, rabbit antiserum raised against purified recombi-
nant Scll.41 protein P176 lacking the WM region
detected the corresponding immunogen (lane 1), and the
homologous full length protein in cell-wall extracts of
MGAS6183 (lane 5) as well as MG1363::pSL230 L. lactis
transformant (lane 4). This band was absent in cell-wall
extracts prepared from the WT L. lactis MG1363 (lane 2)
and MG1363::pJRS525 transformant (lane 3). Expression
of Scl1.41 at the cell surface was further established by
flow cytometry. Rabbit anti-p176 antibodies stained
Scl1.41 MG1363:pSL230 transformant, confirming the
expression of Scl1.41 protein at the cell surface in the
heterologous host L. lactis (Figure 5c¢, red trace). This
protein was absent at the surface of WT MG1363 (black
trace) and MG1363:pJRS525 transformant (green trace).
The capacity of L. lactis expressing Scl1.41 to form
biofilm was evaluated spectrophotometrically following
crystal violet staining. As shown in Figure 5d, the
MG1363:pSL230 transformant demonstrated a signifi-
cant increase in biofilm-associated biomass at 24 h, as
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Figure 4 Biofilm formation by wild type and scl1-inactivated isogenic mutants. Crystal violet staining and confocal laser scanning
microscopy (CLSM) of the GFP-expressing GAS were used to compare biofilm formation by GAS strains. Wild type (WT) M41-, M28-, and M1-type
strains, scl1-inactivated mutants (scl1), and M41 mutant complemented for Scl1.41 expression (M41 C) were used. (a-C) Isogenic GAS strains were
grown under static conditions for 24 h and bacterial biomass was detected spectrophotometrically at indicated time points following crystal
violet staining. Absorbance values at OD600 are representative of at least three experiments performed in quadruplicate. Statistical significance is
denoted as *P < 0.05 and **P < 0.001. (d-f) CLSM analysis of corresponding 24 h biofilms from same experiment. Images are X-Y orthogonal Z-
stack views of WT (top) and mutant (bottom) GAS strains. Views are representative of ten images within a single experiment. Average vertical
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Table 1 Cell surface hydrophobicity of GAS strains

GAS Strain M-Type Actual Value® Hydrophobicity Index*

MGAS6183 WT M41 926 + 86 100
MGAS6183 Ascll M41 852 £ 22 92
MGAS6183 Ascl1-C - M41 98.0 + 31 105
MGAS5005 WT M1 80.3 £ .89 100
MGAS5005 Ascll M1 63.3 £ 3.2 **79
MGAS6143 WT M28 943 £ .73 100
MGAS6143 Ascll M28 726 £ 62 **78

™ Actual hydrophobicity values were calculated based on hexadecane binding
as described in Methods. Values are representative of three separate
experiments with ten replicates + SD

* Hydrophobicity Index represents the ration of actual hydrophobicity value
for each strain to that of the isogenic wild-type (WT) strain multiplied by 100
** Asterisks denote a statistically significant difference of Asc/T mutants versus
WTs at P < 0.001

compared to wild type L. lactis or L. lactis-containing
pJRS525 vector (P < 0.001). Crystal violet stained wells
were photographed for visual representation of biofilm
formation prior to spectrophotometric assay. Biofilm
thickness and architecture were evaluated by CLSM
(Figure 5e; Additional file 1: Figure S2a-c). The
MG1363::pSL230 transformant produced a substantially
thicker biofilm (14 pm) as compared to both MG1363
WT (6 um) and the vector-only transformant MG1363::
pJRS525 (6 um). The MG1363::pSL230 cells formed
highly aggregated structures, thus, acquiring a pheno-
type consistent with biofilm formation. As shown in
Table 2, the MG1363::pSL230 transformant, expressing
Scll1.41 surface protein, had significantly enhanced cell
surface hydrophobicity (hydrophobicity index of ~137%
vs. 100% WT, P < 0.001) with an actual value of 82.0 +
2.6, when compared to the MG1363 WT (59.7 + 7.2)
and the vector-only MGAS1363::pJRS525 control (56.6
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Figure 5 Scl1 expression in L. lactis promotes biofilm formation. L. /actis was transformed with the plasmid construct pSL230 to express
Scl1.41 surface protein or with pJRS525 vector. (a) PCR analysis of L. lactis transformants using scl1.41-gene-specific primers; lanes: (1) MG1363
wild-type (WT) cells; (2) MG1363:pJRS525 vector-only control; (3) MG1363:pSL230 transformant; (4) control pSL230 plasmid DNA. (b) Scl1.41
expression by western blot analysis of cell-wall extracts prepared from transformed L. lactis and control GAS strains using anti- P176 (rScl1.41)
antibodies; lanes: (1) purified recombinant P176 protein (truncated Scl1.41); (2) MG1363 WT strain; (3) MG1363:pJRS525 vector; (4) MG1363:
pSL230 transformant; (5) MGAS6183 (M41) control. (c) Analysis of Sc1.41 expression by flow cytometry with anti-P176 (rScl1.41) rabbit polyclonal
antibodies on the surface of MGAS1363 WT strain (black trace), MGAS1363:pJRS525 vector-only control (green trace) and MG1363:pSL230
transformant (red trace). (d) Crystal violet staining of 24 h biofilms formed by L. lactis WT strain, MG1363:pJRS525 vector-only control or MG1363:
pSL230 transformant (top) with visual representation of the corresponding wells (bottom). Statistical significance is denoted as **P < 0.001. (e)
CLSM analysis of 24 h biofilms from same experiment shown in (d). Images are X-Y orthogonal Z-stack views representative of ten images within
a single experiment. Average vertical biofilm thickness is indicated in micrometers (top right).

+ 5.5). These data suggest a direct relationship between
Scll expression and cell surface hydrophobicity and
establish their involvement in the microorganism’s abil-
ity to form biofilm in vitro.

Discussion

Group A Streptococcus strains vary because of the vast
number of M-protein types, and this variation is asso-
ciated with varying frequency of isolation and exacerba-
tion of disease [40,41]. The M41-, M28-, M3-, and M1-
type strains selected for the current study represent a sig-
nificant intraspecies diversity among clinical isolates of
GAS. M41 GAS was a major causative agent of

Table 2 Cell surface hydrophobicity of Lactococcus strains

Actual Value®

Lactococcus Strain Hydrophobicity Index*

L. lactis 1363 WT 597 £72 100
L. lactis 1363:pJRS525 566 £ 55 98
L. lactis 1363:pSI230 820 £ 26 137

 Actual hydrophobicity values were calculated based on hexadecane binding
as described in Methods. Values are representative of three separate
experiments with ten replicates + SD

* Hydrophobicity Index represents the ration of actual hydrophobicity value
for each strain to that of the isogenic wild-type (WT) strain multiplied by 100
** Asterisks denote a statistically significant difference of Asc/7 mutants versus
WTs at P < 0.001

superficial skin infections [42-44], and strain MGAS6183,
harboring the Scl1.41 protein, has been studied exten-
sively [19,21,22]. M28-type GAS (strain MGAS6143) has
historically been associated with puerperal fever and cur-
rently is responsible for extensive human infections
world-wide [45]. M1T1 GAS, represented by strain
MGAS5005, is a globally disseminated clone responsible
for both pharyngitis and invasive infections [46-48]. The
M3-type strains of GAS cause a disproportionally large
number of invasive GAS infections that are responsible
for traumatic morbidity and death [49,50].

Initial studies by Lembke et al. that characterized bio-
film formation among various M types of GAS typically
included several strains of the same M type [1,28].
These studies reported a significant strain-to-strain var-
iation in ability to form biofilms within each M type.
Studies that followed compared biofilm formation by
defined isogenic WT and mutant strains to assess the
contribution of specific GAS surface components
responsible for a biofilm phenotype, including M and
M-like proteins, hyaluronic acid capsule, lipoteichoic
acid, and pili [12,13]. In the current study, we have
assessed the role and contribution of the surface protein
Scll in the ability to support biofilm formation by GAS
strains of four distinct M types.
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Recent advances in molecular mega- and pathoge-
nomics has enabled the characterization of numerous
M3-type strains with a single nucleotide resolution
[51,52]. Interestingly, all five M3-type strains MGAS158,
274, 315, 335, and 1313 that were originally used for
scll-gene sequencing [14], plus an additional strain
MGAS2079 (not reported) harbor the same scl1.3 allele
containing a null mutation that would result in secretion
of a truncated Scll.3-protein variant. Here, we demon-
strate that these GAS strains do not form biofilm on an
abiotic surface. Recently, bioinformatic screening of the
sequences of ~250 invasive M3-type strains isolated
globally, has led to the detection of this single nucleo-
tide polymorphism that results in disruption of Scl1.3
protein (Steve Beres and Jim Musser, personal commu-
nication). Lembke et al. reported heterogeneous biofilm
formation among four M3-type GAS strains examined
over a 24, 48, and 72-h period [28]. Biofilm was detected
for one strain at a 48 h time point, on a fibrinogen-
coated surface; however, it is not known whether this
clinical isolate forms biofilm on abiotic surface, whether
it expresses the truncated or full-length Scl1.3 protein,
and whether it produces an unknown fibrinogen-binding
protein, which could augment the attachment and bio-
film formation. Therefore, additional studies are neces-
sary to define the contributions of other biofilm-
formation determinants in M3-type strains.

Inasmuch as, variation in biofilm formation among
GAS isolates of the same M-type has been established,
the molecular basis of this phenotypic variation is not
known. Several GAS surface-associated and secreted
components were shown to contribute to variation in
biofilm [12,13,33]. In addition, transcription regulators,
such as Mga, CovR, and Srv are likely to play substantial
roles in GAS biofilm formation [11,33] due to their
transcriptional regulation of numerous genes. Therefore,
it is logical to assume that the combination of genomic/
proteomic make up, allelic polymorphisms, and tran-
scription regulation all contribute to this phenomenon.
In addition, discrepancies between in vitro data obtained
with laboratory-stored strains and microcolony forma-
tion in vivo likely exist and add yet another unknown to
the complexity of GAS biofilm/microcolony formation
and its role in pathogenesis. Despite this complexity, the
analyses involving isogenic strains of the same genetic
background provide valuable information that allows
assessment of the role and contribution of a given GAS
component to biofilm formation.

The M1 MGAS5005 strain was shown to form biofilm
in vitro and in experimental animals [8,33,53], and the
present study demonstrates a significant role of Scll.1 in
this process. Likewise, the MGAS6183 strain, represent-
ing M41-type isolates often associated with pyoderma,
produced a more robust biofilm biomass under the
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same experimental conditions and Scll.41-deficient
mutant was found to be an important determinant in
this process. Similarly, Scl1.28 protein significantly con-
tributes to a robust biofilm made by the M28-type strain
MGAS6143. However, a recent study reported that
another surface protein, designated AspA, found in
M28-type GAS significantly contributed to biofilm for-
mation [54]. The AaspA isogenic mutant showed 60%
reduction in biofilm formation. The strain MGAS6180,
which they used, expresses the same Scl1.28 variant pre-
sent in the MGAS6143 strain we used; our Scl1.28
mutant showed ~44% reduction in 24 h biofilm. We
propose that several surface proteins contribute to bio-
film formation by M28-type strains including proteins
AspA and Scl1.28, and potentially, proteins F1/Sfbl and
F2 that are also present in these strains [22]. This
redundancy is likely responsible for the observed resi-
dual biofilms produced by the AspA- and Scl1.28-defi-
cient mutants.

The observed heterogeneity in biofilm architecture of
different GAS strains was previously observed by
Lembke et al. [28] and was also documented in the cur-
rent study using FESEM. In addition, here we report the
differences in GAS-cell surface morphology and within
cell-to-cell junctions in biofilms formed by M1- and
M41-type strains. The structural and genetic determina-
tion of these differences is not known since M41 gen-
ome has not been sequenced, but may be associated
with the presence of additional surface proteins, such as
the F2 protein [55] encoded by prtf2 gene found in this
strain [22]. Even more striking was an observed differ-
ence in the amount of the extracellular material asso-
ciated with each strain, referred to as BAEM (bacteria-
associated extracellular matrix). It has been shown that
extracellular matrix, also called glycocalyx, is produced
by biofilm-forming bacteria. DNA, lipids, proteins [33],
polysaccharides and dead cell debris [56] were identified
in this matrix and for gram-positive bacteria, teichoic
acids have also been detected [57,58]. The exopolysac-
charide component of the glycocalyx is detected using
carbohydrate-binding lectins, such as concanavalin A
(ConA) [10]. Both FESEM analysis and ConA staining
detected more BAEM associated with M1 biofilm com-
pared to M41, which produced larger biofilm. These
observations suggest that GAS biofilm is stabilized dif-
ferently by different strains and that higher BAEM pro-
duction does not necessarily pre-determine larger
biofilm mass. Consequently, a combination of biofilm
features rather than biofilm size alone may be more
relevant to pathogenicity of a given GAS strain.

Diminished adherence and biofilm formation could be
associated with changes in cell surface hydrophobicity
[59] of the scl/I mutants. Indeed, the lack of Scll
resulted in both decreased hydrophobicity and the
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ability to form biofilm, albeit in a somewhat dispropor-
tionate manner. A decrease in the hydrophobicity index
by only ~8%, as compared to the wild type-strain, was
measured for the M41Ascll mutant and this modest
decrease was accompanied by a rather large reduction in
biofilm formation capacity after 24 h by 30%. Greater
decrease in cell-surface hydrophobicity was measured
for the M1Ascll (~21%) and M28Ascll (~22%) mutants,
which was accompanied by a significant loss in biofilm
formation after 24 h by both isogenic strains by ~55%
and ~41% (P < 0.001 for each comparison), respectively.
In addition, heterologous expression of Scl.41 in L. lactis
increased hydrophobicity index of this organism to
~137% of the WT level, which was accompanied by sig-
nificant increase in its ability to form biofilm. Similar
observations have been reported for the M and M-like
protein mutants that typically, but not always, exhibit
concurrent loss of both biological features [12]. For
example, isogenic AMrp49 mutant had a non-significant
drop in hydrophobicity (~2%) but significantly lower
biofilm formation after 48 h by ~30%, whereas AEmm1
mutant lost ~78% hydrophobicity and ~44% biofilm for-
mation capacity. In summary: (i) here we report that the
Scll adhesin is also a hydrophobin with varying contri-
bution to the overall surface hydrophobicity among
GAS strains representing different M types and (ii) Scll-
associated surface hydrophobicity is likely to contribute
to Scll-mediated biofilm formation.

To test whether Scll alone could support biofilm for-
mation, we used a heterologous L. lactis strain, which
provides an expression system for membrane-bound
proteins of gram- positive bacteria with LPXTG cell-
wall anchoring motifs [39,60-62], including the group A
streptococcal M6 protein [38,63]. In a recent study by
Maddocks et al. [54] it was shown that heterologous
expression of AspA GAS surface protein was able to
induce a biofilm phenotype in L. lactis MG1363. We
were also able to achieve a gain-of-function derivative of
the L. lactis WT MG1363 strain, (MG1363::pSL230),
displaying an altered phenotype associated with biofilm
formation, as compared to wild-type parental and vec-
tor-only controls. These data support our current model
that Scll protein is an important determinant of GAS
biofilm formation.

As shown by crystal violet staining and CLSM, biofilm
formation by the Scll-negative mutants was compro-
mised during the initial stage of adherence, as well as
microcolony stabilization and maturation. Consequently,
their capacity for biofilm formation as compared to the
respective WT controls was greatly reduced. This com-
parison identifies for the first time that the Scll protein
contributes significantly to biofilm assembly and stabi-
lity. Based on these observations, as well as previous
work by us and others, we propose the following model
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of Scll contribution to GAS tissue microcolony forma-
tion (Figure 6). First, the Scll hydrophobin (current
study) initiates bacterial adhesion to animate surfaces
within the host [59]. Next, the Scll adhesin anchors the
outside edge of growing microcolony in tissue by direct
binding to tissue extracellular matrix components, cellu-
lar fibronectin and laminin [19]. Microcolony develop-
ment is stabilized by Scl1-Scll scaffolding resulting from
Scll’s capacity to form head-to-head dimers [64]
between molecules located on adjacent chains. This
model will be tested experimentally in future studies.

Conclusions

In the present work, using pathogenically differing GAS
strains, we have demonstrated three concepts. First, we
have confirmed previous observations that biofilm for-
mation is an innate property of GAS strains. The M41-
type strain used formed a more robust biofilm when
compared to M28-type strain as well as M1-type strain.
Importantly, the highly invasive M3-type strains devoid
of the surface-associated Scll also lack the ability to
form biofilm. Secondly, the absence of surface-associated
Scll decreases GAS-cell hydrophobicity suggesting that
Scll plays a role on the GAS surface as a hydrophobin.
Thirdly, we have established that the Scll protein is a
significant determinant for GAS biofilm formation. This
concept was further tested by the heterologous expres-
sion of Scll in Lactococcus, an organism found in dairy

Scl1-mediated
hydrophobicityl|

Scl1-Scl1
scaffolding

Scl1-ECM
interactions

Figure 6 Scl1-mediated model of GAS biofilm (not to scale). Scl1
hydrophobin (current study) initiates bacterial adhesion to animate
surfaces [59] within the host (blue field). Scl1 adhesin anchors the
growing microcolony by direct binding to tissue extracellular matrix
(ECM) components, cellular fibronectin and laminin [19], initiating
microcolony formation and anchoring the outside edge of GAS
microcolony in tissue (yellow field). Microcolony scaffolding is
stabilized by the formation of head-to-head dimers between Scl1
molecules on adjacent chains (pink field). Inset shows Scl1-Scl1 head-
to-head dimers formed by rScl1.1 as viewed by electron microscopy
after rotary shadowing [64]. Bar: 50 nm.
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fermentation environments, enabling it to form biofilm.
Altogether, these data underscore the importance of
Scll in biofilm-associated regulation of GAS pathogeni-
city. Recently published work has shown that the recom-
binant Scll binds to the extracellular matrix
components, cellular fibronectin and laminin [19]. Our
current research provides a foundation warranting addi-
tional investigation as to whether direct Scl1-ECM bind-
ing may promote GAS biofilm as a bridging mechanism
within host tissues.

Methods

GAS strains and growth conditions

The wild-type GAS strains M41- MGAS6183, M1-
MGAS5005, and M28-type MGAS6143, as well as their
scll-inactivated isogenic mutants and complemented
M41Ascll mutant have been previously described
[22,27,65]. In addition, a set of the wild-type M3-type
GAS strains MGAS158, MGAS274, MGAS315,
MGAS335, MGAS1313, and MGAS2079 was also used.
GAS cultures were routinely grown on brain-heart infu-
sion agar (BD Biosciences) and in Todd-Hewitt broth
(BD Biosciences) supplemented with 0.2% yeast extract
(THY medium) at 37°C in an atmosphere of 5% CO,-
20% O,. Logarithmic phase cultures harvested at the
optical density (600 nm) of about 0.5 (ODgoy ~0.5) were
used to prepare GAS inocula for biofilm analysis. Col-
ony counts were verified by plating on tryptic soy agar
with 5% sheep’s blood (Remel). Lactococcus lactis subsp.
cremoris strain MG1363 (provided by Dr. Anton Steen)
were grown using M17 broth or agar media (Oxoid)
supplemented with 0.5 M sucrose and 0.5% glucose
(SGM17 media) at 30°C in an atmosphere of 5% CO,-
20% Os.

Heterologous Scl1 expression in Lactococcus lactis
Lactococcus transformation

To obtain electrocompetent cells, 500 ml of SGM17
broth supplemented with 2% glycine was inoculated
with an overnight culture and grown until ODggy ~0.4
was reached. Cells were harvested and washed twice
with ice-cold solution A (0.5 M sucrose, 10% glycerol);
cells were then re-suspended in solution A (1/1000 of
original culture volume) and stored at -80°C [66]. For
transformation, cells were thawed on ice and mixed
with 1 pl of DNA of the Scll.41-expressing plasmid
pSL230 or pJRS525-vector [22]; and transferred to a
cold 1-mm electrode-gap cuvette. Cells were pulsed
with 2.0 kV at 25 pF and 400 Q. Immediately follow-
ing, suspensions were mixed with 1 ml outgrowth
medium (SGM17 broth supplemented with 20 mM
MgCl, and 2 mM CaCl,) and incubated for 2.5 h
before plating on SGM17 agar supplemented with
spectinomycin [62].
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Molecular characterization of transformants

The pSL230 was detected in Lactococcus lactis MG1363
transformants by PCR amplification directly from bac-
terial colonies with sc/1.41-gene specific primers 232up
(5-CTCCACAAAGAGTGATCAGTC) and 232rev (5-
TTAGTTGTTTTCTTTGCGTTT); pSL230 plasmid
DNA was used as a positive control. PCR samples were
analyzed on 1% agarose gel in Tris-acetate-EDTA buffer
and stained with ethidium bromide. Inocula from colo-
nies of L. lactis MG1363, as well as colonies harboring
either pJRS525 vector or pSL230 construct were used in
subsequent experiments.

Western blot analysis

Cell-wall extracts were prepared as previously described
[22]. Briefly, cells grown to ODggoo ~0.4 were harvested,
washed with TES (10 mM Tris, 1 mM EDTA, 25%
Sucrose), re-suspended in TES-LMR (TES containing 1
mg/ml hen egg lysozyme, 0.1 mg/ml mutanolysin, 0.1
mg/ml RNAseA and 1 mM PMSEF) and incubated at 37°
C for 1 h. After centrifugation at 2500 g for 10 min, the
supernatants were precipitated with ice-cold TCA (16%
final) at -20°C overnight. Precipitates were rinsed thor-
oughly with ice-cold acetone and dissolved in 1x sample
buffer at 250 pl per unit ODgoo. Samples were subjected
to 10% SDS-PAGE, transferred to nitrocellulose, and
probed with anti-P176 antiserum followed by goat anti-
rabbit-HRP and detected employing chemiluminescent
substrate (Pierce).

Flow cytometry

Bacterial cells were grown to mid-log phase (ODggg
~0.4), washed once with filtered DPBS containing 1%
FBS and re-suspended in the same buffer. Five million
cells were incubated with 1:400 dilution of primary
reagents, either rabbit pre-bleed (control) or rabbit anti-
P176 antiserum for 30 min on ice, washed with DPBS-
FBS and then incubated with 1:200 dilution of second
reagent donkey anti-rabbit-APC (Jackson ImmunoRe-
search) for 30 min on ice. After a final wash and re-sus-
pension in DPBS-FBS, flow cytometric data were
acquired with FACSCaliber (BD Biosciences) and ana-
lyzed employing FCS Express (De Novo Software).

Analysis of biofilm formation

Crystal violet staining assay

Biofilm formation was tested using tissue culture treated
polystyrene 24-well plates. 1.5 ml of logarithmic-phase
GAS or Lactococcus cultures were seeded without dilu-
tion into wells and incubated at 37°C for GAS and 30°C
for Lactococcus in an atmosphere of 5% CO,-20% O,
according to indicated time points upon which medium
was aspirated. Wells were washed with PBS and 500 pl
of 1% crystal violet was added to each well, and incu-
bated at room temperature for 30 min. Dye was then
aspirated, wells were washed with PBS, and stain was
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solubilized with 500 pl of 100% ethanol. Spectrophoto-
metric readings at ODgg were recorded for each sample
per time point. Samples were analyzed in triplicate in at
least three experiments.

Confocal laser scanning microscopy (CLSM)

To visualize GAS and L. lactis strains by CLSM, bacter-
ial cells were transformed with a GFP-encoding plasmid,
pSB027 [67]. 15-mm glass cover slips were placed into
24-well tissue culture plate wells. Logarithmic-phase
bacterial cultures were inoculated without dilution and
grown for 24 h. Cover slips were rinsed with PBS and
fixed with 3% paraformaldehyde at room temperature
for 30 min. Biofilms present on cover slips were washed
with PBS and mounted onto slides using Prolong Gold
mounting media (Invitrogen). Confocal images were
acquired using a 63x/1.40 Plan-Apochromat objective
and a Zeiss LSM 510 laser scanning confocal on an
Axiolmager Z1 microscope. An orthogonal view of the
Z-stacks was used to display and measure biofilm thick-
ness using Zeiss LSM software. Ten representative
images within a single experiment were used to calcu-
late the average vertical thickness measured in
micrometers.

To visualize extracellular matrix associated with GAS
cells, 24-h biofilm samples were reacted with 100 pg of
tetramethyl rhodamine isothiocyanate- (TRITC)-conju-
gated concanavalin A (TRITC-ConA) (Invitrogen) for 30
min at room temperature in the dark prior to mounting
with Prolong Gold medium. An average of ten micro-
scopic views within each sample was reviewed using the
63x/1.40 objective, as described above.

Field emission scanning electron microscopy (FESEM)

GAS biofilm samples were grown for 24 h on glass
cover slips, washed with PBS, and fixed with 3% paraf-
ormaldehyde for 2 h and post-fixed in osmium tetrox-
ide. Samples were next dehydrated in an ethanol
gradient, dried using hexamethyldisalizane, mounted
onto aluminum stubs and sputter-coated with gold/
palladium. The samples were then imaged on a Hita-
chi S-4800 field emission scanning electron
microscope.

Quantitation of hydrophobicity

A modified hexadecane method [12,37,68] was used to
determine the cell hydrophobicity. Briefly, 5 ml of the
logarithmic-phase GAS or Lactococcus cultures (ODggg
~0.5) were pelleted, washed and re-suspended in 5 ml
of PBS. One ml of hexadecane was added, vortexed for
1 min and incubated for 10 min at 30°C. Mixtures
were then vortexed for an additional 1 min and
allowed to stand for 2 min for phase separation at
room temperature. The absorbance of the lower aqu-
eous phase was read at ODggo and compared against
the PBS control. Actual hydrophobicity value was
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calculated using the following equation: Actual Value
= [1-(A/A,)] x 100, where A is ODggo value after hexa-
decane treatment and A, is ODgg prior to hexadecane
treatment.

Statistical analysis

Statistical significance was determined using a two-tailed
paired Student’s ¢-test. The results were considered sta-
tistically significant with P < 0.05 (*) and P < 0.001 (**).

Additional material

Additional file 1: Figure S1. Biofilm formation by the isogenic wild-
type and scl7-inactivated GAS strains. The figure shows gallery views
and X-Y orthogonal Z-stack views of GFP-expressing GAS biofilms at 24 h
rendered by confocal laser scanning microscopy (CLSM). Figure S2.
Biofilm formation by the wild-type and Scl1-expressing L. lactis
strains. The figure shows gallery views and X-Y orthogonal Z-stack views
of GFP-expressing L. lactis biofilms at 24 h rendered by CLSM.
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