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Abstract

interaction between DENV and the RNAi response.

Background: Mosquito-borne dengue virus (DENV, genus Flavivirus) has emerged as a major threat to global human
health in recent decades, and novel strategies to contain the escalating dengue fever pandemic are urgently needed.
RNA interference (RNAi) induced by exogenous small interfering RNAs (siRNAs) has shown promise for treatment of
flavivirus infections in hosts and prevention of transmission by vectors. However, the impact of RNAi triggered by
authentic virus infection on replication of DENV, or any flavivirus, has received little study. The objectives of the current
study were threefold: first, to assess the utility of Drosophila melanogaster S2 cells for the study of DENV, second to
investigate the impact of multiple enzymes in the RNAi pathway on DENV replication; and third to test for variation in
the response of the four serotypes of DENV to modulation of RNAI.

Results: Three strains from each of the four DENV serotypes showed replication in S2 cells following infection at
multiplicity of infection (MOI) 0.1 and MOI 10; each strain achieved titers > 4.0 log, ;pfu/ml five days after infection at
MOI 10. The four serotypes did not differ in mean titer. S2 cells infected with DENV-1, 2, 3 or 4 produced siRNAs,
indicating that infection triggered an RNAi response. Knockdown of one of the major enzymes in the RNAi pathway,
Dicer-2 (Dcr-2), resulted in a 10 to 100-fold enhancement of replication of all twelve strains of DENV in S2 cells. While
serotypes did not differ in their average response to Dcr-2 knockdown, strains within serotypes showed significant
differences in their sensitivity to Dcr-2 knockdown. Moreover, knockdown of three additional components of the RNAI
pathway, Argonaute 2 (Ago-2), Dcr-1 and Ago-1, also resulted in a significant increase in replication of the two DENV
strains tested, and the magnitude of this increase was similar to that resulting from Dcr-2 knockdown.

Conclusions: These findings indicate that DENV can replicate in Drosophila S2 cells and that the RNAi pathway plays a
role in modulating DENV replication in these cells. S2 cells offer a useful cell culture model for evaluation of the

Background

The genus Flavivirus contains a large number of emerg-
ing, vector-transmitted viruses. Of these, the four sero-
types of dengue virus (DENV-1-4) pose the most
significant threat to global public health. The global pan-
demic of dengue fever has escalated dramatically in
recent decades, accompanied by a sharp increase in the
more severe manifestations of the disease, dengue hem-
orrhagic fever and dengue shock syndrome [1]. Wide-
spread cessation of vector control, increases in mosquito-
breeding sites due to rapid urbanization, and expansion
of global travel have all contributed to DENV emergence
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[2]. Vector control is a costly and often ineffective
response to outbreaks [3]. No antivirals are currently
available for any flavivirus [4], and although promising
DENYV vaccine candidates have recently entered clinical
trials [5], progress in the development of a DENV vaccine
has been slow [6].

In response to this exigency, investigators have pursued
novel methods to prevent and treat dengue disease. In
particular, there is considerable excitement about the
potential to utilize RNA interference (RNAi) (Figure 1) to
treat flavivirus infection in the host and control flavivirus
transmission by the vector [7]. The RNAi pathway is
composed of two major branches (Figure 1). The small
interfering RNA (siRNA) branch is triggered by perfectly
or nearly-perfectly base-paired exogenous dsRNA and
results in RNA degradation, while the cellular microRNA
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Figure 1 Cartoon representing the major enzymes involved in the overlapping branches of the siRNA and the miRNA pathways in Droso-
phila melanogaster. While this cartoon was designed to emphasize the differences between the two pathways, it is important to stress that there is
also extensive interaction and overlap between the two branches (some of which are represented by dotted arrows). This latter point is discussed in
more detail in the text. [siRISC: RNA Induced Silencing Complex associated with siRNA; miRISC: miRNA associated RISC; miRNP: miRNA associated Ribo-
Nucleo Protein complex; Ago: Argonaute (exhibits slicer activity); Dcr: Dicer; Spn-E: Spindle-E protein (involved in assembly of RISC); PIWI (co-purifies
with Dcr-1in Drosophila germline cells); R2D2 (bridges initiator and effector steps of siRNA pathway); ATP: adenosine triphosphate] [11,12,46,51-57].
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branch (miRNA) is triggered by imperfectly base-paired
dsRNA and results in translation repression [8-10].
Although siRNAs and miRNAs are processed via discrete
pathways, specific enzymes may participate in both path-
ways. For example, recent evidence from Drosophila indi-
cates that Dicer (Dcr)-1 is critical for both RNA
degradation and translation repression, while Dcr-2 is
required only for RNA degradation [11,12], and that
Argonaute (Ago)-1 and Ago-2 proteins overlap in their
functions [13].

Kumar et al. [14] have demonstrated that introduction
of exogenous siRNAs can prevent encephalitis caused by
West Nile virus (WNV) and Japanese encephalitis virus
infections, and genetically-modified mosquitoes express-
ing siRNAs are currently being developed to prevent
transmission of DENV [8,15]. However, the impact of
RNAI triggered by endogenous dsRNA produced during

virus infection on DENV replication, or that of any flavi-
virus, has received little study.

To date, only two studies have examined whether virus-
triggered RNAI regulates replication of a flavivirus. Chot-
kowski et al. demonstrated that Drosophila melanogaster
S2 cells infected with WNV produced abundant anti-
WNYV siRNAs and that knockdown of Ago-2 (Figure 1) in
these cells increased the rate but not the overall level of
WNV replication [16]. Moreover, D. melanogaster carry-
ing homozygous null mutations in Ago-2, spindle-E (Spn-
E) or PIWI (Figure 1) supported higher levels of WNV
replication than wild type controls, while flies carrying
homozygous null mutations in Dcr-2 (Figure 1) did not
[16]. Intriguingly, Aedes albopictus mosquito C6/36 cells
infected with WNV did not produce anti-WNV siRNA's,
prompting the authors to speculate that the RNAI
response in this cell line may be weaker than that of Dros-
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ophila cells [16,17]. However Sanchez-Vargas et al.
showed that cells of Aedes aegypti mosquitoes, the major
vector of DENV, produce anti-DENV siRNA following
infection with DENV-2 in culture and iz vivo [18]. More-
over in the latter study knockdown of Dcr-2, Ago-2, or
R2D2 (Figure 1) all significantly enhanced the rate and
level of DENV-2 replication, with knockdown of Dcr-2
having the strongest impact. These findings indicate that
components of both the miRNA and the siRNA branches
are involved in modulating viral replication, and that
complete functional segregation of the two branches is
lacking.

To gain further insight into the ability of RNAi to mod-
ulate DENV infection, in the current study we first inves-
tigated whether S2 cells are susceptible to DENV
infection. S2 cells are an attractive substrate for investiga-
tion of RNAI for three reasons: (i) the RNAi pathway in
Drosophila is well characterized, (ii) RNAi knockdown in
S2 cells can be accomplished simply be overlaying them
with dsRNA or siRNA [19], and (iii) previously validated
siRNA's for knockdown of specific RNAi enzymes are
readily available [20,21]. After finding that DENV repli-
cates in S2 cells, we tested whether S2 cells respond to
DENV infection by production of siRNA. Finally, we
tested the impact of individually knocking down four
enzymes of the RNAi pathway: Dcr-1, Dcr-2, Ago-1 and
Ago-2 on the replication dynamics of DENV.

Methods

Cells

Schneider S2 cells (Drosophila melanogaster embryonic
cells) [22] acquired from the Drosophila Genomics
Resource Center (Bloomington, IN) were maintained at
28°C in conditioned S2 media composed of Schneider's
Drosophila media (Invitrogen, Carlsbad, CA) supple-
mented with 10% Fetal Bovine Serum (FBS, Invitrogen), 1
mM L-glutamine (Invitrogen), and 1x Penicillin-Strepto-
mycin-Fungizone® (PSF, Invitrogen). Media used for
dsRNA/siRNA dilutions (unconditioned S2 media) was
Schneider's Drosophila media supplemented with 1 mM
L-glutamine and 1x PSFE. C6/36 cells (Ae. albopictus epi-
thelial cells) [23] were maintained at 32°C with 5% CO, in
minimal essential media (MEM, Invitrogen) supple-
mented with 10% FBS, 2 mM L-glutamine, 2 mM nones-
sential amino acids (Invitrogen) and 0.05 mg/ml
gentamycin (Invitrogen).

Viruses

To compare the replication of the four serotypes of
DENYV, three isolates of each were selected from a broad
array of geographical locations (Table 1). Each isolate was
passaged in C6/36 cells to generate a stock, designated
C6/36 p1 MOI 0.1, for use in all experiments. C6/36 cells
were infected at MOI 0.1, incubated for two hrs with
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occasional, gentle rocking under the conditions described
above. Five days post infection (pi), supernatant was col-
lected, clarified by centrifugation, stabilized with 0.1
times volume of 10x SPG (2.18 mM sucrose, 60 mM L-
glutamic acid, 38 mM potassium phosphate [monobasic],
72 mM potassium phosphate [dibasic]), and stored at -
80°C. The titer of each C6/36 p1 MOI 0.1 stock was
determined via serial titration in C6/36 cells as described
below.

Quantification of virus titer

Monolayers of C6/36 cells were grown to 80% confluency
in 24-well tissue culture treated plates (BD Falcon, Frank-
lin Lakes, NJ) and infected with serial tenfold dilutions of
each stock virus or cell supernatant. Plates were incu-
bated for two hrs with intermittent gentle rocking at
32°C. Inoculated monolayers were overlaid with 0.8%
methylcellulose in OptiMEM (Invitrogen) supplemented
with 2% FBS, 2 mM L-glutamine and 0.05 mg/ml gentam-
ycin. Focus forming units are referred to as "plaques”
hereafter for consistency with previous literature [24-28];
plaques were detected via immunostaining as previously
described [29]. DENV-1 - 4 were detected using DENV -
1 specific monoclonal antibody 15F3, DENV - 2 hyperim-
mune mouse ascites fluid (HMAF), DENV - 3 specific
hybridoma cell supernatant, and DENV- 4 HMAEF,
respectively; all antibodies were the kind gift of Dr. Ste-
phen S. Whitehead, National Institute of Allergy and
Infectious Disease, National Institutes of Health,
Bethesda, MD.

Infection of S2 cells by DENV

S2 cells were grown to 80% confluency (6.0 log; , cells/well
£ 3.1 log, cells/well) in six-well tissue culture treated
plates (BD Falcon). Triplicate wells were infected with
each of the 12 C6/36 pl MOI 0.1 stocks at a specified
MO, based on titer in C6/36 cells (Table 1) divided by
the number of S2 cells/well, in a total volume of one ml.
Virus was incubated for two hrs at 28°C with occasional,
gentle rocking and washed once with one ml of condi-
tioned S2 media. Thereafter three ml of conditioned S2
media was added to each well. S2 cells were infected at
MOI 10 and incubated for five days at 28°C after which
cell supernatants, designated S2 pl MOI 10, were col-
lected and frozen as described above. 500 pl from each S2
pl MOI 10 replicate were then passaged in fresh S2 cells
as described above. Given the titers on day five for S2 p1
MOI 10 (Figure 2A), 500 pl of supernatants contained a
total of 3.2 - 4.4 log;,plaque forming units (log;,pfu).
Cells were incubated for five days and harvested to yield
S2 p2 MOI 10. S2 cells were infected similarly at MOI 0.1
to yield cell supernatants S2 p1 MOI 0.1, but these super-
natants were not passaged further. Virus titer in all cell
supernatants was determined by serial titration in C6/36
cells as described above.
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Table 1: Passage history and titer (in C6/36 cells) of the 12 dengue virus strains used in this study

Serotype StrainID Countryof  Source Collection Passage History1 Titer (log;, Obtained
isolation Year pfu/ml)
from2
DENV-1 JKT 85-1415 Indonesia Human serum 1985 C6/36 p2 7.2 WRCEVA
DENV-1 1335 TVP Sri Lanka Human serum 1981 Inoculated mosquito-1X, 7.2 WRCEVA
C6/36 p2
DENV-1 AusHT15 Australia Human serum 1983 C6/36 p2 7.5 WRCEVA
DENV-2 Tonga/1974 Tonga Human serum 1974 Mosquito-1X, C6/36 p5 8.0 NIAID
DENV-2 DOO0-0372 Thailand Human serum 1988 Previous history unknown, 8.0 NIAID
C6/36 p8
DENV-2 NGC Proto New Guinea Human serum 1944 Inoculated monkey- 1X 75 NIAID
DENV-3 89 SriLan Sri Lanka Human serum 1989 C6/36 p2 76 UNC
1: D2783
DENV-3 89 SriLan 2: D1306  Sri Lanka Human serum 1983 C6/36 p2 76 UNC
DENV-3 Sleman/78 Indonesia Human serum 1978 Mosquito-1X, Vero p2, C6/ 7.2 NIAID
(Java) 36 p4
DENV-4 1228 TVP Indonesia Human serum 1978 Mosquito p2, C6/36 p2 7.1 WRCEVA
DENV-4 779157 Taiwan Human serum 1988 C6/36 p5 74 WRCEVA
DENV-4 BeH 403714 Brazil Human serum 1982 C6/36 p3 7.2 WRCEVA

Tcell type for passage followed by total number of passages (p) in that cell type
2WRCEVA: provided by Dr. Robert Tesh at the World Reference Center of Emerging Viruses and Arboviruses at the University of Texas at
Galveston (UTMB); NIAID: provided by Dr. Stephen Whitehead, NIAID, NIH; UNC: provided by Dr. Aravinda de Silva, Department of Microbiology

and Immunology, University of North Carolina.

DENV replication kinetics in S2 cells

Triplicate wells of S2 cells in six-well plates were infected
with the C6/36 p1 MOI 0.1 stock of DENV-4 Taiwan at
MOI 0.1. Two hrs post infection the inoculum was
removed, cells were washed once with conditioned S2
media, fresh media was added and 1 ml cell supernatant
was collected from each well 2, 24, 48, 72, 96 and 120 hrs
pi and frozen as described above. Fresh media was added
to each well for every sampling point so that the total vol-
ume of media remained constant.

Detection of anti-DENV siRNAs in S2 cells
Northern blots were used to detect anti-DENV siRNAs in
infected S2 cells. To assess the production of siRNA's in

response to infection, one set of S2 cells at 80% conflu-
ency were infected with DENV-1 JKT, DENV-2 Tonga,

DENV-3 Sleman and DENV-4 Taiwan at MOI 0.1 as
described above. To assess the impact of knocking down
components of the RNAi pathway on siRNA production,
a second, concurrent set of S2 cells were treated with
dsRNA to Dcr-1 or Dcr-2 and then infected with DENV-1
JKT, DENV-2 Tonga, DENV-3 Sleman and DENV-4 Tai-
wan as described below. Three days pi small RNAs (15 -
100 nucleotides) were isolated using mirPremier’
microRNA Isolation kit (Sigma Aldrich, St. Louis, MO).
RNA was quantified, separated on 15% urea polyacrylam-
ide gel using Tris Borate EDTA and transferred to
Hybond™-N+ nylon membrane (Amersham Biosciences,
Pittsburgh, PA). Blots were probed with approximately
400 nucleotide long digoxigenin (DIG) labeled positive-
sense probes complementary to nucleotides 10271 -
10735 of the 3' untranslated region (UTR) of DENV-1
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Figure 2 Replication of DENV in Drosophila melanogaster S2 cells. A: Titer of 12 strains of DENV 5 days post infection following passage 1 (52 p1
MOI 10, solid bars) and passage 2 (52 p2 MOI 10, open bars) in Drosophila melanogaster S2 cells. In passage 1, cells were infected with each virus strain
at MOI 10. In passage 2, cells were infected with 500 ul of cell supernatant from passage 1; B: Titer of 12 strains of DENV 5 days pi following infection
of 52 cells at MOI 0.1 (S2 p1 MOI 0.1); C: Replication kinetics of DENV-4 Taiwan at MOI 0.1 in Drosophila melanogaster S2 cells.

Western Pacific, 10270 - 10713 of the 3'UTR of DENV-2
Tonga, 10243 - 10686 of the 3'UTR of DENV-3 Sleman
and 10240 - 10645 of the 3'UTR of DENV-4 Taiwan. The
justification for targeting the probe to the 3' UTR is based
on a recent report that anti-West Nile virus siRNA's clus-
ter, among other genome locations, in the 3' UTR [30].
Blots were processed according to protocol defined by
the manufacturer for DIG probes (Roche Diagonistics,
Indianapolis, IN).

Knockdown of enzymes in the RNAi pathway

Four components of the RNAi pathway, Ago-1, Ago-2,
Dcr-1 and Dcr-2 (Figure 1) were separately depleted
using 500 base-pair (bp) dsRNA targeting nucleotides
140 - 641 of Dcr-1, 763 - 1264 of Dcr-2, 1151 - 1651 of
Ago-1 mRNA from D. melanogaster [Genbank:
NM 079729, NM_079054, DQ398918 respectively] or a
previously validated 22 bp siRNA against D. melanogaster
Ago-2 [20]. A dsRNA targeting nucleotides 72 - 573 of

pGEX-2T cloning vector (GE Healthcare Life Sciences,
Piscataway, NJ) was used as a control for dsRNA knock-
down while a Renilla luciferase siRNA (Ambion, Austin,
TX) targeting luciferase was used as control for siRNA
knockdown. To generate dsRNA, D. melanogaster DNA
was isolated using the Qiagen DNeasy Blood & Tissue Kit
(Qiagen, Valencia, CA, USA) and amplified using primers
specific to D. melanogaster Ago-1, Ago-2, Dcr-1 and Dcr-
2 (Table 2). Primers contained a T7 promoter sequence at
the 5' end to allow for transcription using MEGAscript’
RNAI Kit (Ambion) according to manufacturer's instruc-
tion. Transcription of siRNA was performed using
Silencer’ siRNA construction kit (Ambion). 6.0 log;, + 3.0

log,, S2 cells were plated on six-well plates and incubated
for 20 minutes at 28°C. dsRNA/siRNA were diluted in
one ml of unconditioned S2 media to 100 nM, applied to
the S2 cells, and incubated at 28°C for 16 hrs. Thereafter
three ml of conditioned S2 media was added and cells
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were incubated as described above [31]. Cells were re-fed
with dsRNA/siRNA three days following initial treat-
ment.

Verification of Knockdown

To assess the efficacy of knockdown, seven wells of S2
cells were treated with each of the dsRNA/siRNA's
described above. At two hrs, 24 hrs, and daily thereafter
through day six post-treatment, cells from one well corre-
sponding to each dsRNA/siRNA treatment were lysed
using RIPA buffer (Thermo Scientific, Waltham, MA)
and centrifuged for 25 minutes at 10,000 rpm at 4°C.
Supernatants were stored at -80°C in order to analyze all
samples concurrently. Total protein in each sample was
quantified using BCA Protein Assay kit (Pierce, Rockford,
IL). Supernatants were separated on a polyacrylamide gel
and transferred to Immobilon polyvinylidene fluoride
transfer membranes (Millipore, Billerica, MA). Mem-
branes were blocked with bovine serum albumin and
incubated with D. melanogaster specific anti-Dcr-1 (Cat-
alog number: ab52680), anti-Dcr-2 (Catalog number:
ab4732), anti-Ago-1 (Catalog number: ab5070), or anti-
Ago-2 antibody (Catalog number: ab5072) (Abcam, Cam-
bridge, MA) as appropriate. Protein bands were visual-
ized with secondary anti-rabbit or anti-mouse HRP-
conjugated IgG (Kirkegaard and Perry Laboratories,
Gaithersburg, MD) using the ECL system (GE Health-
care).

Toxicity assay
To assess whether knockdown of Dcr-1, Dcr-2, Ago-1 or
Ago-2 affected the viability of S2 cells, a resazurin-based
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viability assay was performed. S2 cells were propagated to
80% confluency in five 96 well tissue culture treated
plates (Costar, Lowell, MA). Each treatment was per-
formed in triplicate wells on each plate as follows. Media
was removed and designated dsRNA/siRNA's were added
at a concentration of 100 nM. Two controls were included
in the assay: treatment with 100 pl of conditioned S2
media was used to measure overall cell viability and treat-
ment with 8% DMSO was used to measure the impact of
a compound known to be toxic. Plates were incubated for
one to five days; on each day 100 pl of resazurin from the
In Vitro Toxicology Assay Kit (Sigma-Aldrich, St. Louis,
MO) was added all the wells of one plate. The plate was
then incubated two hrs and absorbance was read on a
plate reader (TiterTek, Huntsville, AL) at 600 nm. The
proportion of viable cells was determined by dividing the
absorbance of each well on the plate by the average absor-
bance of the media-treated wells.

DENYV infection following knockdown of Dcr-2

For each of the C6/36 p1 MOI 0.1 stocks of 12 DENV
strains (Table 1), triplicate wells of S2 cells in six-well
plates were treated with dsRNA targeting Dcr-2 or with
control dsRNA as described above. Sixteen hrs post treat-
ment wells were infected with the designated virus strain
at MOI 10 and incubated at 28°C. Based on the results of
knockdown verification (below), infected cells were
replenished with dsRNA 72 hrs pi. Cell supernatants were
carefully removed and stored in individual tubes at room
temperature, leaving one ml residual supernatant per
well. 100 nM dsRNA was added to each well and incu-
bated for 30 minutes at 28°C. Each cell supernatant that

Table 2: Primers used for amplification of targets for dsRNA generation

Primer Name Primer sequencel Protein
Dicer-1-Forward CTAATACGACTCACTATAGGGCGGAACACGATTATTTGCCTGGG Dicer-1
Dicer-1 Reverse CTAATACGACTCACTATAGGGCGCAACACGGTGACAATATCACTG Dicer-1
Dicer-2 Forward CTAATACGACTCACTATAGGGAAGAGCAAGTGCTCACGGTTACAAG Dicer-2
Dicer-2 Reverse CTAATACGACTCACTATAGGGGCGTAGACTGGATGTAGTTGAGCA Dicer-2

Argonaute-2 Forward

CTAATACGACTCACTATAGGGCATCAACTATCTGGACCTTGACCTG

Argonaute-2

Argonaute-2 Reverse

CTAATACGACTCACTATAGGGAAACAACCTCCACGCACTGCATTG

Argonaute-2

dsRNAControl-Forward

CTAATACGACTCACTATAGGGCAGGTCGTAAATCACTGCATAATTC

Control

dsRNAControl-Reverse

CTAATACGACTCACTATAGGGCACCGTATCTAATATCCAAAACCG

Control

15'to 3' sequence
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was removed was added back to its original well contain-
ing one ml of residual media. Cell supernatants were har-
vested 120 hrs pi and virus titer was determined as
described above.

DENV replication kinetics following knockdown of Dcr-1,
Dcr-2, Ago-1 or Ago-2

To monitor the impact of RNAi knockdown on DENV
replication kinetics, sets of six wells of S2 cells in six-well
plates were treated with one dsRNA/siRNA targeting
Dcr-1, Dcr-2, Ago-1, Ago-2 or one control dsRNA/
siRNA, as described above. 16 hrs post treatment, three
wells treated with each enzyme were infected with
DENV-4 Taiwan and three with DENV-2 Tonga at MOI
10. One ml cell supernatant was collected from each well
2, 24, 48, 72, 96 and 120 hrs pi and frozen as described
above; one ml of fresh media was then added to each well
so that the total volume of media remained constant. All
wells were re-fed dsRNA/siRNA at 72 hrs pi as described
above.

Statistical Analysis
All statistical analyses were carried out using Statview
(SAS Institute, Cary, NC).

Results

Infection of S2 cells by DENV

Every DENV strain achieved a titer > 7.0 log;,pfu/ml in
C6/36 cells five days post-infection at MOI 0.1 (Table 1).
Five days after infection of S2 cells at MOI 10, the 12
DENV strains reached titers ranging from 4.1 to 5.9 log,,
pfu/ml (Figure 2A). There was a significant positive cor-
relation between titer of the 12 DENV strains in C6/36
(C6/36 p1 MOI 0.1) with the titer of those strains in S2
(S2 p1 MOI 10) (r = 0.62, P = 0.03). There was no signifi-
cant difference among the four DENV serotypes in titer
following this first passage in S2 cells (ANOVA, df = 3, F
=2.54, P = 0.13), and titer did not change significantly fol-
lowing a second passage in S2 cells, S2 p2 MOI 10 (Figure
2A; paired t-test, df = 11, P = 0.66).

To confirm that the titers observed in S2 cells resulted
from virus replication rather than carry-over of the inoc-
ulum, S2 cells were also infected with all 12 strains of
DENYV at MOI 0.1; five days pi all 12 strains had achieved
titers ranging from 2.9 to 4.2 log;, pfu/ml (Figure 2B).
There was no significant correlation between titers of the
12 strains following infection of S2 cells at MOI 0.1 (S2 p1
MOI 0.1) and MOI 10 (S2 p1 MOI 10) (r = - 0.55, P =
0.06) or between titers of the 12 strains following infec-
tion of S2 cells at MOI 0.1 (S2 p1 MOI 0.1) and C6/36
cells at MOI 0.1 (C6/36 p1l MOI10.1) (r = - 0.19, P = 0.54).
Additionally the replication kinetics of one strain, DENV-
4 Taiwan, were followed daily for five days (Figure 2C);
there was significant difference in virus titer among days
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post-infection (repeated measures ANOVA, df = 5, F =
113.09, P < 0.0001); specifically, a Tukey-Kramer post-
hoc test revealed that virus titer increased between two
hrs and 24 hrs (P < 0.5) and leveled off thereafter at
approximately 3.0 log, pfu/ml.

Detection of anti-DENV siRNA in S2 cells

Virus-derived small RNAs can range from 18 - 30 nucle-
otides depending on secondary structure of the viral
genome and processing by RNA processing enzymes
[16,32]. Virus derived small RNAs were detected in S2
cells three days after infection with DENV-1 TVP, DENV-
2 Tonga, DENV-3 Sleman and DENV-4 Taiwan by North-
ern blotting (Figure 3) using positive-sense probes
designed to detect negative sense siRNAs that targeted
the positive sense genome of each respective serotype.
No virus-derived siRNA's were detected in uninfected
control cells. Knockdown of Dcr-1 or Dcr-2 resulted in a
substantial decrease in the production of virus-derived
siRNA's in S2 cells infected with each of the four isolates
above (Figure 3). The most extreme effect was apparent
for Dcr-2 knockdown followed by infection with DENV-4
Taiwan; in this treatment no virus-derived siRNA's were
detected at all (Figure 3D, compare lane 3 to lane 1).

Toxicity in S2 cells following knockdown of Dcr-1, Dcr-2,
Ago-1 or Ago-2

Knockdown of each of the four components of the RNAi
pathway had no significant effect on cell viability (Figure
4). A two-factor ANOVA testing the effect of treatment
and day post-infection on absorbance revealed a signifi-
cant effect of treatment (df = 5, F = 88.0, P < 0.001) but
not day (df = 4, F = 0.2, P = 0.91). However a Tukey-
Kramer post-hoc test revealed that only the DMSO-
treated cells, which were expected to show reduced via-
bility, differed significantly from control cells (P < 0.05),
while none of the dsRNA/siRNA treated cells differed
from controls (P > 0.05).

DENV replication following knockdown of RNAi genes

To test whether the RNAi response has an effect on
DENV replication in S2 cells, four components of the
RNAi pathway (Dcr-1, Dcr-2, Ago-1 and Ago-2) were
individually depleted via knockdown with an appropriate
dsRNA or siRNA. The efficacy of depletion of each
enzyme was confirmed using Western blot analysis (Fig-
ure 5). Dcr-1 levels were depleted for six days following
treatment, but unlike the other three treatments there
were no days on which Dcr-1 expression was undetect-
able. Dcr-2 expression was undetectable until day three
post-treatment and showed steady recuperation thereaf-
ter. Ago-1 expression was undetectable through day five
post-treatment. Ago-2 expression was undetectable until
day three post-treatment and rebounded on day four. To
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1 2 3 4

Figure 3 Detection of siRNAs in S2 cells infected with specified DENV strain (Lane 1), specified DENV strain following Dcr-1 knockdown
(Lane 2), specified DENV strain following Dcr-2 knockdown (Lane 3), or uninfected cells (Lane 4) by Northern blot probed with DENV 3'UTR
specific probe. A- DENV-1 TVP. B- DENV-2 Tonga. C- DENV-3 Sleman. D- DENV-4 Taiwan. E - H: Total RNA loaded for A, B, Cand D, stained with ethidium
bromide, as an equal loading control.

/
prevent recovery of expression, all infected cell knock- As shown in Figure 6, all 12 DENV strains tested
downs were re-fed dsSRNA/siRNA on day three post ini- achieved significantly higher titers (usually a 100-fold
tial dSRNA/siRNA treatment. increase) in cells depleted of Dcr-2 relative to control cells

(paired t-test, df = 11, P < 0.0001). The 12 DENYV strains
attained similar titers in cells treated with a control
dsRNA treatment as compared to untreated cells. More-

% - over, there was no significant difference among serotypes
® 05 in the impact of Dcr-2 knockdown, measured as the dif-
E] ference in titer for a particular replicate virus in knock-
2 00 down cells versus control cells (ANOVA, df = 3, F = 1.04,
:% P = 0.41). In contrast, variation in the impact of RNAi
2 DD knockdown on the three DENV strains within serotypes
'§ 6 was detected using factorial ANOVAs for each serotype;
2 when significant differences were detected, a Tukey-
& Kramer post-hoc test was used to determine which

Cells DMSO Ago-1 Ago-2 Der-1  Der-2 strains showed significant differences in response to

| [J24nr [ as8hr 5 720r [J96hr ] 120hr ‘ knockdown. DENV-1 strains showed significant variation
in response to Dcr-2 knockdown (df = 3, F = 9.81, P =
Figure 4 Proportion of viable cells (absorbance of individual 0.048): strain TVP showed a signiﬁcantly greater increase

wells divided by mean absorbance of control wells) in cells treat- in titer when Dcr-2 was knocked down than strains JKT
ed with media only (cells), 8% DMSO, or dsRNA/siRNAs targeting

Ago-1, Ago-2, Dcr-1 or Dcr-2. Only DMSO significantly affected cell and AusH; the latter two dl‘d not‘ differ from ea‘Ch.o'ther.
viability. DENV-2 and DENV-3 strains did not show significant
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within-serotype variation (DENV-2: df = 2, F = 2.24, P =
0.19; DENV-3 df = 2, F = 4.82 =, P = 0.06). DENV-4
strains also showed significant variation to Dcr-2 knock-
down (df = 3, F = 9.8, P = 0.048): all three strains tested
differed significantly from each other.

Subsequent analyses focused on two DENV strains that
had shown the smallest (DENV-2 Tonga) and an interme-
diate (DENV-4 Taiwan) response to Dcr-2 knockdown
(Figure 6). A multistep growth curve revealed that knock-
down of Dcr-2 resulted in enhancement of replication of
both strains within 48 hrs pi, and by 72 hrs pi both strains
had achieved a titer 10 - 100 - fold higher in Dcr-2
depleted cells than control cells (Figures 7 and 8). A simi-
lar pattern was observed following knockdown of Dcr-1,
Ago-1 and Ago-2 (Figures 7 and 8); titers of both DENV
strains were significantly higher in cells depleted of each
enzyme than control cells 96 hrs pi (unpaired t-tests; df =
4, P < 0.02 for all comparisons).

Discussion
The objectives of this study were threefold: first, to moni-
tor the pattern of replication of DENV in S2 cells in order

to assess the utility of S2's for the study of DENV, second
to investigate the impact of RNAi on DENV replication;
and third to test whether the impact of RNAi differs
among the four serotypes of DENV.

Five lines of evidence demonstrate that all four DENV
serotypes replicated in S2 cells. First, infection of S2 cells
with DENV at an MOI 10 and MOI 0.1 resulted in titers >
4.1 and > 2.9 log, pfu/ml, respectively, even though the
input virus inoculum was thoroughly washed away two
hours post-infection. Second, titers attained by DENV
following a second passage in S2 cells (4.2 - 5.9 log;,pfu/
ml) were substantially larger than the total amount of
virus used to initiate infection (3.2 - 4.4 log;,pfu). Third,
daily monitoring of the titer of DENV-4 Taiwan in S2
cells showed that titers increased significantly following
one day of infection. Fourth, siRNAs were detected in S2
cells after infection with each of the four serotypes of
DENY, indicating that DENV infects and replicates in S2
cells. Finally, a significant increase in titer was observed
for all DENV strains when Dcr-2 was knocked down
using dsRNAs. Such change in titer following down regu-
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Figure 6 Titer of 12 strains of DENV five days post infection in S2 cells depleted of Dcr-2 (red bars) or control cells (blue bars).

lation of an antiviral response is indicative of active repli-
cation of DENV.

There was no evidence of change in titer of DENV
between a first and second passage on S2 cells. However
future studies to monitor adaptation after extensive serial
passage in S2 cells are planned. Sessions et al. [33]
reported that DENV-2 NGC attained a peak titer of 3.0
log,opfu/ml in S2 derived D.Mel-2 cells without prior
adaptation. Following serial passages for four months in
D.Mel-2 cells, DENV-2 NGC titer increased to 5.0
log,opfu/ml. Consistent with these findings, in the cur-
rent study peak titers of DENV in S2 cells infected at
MOI 0.1 were approximately 3.0 log;,pfu/ml [33]. How-
ever peak titers following infection at MOI 10 were at
least an order of magnitude higher. Like other RNA
viruses, DENV exists as a quasispecies [34-37], and it is
possible that variants that were better able to infect S2
cells occurred in the larger virus population used to infect

at MOI 10 (7.0 log,,pfu) relative to MOI 0.1 (5.0 log,; ,pfu).
This hypothesis is supported by the finding that viruses
that were taken from the MOI 10 infection and passaged
again onto S2 cells achieved a similar titer to the S2 pl
MOI 10 infection, even though their founding population
was only 3.2 - 4.4 log,,pfu.

Using DENV adapted to S2 cells, Sessions et al. demon-
strated the utility of these cells for investigation of dengue
virus host factors (DVHF) [33]. They identified 116
DVHF using a genome-wide RNAi screen on D.Mel-2
cells. Findings from the current study indicate that S2
cells can also support replication of unadapted DENYV,
thereby offering additional opportunities to leverage the
extraordinary depth of knowledge and plethora of tools in
Drosophila genetics for the study of DENV [38].

The titer of each DENV strain in S2 cells was substan-
tially lower than its titer in C6/36 cells, which are derived
from Ae. albopictus, a natural DENV vector [39,40]. At
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Figure 7 Replication kinetics of DENV-2 Tonga in S2 cells depleted of specified components of the RNAi pathway.

first glance, this result seems to suggest S2 cells may not
be a useful model to study DENV-vector interactions.
However, it has been previously demonstrated that C6/36
cells exhibit a weak, and possibly incomplete, RNAi
response [16,17], which may contribute to their ability to
support high levels of DENV replication. In contrast,
both live mosquitoes [41,42] and S2 cells [21,43] marshal
a vigorous RNAI response to infection with flaviviruses
and other RNA viruses that is capable of limiting viral
replication [43-45]. Thus for some areas of study, particu-
larly RNAi-virus interactions, S2 cells may be preferable
to C6/36 cells as an in vitro model.

In this study S2 cells infected with DENV-1, 2, 3 or 4
produced siRNAs targeting the DENV genome, as has
been reported previously for a variety of viruses, includ-
ing DENYV, in multiple types of insect cells both in culture
and in vivo [41,43]. In a notable exception to this rule, C6/
36 cells failed to produce siRNAs when infected with
WNYV [16]. The production of anti-DENV siRNA pro-
vides confirmation that DENV is targeted by an active
RNAI response in S2 cells. Further, a decrease in virus

derived small RNAs was observed when Dcr-2 or Dcr-1
was knocked down prior to infection. This finding sup-
ports the conclusion that enhancement of DENV replica-
tion following knockdown of components of RNAIi
(discussed below) resulted from a relaxation of RNAI
control. Although the current study was designed to
detect only siRNAs complementary to the positive sense
3'UTR, it would be very useful in the future to character-
ize the entire suite of siRNAs produced in response to
DENYV infection.

In Drosophila, virus derived small RNAs can be gener-
ated by Dcr-2 or Dcr-1 [11] and subsequently processed
by Ago-1 or Ago-2-RISC (RNA Induced Silencing Com-
plex) [46] (Figure 1). Knockdown of Dcr-2 enhanced the
replication of each of 12 strains of DENV, and knock-
down of Agol, Ago-2 or Dcr-1 enhanced replication of
the two DENYV strains tested. None of the four knock-
downs affected cell viability, supporting the conclusion
that the observed augmentation of DENV replication was
due to knockdown of the targeted enzymes rather than
off-target effects. There was no difference in the impact
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Figure 8 Replication kinetics of DENV-4 Taiwan in S2 cells depleted of specified components of the RNAi pathway.

of the four enzymes on DENV replication dynamics, and
there was no difference among serotypes in their average
response to the knockdown of Dcr-2. Intriguingly, strains
within DENV-1 and DENV-4 serotypes showed signifi-
cant variation in their response to Dcr-2 knockdown.
These data suggest that DENV strains may vary in their
sensitivity to RNAI, potentially contributing to differ-
ences in viral replication in the vector with downstream
effects on transmission. Although the current study was
not designed to draw inferences about response of spe-
cific DENV genotypes to RNAi or to contrast isolates
associated with different grades of disease severity, the S2
system could be used to address these questions in the
future.

The impact of Dcr-2 and Ago-2 knockdowns in this
study are generally consistent with the results of Sanchez-
Vargas et al. [18], who found that knockdown of either
enzyme in Ae. aegypti in vivo enhanced replication of
DENV-2, although the impact of Ago-2 knockdown was
delayed in time relative to Dcr-2. However our results in
S2 cells differ from the finding of Chotkowski et al. that

loss of Dcr-2 expression in S2 cells did not affect WNV
replication [16]. This disparity may reflect methodologi-
cal differences, particularly differences in expression of
RNAi-pathway proteins between S2 cell lines, or differ-
ences between WNV and DENV in sensitivity to RNAi,
and/or differences between the two viruses in their ten-
dency to elicit RNAI.

Other studies have also revealed variation among
viruses in their sensitivity to loss of Dcr-2 function. Dros-
ophila carrying a homozygous null mutation for Dcr-2
were hypersusceptible to infection by Drosophila C virus
(DCV) and cricket paralysis virus [47], and loss of func-
tion of Dcr-2 in Drosophila also resulted in increased
infection by Flock House virus, DCV and Sindbis virus
[48]. In contrast, homozygous knockout of Dcr-2 in Dros-
ophila had no impact on susceptibility to Drosophila X
virus (DXV) [49]. In the studies that detected no impact
of Dcr-2 function on replication of WNV or DCYV,
respectively [16,49], the authors suggested that synthesis
of siRNA by Dcr-1 may counteract the effect of loss of
Dcr-2.
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In the current study, knockdown of either Dcr-1 or
Ago-1 enhanced DENV replication to a degree similar to
each other and to Dcr-2 and Ago-2. These findings indi-
cate that the proteins are functionally linked between the
miRNA and siRNA braches of the RNAi pathway and
thus impact viral replication. These findings are consis-
tent with the report that Drosophila carrying a homozy-
gous null mutation for Aubergine (an Ago-1 homolog)
exhibit increased susceptibility to DXV infection [49] and
support the idea that Dcr-1 and Ago-1 also regulate virus
replication. Such regulation likely stems from the activity
of Dcr-1 and Ago-1 in the siRNA branch of the RNAi
pathway. Evidence of such activity includes the require-
ment of Dcr-1 for mRNA degradation [11], the observa-
tion of similar transcript profiles in cells depleted of Ago-
1 and Ago-2 [50], and the weak association of Ago-1 with
siRNAs in cells depleted of Ago-2 [46]. From this per-
spective, it would be particularly interesting in future
studies to assess the impact of concurrent knockdown of
Dcr-1 and Dcr-2 or Ago-1 and Ago-2 on the dynamics of
DENYV replication.

Conclusion

Our results indicate that RNA interference regulates
DENYV replication in Drosophila S2 cells, and that DENV
strains, but not serotypes, vary in their sensitivity to such
regulation. S2 cells offer a useful model for the study of
DENV-RNAI interactions.
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