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Abstract
Background To investigate the differences in bacterial and fungal community structure and diversity in conjunctival 
tissue of healthy and diabetic mice.

Methods RNA-seq assays and high-throughput sequencing of bacterial 16 S rDNA and fungal internal transcribed 
spacer (ITS) gene sequences were used to identify differentially expressed host genes and fungal composition 
profiles in conjunctival tissues of diabetic BKS-db/db mice and BKS (control) mice. Functional enrichment analysis of 
differentially expressed genes and the correlation between the relative abundance of bacterial and fungal taxa in the 
intestinal mucosa were also performed.

Results Totally, 449 differential up-regulated genes and 1,006 down-regulated genes were identified in the 
conjunctival tissues of diabetic mice. The differentially expressed genes were mainly enriched in metabolism-
related functions and pathways. A decrease in conjunctival bacterial species diversity and abundance in diabetic 
mice compared to control mice. In contrast, fungal species richness and diversity were not affected by diabetes. 
The microbial colonies were mainly associated with cellular process pathways regulating carbohydrate and lipid 
metabolism, as well as cell growth and death. Additionally, some interactions between bacteria and fungi at different 
taxonomic levels were also observed.

Conclusion The present study revealed significant differences in the abundance and composition of bacterial and 
fungal communities in the conjunctival tissue of diabetic mice compared to control mice. The study also highlighted 
interactions between bacteria and fungi at different taxonomic levels. These findings may have implications for the 
diagnosis and treatment of diabetes.
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Introduction
Type 2 diabetes mellitus (T2DM) is the most common 
type of diabetes and is characterized by insulin resis-
tance, insulin deficiency, or β-cell failure [1, 2]. The onset 
and progression of T2DM are mainly related to factors 
such as obesity, family history, and diet, and its preva-
lence is increasing globally [3, 4]. Concurrently, dry eye 
and other diseases of the ocular surface caused by diabe-
tes are becoming increasingly prevalent in clinical prac-
tice [5]. Ocular surface diseases refer to disorders that 
impair the normal structure and function of the ocular 
surface, such as the cornea and conjunctiva [6]. Epidemi-
ological data suggest that the rising number of diabetes 
cases has led to an increase in the number and severity of 
ocular surface diseases. As patients age, diabetes is grad-
ually becoming one of the most common risk factors for 
ocular diseases [7]. Diabetes mellitus is characterized by 
hyperglycemia, and numerous studies have shown that it 
makes patients more susceptible to infectious symptoms 
throughout the body, including ocular infections of the 
eyelids, conjunctiva, and cornea [8]. This further leads to 
complications after ocular surgery [9] and a poorer visual 
prognosis [10]. The increase in glucose levels in the skin, 
urine, mucosa, and tears disrupts the original balance 
of this tissue and provides favorable conditions for the 
growth of microorganisms in this area [11]. Conjunctival 
lesions have been reported in 86% of diabetic patients, 
with varying symptoms and severity [12]. The conjunc-
tival flora begins to develop shortly after birth, and its 
composition depends on age, season, environmental 
conditions, immune status, and general hygiene. Some 
members of the putrefying conjunctival flora act patho-
genically when immune function is impaired, which can 
lead to serious infections [13].

Under normal circumstances, the ocular surface is 
constantly exposed to the external environment and is 
a key component of the body’s defense system [14, 15]. 
Dysfunctions of the ocular surface ecosystem have been 
linked to various ocular infections. Common bacterial 
isolates associated with ocular infections include Staphy-
lococcus aureus [16], coagulase-negative staphylococci 
[17], Streptococcus pneumoniae [18], and Pseudomonas 
aeruginosa [19]. Previous studies mainly relied on bacte-
rial culture methods for strain identification. However, 
these methods have limitations as they can only identify 
specific bacterial species, and various factors such as the 
in vitro environment and incubation time during bacte-
rial culture can impact bacterial growth [20, 21]. The 
advent of next-generation sequencing has enabled bet-
ter characterization of microbial communities through 
DNA-based assays (i.e., microbiome), overcoming the 
limitations of traditional culture techniques [22]. Several 
studies have identified a low diversity of microbial genera 

on the ocular surface, further supporting this notion [23, 
24].

Although many studies focus on analyzing the abun-
dance and diversity of bacteria in the eye, it should be 
noted that bacteria are not the only microorganisms that 
colonize the ocular surface. Fungi and viruses also con-
tribute to the ocular surface microbiome, with bacterial 
reads accounting for approximately 98% of identified 
microbiome sequences and the remaining 2% consist-
ing of fungi and viruses [25, 26]. Among the fungi, a core 
microbiome of four genera has been identified, includ-
ing Aspergillus, Coccus, Malassezia, and Erythrobacter 
Shiba and Simidu [27]. Previous studies using culture 
methods have reported fungal positivity rates in normal 
conjunctival sacs ranging from 3 to 28%, with up to 87% 
of conjunctival sac swabs failing to culture any micro-
organisms [28, 29]. With the development of second-
generation high-throughput sequencing tools, it is now 
possible to directly sequence and classify samples with-
out culture. The RNA-seq, 16  S rDNA, and ITS tech-
niques used in this study provide a more comprehensive 
understanding of the ocular surface bacterial and fungal 
community structure and species diversity. By analyzing 
the transcriptome differences and bacterial and fungal 
community results of conjunctival tissues from healthy 
and diabetic mice, this study contributes to our knowl-
edge of the ocular surface microbiome and may shed 
light on bacterial-fungal interactions.

Methods
Study subjects and housing
12 male BKS and BKS-db/db mice, aged six to eight 
weeks, were obtained from the Model Animal Research 
Center of Nanjing University. All mice were housed in a 
specific pathogen-free environment, with a 12-hour light 
and 12-hour dark cycle, at a temperature of 22 ± 2℃ and 
a humidity of 50 ± 5%. Mice were provided with sufficient 
food and water and free space to move around during 
the incubation period. The mice were allowed to accli-
mate for one week before the start of the experiments. 
All animal experimental protocols were conducted and 
approved in accordance with the guidelines established 
by the Institutional Animal Care and Use Committee, 
Qingdao University (Qingdao, Shandong, China). All 
procedures involving the animals adhered to the guide-
lines outlined by the Association for Research and the 
Vision and Ophthalmology statement regarding the use 
of animals in ophthalmic and vision research. The study 
is reported in accordance with Animal Research: Report-
ing of In Vivo Experiments guidelines (https://arrive-
guidelines.org).

https://arriveguidelines.org
https://arriveguidelines.org
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Conjunctival tissue Sample Collection
Both eyes of each mouse were screened and sampled for 
sequencing. The entire extracted tissue containing the 
orbital conjunctiva was removed and frozen for subse-
quent RNA and DNA extraction.

RNA extraction and sequencing
Total RNA was extracted from the tissues using Trizol 
reagent (Invitrogen, Carlsbad, CA, USA), and RNA 
quality was assessed using RNase-free agarose gel elec-
trophoresis with the Agilent 2100 Bioanalyzer (Agilent 
Technologies, Palo Alto, CA, USA). After extraction, 
eukaryotic mRNA was enriched with oligo (dT) beads. 
The enriched mRNA was then fragmented using a frag-
mentation buffer and reverse transcribed into short 
fragments using the NEBNext Ultra RNA Library Prep 
Kit for Illumina (NEB #7530, New England Biolabs, Ips-
wich, MA, USA). The purified double-stranded cDNA 
fragments were end-repaired, had an A base added, and 
were ligated to Illumina sequencing adapters. The liga-
tion reaction was purified with AMPure XP Beads (1.0X). 
Bound fragments were size-selected by polymerase chain 
reaction (PCR) amplification. The resulting cDNA library 
was sequenced using Illumina Novaseq6000 software 
(Gene Denovo Biotechnology Co., Ltd., Guangzhou, 
China).

Differential gene expression analysis
The DEseq2 package in R v4.0.4 was utilized to perform 
differential expression analysis between normal and dia-
betic conjunctival tissue samples. The criteria for screen-
ing differentially expressed genes (DEGs) were set at false 
discovery rate (FDR) < 0.05 and log2|Fold Change|≥1.

Enrichment analysis of gene functions and pathways
Gene Ontology (GO) is an internationally standardized 
system for gene function classification that defines rig-
orously controlled concepts and a dynamically updated 
vocabulary to comprehensively characterize genes and 
their products in any organism. GO consists of three 
ontologies, namely Molecular Function, Cellular Com-
ponent, and Biological Processes, which map all DEGs to 
GO terms in the Gene Ontology database (http://www.
geneontology.org/), count the number of genes in each 
term, and determine significantly enriched GO terms 
by hypergeometric tests compared to the genomic back-
ground. The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) is the main public pathway-related database, 
which identifies significantly enriched metabolic or sig-
nal transduction pathways in DEGs compared to the 
genome-wide background. Reactome is a free online 
database of biological pathways, with the reaction as the 
core unit of its data model. Entities involved in a reac-
tion, such as nucleic acids, proteins, complexes, and 

small molecules, form a network of biological interac-
tions and are grouped into pathways, which include sig-
nal transduction, innate and acquired immune function, 
transcriptional regulation, translation, apoptosis, and 
classically mediated metabolism. Enrichment analysis of 
gene functions and pathways was considered statistically 
significant if the FDR value was less than 0.05.

Protein-protein interaction network construction
Differential analysis of genes was conducted, and pro-
tein-protein interaction (PPI) networks were constructed 
using the online analysis tool, Metascape (https://
metascape.org/gp/index.html#/main/step1). The PPI 
networks were further screened for hub genes using 
MCODE in Cytoscape (v3.8.2) software.

16 S rDNA and ITS extraction and sequencing
Microbial DNA was extracted using the HiPure Soil 
DNA Kits (Magen, Guangzhou, China) following the 
manufacturer’s instructions. For amplification of the 
V3-V4 region of the ribosomal RNA gene, primers 341F: 
CCTACGGGNGGCWGCAG and 806R: GGACTACH-
VGGGTATCTAAT were used for PCR. The eukaryotic 
ribosomal RNA gene was amplified using the ITS3_
KYO2F 5’-GATGAAGAACGYAGYRAA-3’ and ITS4R 
5’- T C C T C C G C T T A T T G A T A T G C-3’ primers. Ampli-
fication conditions were as follows: 95 °C for 2 min, fol-
lowed by 27 cycles of 98 °C for 10 s, 62 °C for 30 s, and 
68 °C for 30 s, with a final extension at 68 °C for 10 min. 
Amplicons were extracted from 2% agarose gels and puri-
fied using the AxyPrep DNA Gel Extraction Kit (Axygen 
Biosciences, Union City, CA, USA). The ABI StepOne-
Plus Real-Time PCR System (Life Technologies, Foster 
City, USA) was used to quantify the purified amplicons, 
which were then aggregated at equimolar levels accord-
ing to standard protocols. The Illumina platform was 
used to end-sequence 2,250 amplicons. Raw read data 
were deposited in the NCBI Sequence Read Archive 
database.

OTU clustering and species annotation
The sequences were clustered into operational taxonomic 
units (OTUs) at 97% similarity using Uparse software. 
Intergroup Venn analysis was performed in R software 
to identify unique and universal OTUs. Representative 
sequences were classified using a plain Bayesian model 
with a confidence threshold range of 0.8-1 compared to 
the unit database.

Diversity analysis
In QIIME2, the alpha diversity indices including ACE, 
Chao1, Simpson, Shannon, Pielou, Sobs, goods_cover-
age, and PD were calculated. Sparsity curves and rank 
abundance curves of OTU were plotted in QIIME2. 

http://www.geneontology.org/
http://www.geneontology.org/
https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
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Alpha indices were compared between groups using 
Welch’s t-test, Wilcoxon rank test, Tukey’s HSD test, and 
Kruskal-Wallis H test in the R project. To calculate beta 
diversity, weighted and unweighted UniFrac distance 
matrices were generated using QIIME2, and multivariate 
statistical techniques were used in R software to calculate 
weighted and unweighted UniFrac distances. Statisti-
cal analysis was performed using the Welch t-test, Wil-
coxon rank test, Tukey’s HSD test, Kruskal-Wallis H test, 
Adonis (also known as Permanova) test, and Anosim test 
in R software.

Functional prediction
Tax4Fun (version 1.0) was used to analyze the KEGG 
pathway of OTUs, while FUNGuild (version 1.0) was 
used to analyze functional groups of fungi for OTUs. 
Functional differences between groups were analyzed 
using the Welch t-test, Wilcoxon rank test, Kruskal-Wal-
lis H test, and Tukey’s HSD test with the vegan package 
in R software.

Statistical analysis and mapping
GraphPad Prism 8 software was used to perform the 
calculations and plotting the images. The comparisons 
between the two groups were made using the t-test. Cor-
relation analysis was performed using the Pearson R test. 
Statistical significance was set at p < 0.05.

Results
Transcriptome analysis of samples
In this study, we collected three tissue samples each 
from the control and diabetic groups, referred to as 
WT-TC and DB-TC, respectively. After generating the 
gene expression matrix, we identified 449 upregulated 
and 1,006 downregulated differentially expressed genes 
(DEGs) (Fig.  1A). Functional enrichment analysis of the 
DEGs showed that they were mainly associated with 
metabolism-related Gene Ontology (GO) terms, such 
as lipid and monocarboxylic acid metabolic processes 
(Fig. 1B). KEGG pathway analysis revealed that the DEGs 
were enriched in metabolic pathways such as the PPAR 
signaling pathway and retinol metabolism (Fig.  1C). 
Moreover, Reactome pathway analysis demonstrated 
that the DEGs were also enriched in various metabolic 
pathways, including Metabolism of lipids and Fatty acid 
metabolism (Fig. 1D). To obtain protein-protein interac-
tion (PPI) networks, the DEGs were analyzed using the 
Metascape website, and the resulting networks were visu-
alized (Fig.  1E). The MCODE plug-in in Cytoscape was 
used to identify characteristics of each node in the net-
work graph, and the largest subnetworks were selected 
and visualized (Fig. 1F). MCODE1 functions were mainly 
enriched in the metabolism of lipids and response to 
vitamins.

16 S rDNA sequencing results and changes in microbial 
diversity
To verify the reasonableness of the sample size, we exam-
ined the dilution curve and rank abundance curve. The 
dilution curve (Fig.  2A) showed that the results tended 
to become more reasonable as the sample size increased. 
The rank abundance curve (Fig.  2B) indicated that the 
conjunctival flora’s abundance was higher and more 
evenly distributed in the WT-TC and DB-TC groups, but 
the DB-TC group’s abundance was lower than that of the 
WT-TC group.

Alpha diversity reflects the diversity of species in a 
single sample, and various indices such as Pielou index, 
Sobs index, Chao index, and ACE index reflect the com-
munity’s abundance, while the Shannon index, PD index, 
and Simpson index reflect the community’s diversity. The 
goods_coverage index reflects the sequencing depth, and 
a higher value indicates higher credibility. The goods_
coverage index for each group was greater than 0.99, 
indicating highly credible data. Alpha diversity indices 
(Fig. 2C) with significant differences under different con-
ditions were screened by a rank sum test, including the 
Pielou, Shannon, and Simpson indices. The overall index 
of the WT-TC group was higher than that of the DB-TC 
group, indicating higher microbial community diversity 
in the former. Diabetes caused a decrease in species rich-
ness and diversity (p < 0.05).

mBeta diversity was used to compare the magnitude of 
differences between pairs of samples in terms of species 
diversity. Bray-Curtis, weighted UniFrac, and unweighted 
UniFrac were used. Figure 3A is the beta diversity matrix 
heat map. The beta diversity data were visualized graphi-
cally, and the samples were clustered by clustering sam-
ples with similar beta diversity together, reflecting the 
similarity between samples. As seen from the figure, the 
respective beta diversity between the two groups was 
well clustered, and the groups could be clustered within a 
certain range. Based on the beta diversity distance matrix 
information, the samples were classified into UPGMA 
classification trees. The cluster analysis results for all 
samples are shown in Fig. 3B, indicating that the WT-TC 
and DB-TC groups have similar colony results but differ 
in compositional abundance.

Elaborating the distribution of bacterial flora through 16 S 
rDNA sequencing
At the phylum level, the top 10 phyla of conjunctival flora 
in both groups of mice were Proteobacteria, Firmicutes, 
Bacteroidetes, Actinobacteria, Crenarchaeota, Chloro-
flexi, Cyanobacteria, Patescibacteria, Planctomycetes, 
and Nitrospirae. The four predominant phyla were Pro-
teobacteria, Firmicutes, Bacteroidetes, and Cyanobacteria 
(Fig. 4A). Compared to the control group, the abundance 
of Firmicutes increased in the diabetic group, while the 
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Fig. 1 Differential expression and functional analysis of genes in control and diabetic groups. (A) Volcano plot showing the differentially expressed genes 
in control (WT-TC) and diabetic (DB-TC) groups. 449 genes were upregulated (red) and 1,006 genes were downregulated (blue). The x axis is log2 (Fold 
Change), which is the multiple of the difference between two groups of samples and the y axis showed the log P-value which calculated by t-test. The 
cut-off is 1.3=-log10 (0.05). (B) Gene Ontology (GO) functional enrichment analysis of differentially expressed genes. The top enriched GO terms were re-
lated to metabolism, such as the lipid metabolic process and the monocarboxylic acid metabolic process. (C) Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis of differentially expressed genes. The top enriched pathways were metabolic pathways, such as the PPAR signaling 
pathway and retinol metabolism. (D) Reactome pathway analysis of differentially expressed genes. The top enriched pathways were related to various 
metabolic processes, such as the metabolism of lipids and fatty acid metabolism. (E) Protein-protein interaction (PPI) network analysis of differentially 
expressed genes using Metascape. The network was visualized with gene information, and nodes were colored based on their degree of connectivity. 
(F) The largest subnetworks in the PPI network were selected and visualized using the MCODE plug-in in Cytoscape. MCODE1 functions were mainly 
enriched in the metabolism of lipids and the response to vitamins
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proportions of Proteobacteria, Bacteroidetes, and Cyano-
bacteria decreased significantly (p < 0.05) (Fig. 4B).

At the class level, the top 10 classes of conjunctival 
flora in both groups of mice were Gammaproteobacteria, 
Bacilli, Bacteroidia, Alphaproteobacteria, Actinobacte-
ria, Bathyarchaeia, Oxyphotobacteria, Patescibacteria, 
Clostridia, and Deltaproteobacteria. The five dominant 
classes were Gammaproteobacteria, Bacilli, Bacteroidia, 
Alphaproteobacteria, and Actinobacteria (Fig. 4A). Com-
pared to the control group, the abundance of Bacilli 
increased in the diabetic group, while the abundance of 

Gammaproteobacteria, Bacteroidia, Alphaproteobacte-
ria, and Actinobacteria proportions were significantly 
reduced (p < 0.05) (Fig. 4B).

At the order level, the top 10 orders of conjuncti-
val flora in both groups of mice were Enterobacteriales, 
Lactobacillales, Chitinophagales, Bacillales, Betapro-
teobacteriales, Corynebacteriales, Rickettsiales, Rhi-
zobiales, Vibrionales, and Pseudomonadales (Fig.  4A). 
Compared to the control group, the abundance of 
Lactobacillales, Pseudomonadales, and Bacillales 
increased in the diabetic group, while the proportion 

Fig. 2 Analysis of microbial diversity in control and diabetic groups using 16 S rDNA sequencing. (A) Dilution curve showing the reasonableness of the 
sample size with the increase of sample size. The x axis represents the number of sequencing samples randomly selected from a certain sample, and the 
y axis represents the number of OTUs that can be constructed based on this number of sequencing samples to reflect the depth of sequencing. (B) Rank 
abundance curve showing the abundance and evenness of conjunctival flora in the WT-TC and DB-TC groups. (C) Alpha diversity indices including Pielou, 
Shannon, and Simpson indices, reflecting the abundance and diversity of microbial communities in the samples. The overall index of the WT-TC group 
was higher than that of the DB-TC group, indicating a higher degree of microbial community diversity in the control group. The occurrence of diabetes 
caused a decrease in species richness and diversity (p < 0.05). The goods_coverage index for each group was greater than 0.99, indicating high credibility 
of the data
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of Rickettsiales, Rhizobiales, Enterobacteriales, Chitin-
ophagales, and Betaproteobacteriales were significantly 
reduced (p < 0.05) (Fig. 4B).

At the Family level, the top 10 families in terms of rela-
tive abundance of conjunctival flora in both groups of 
mice were Enterobacteriaceae, Enterococcaceae, Chi-
tinophagaceae, Staphylococcaceae, Burkholderiaceae, 
Corynebacteriaceae, Rickettsiaceae, Vibrionaceae, Xan-
thobacteraceae, and Moraxellaceae (Fig. 4A). Compared 
to the control group, the abundance of Staphylococca-
ceae, Moraxellaceae, and Enterococcaceae increased in 
the diabetic group, while the proportions of Xanthobac-
teraceae, Rickettsiaceae, Enterobacteriaceae, Chitinoph-
agaceae, and Burkholderiaceae were significantly reduced 
(p < 0.05) (Fig. 4B).

At the Genus level, the top 10 genera in terms of rela-
tive abundance of conjunctival flora in both groups of 
mice were Enterococcus, Sediminibacterium, Staphylo-
coccus, Ralstonia, Corynebacterium_1, Rickettsia, Rosen-
bergiella, Pantoea, Vibrio, and Bradyrhizobium (Fig. 4A). 
Compared to the control group, there was an increase in 
the abundance of Staphylococcus, Rosenbergiella, Morax-
ellaceae, and Enterococcus in the diabetic group, while 
the proportions of Sediminibacterium, Rickettsia, Ral-
stonia, Pantoea, and Bradyrhizobium were significantly 
reduced (p < 0.05) (Fig. 4B).

At the Species level, the top 10 species in terms 
of relative abundance of conjunctival flora in both 
groups of mice were Enterococcus_faecalis, Staphy-
lococcus_sciuri, Corynebacterium_glutamicum, 

Fig. 3 mBeta diversity was used to compare the magnitude of differences between pairs of samples in terms of species diversity. (A) The beta diversity 
matrix heat map obtained using Bray-Curtis, weighted UniFrac, and unweighted UniFrac analyses. Samples with similar beta diversity were clustered 
together, revealing the similarity between them. The beta diversity between the two groups was well-clustered and could be distinguished within a 
certain range. Based on the beta diversity distance matrix, the samples were classified into UPGMA classification trees, where the more similar samples 
had shorter common branches. (B) The results of cluster analysis for all samples, indicating that the WT-TC and DB-TC groups had similar colony results 
but differed in their compositional abundance
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Corynebacterium_sp_CNJ-954, Pantoea_dispersa, 
Proteus_vulgaris, Acinetobacter_lwoffii, Rubrobacter_
sp_LYG58, Tsukamurella_pulmonis, and Chryseobac-
terium_indologenes (Fig.  4A). Compared to the control 
group, the abundance of Staphylococcus_sciuri, Proteus_
vulgaris, Enterococcus_faecalis, and Acinetobacter_lwoffii 
increased in the diabetic group, while the proportions of 

Tsukamurella_pulmonis, Pantoea_dispersa, and Cory-
nebacterium_sp_CNJ-954 were significantly reduced 
(p < 0.05).

ITS sequencing results and changes in microbial diversity
The dilution curve (Fig.  5A) shows that the results 
become more reliable with increasing sample size. The 

Fig. 4 Microbial diversity in conjunctival flora of diabetic and control mice. (A) Relative abundance of the top 10 phyla, classes, orders, families, genera, 
and species in both groups of mice. (B) Comparison of the abundance of major phyla, classes, orders, families, genera, and species between diabetic and 
control mice
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abundance rank curve (Fig.  5B) suggests that conjunc-
tival flora in both the WT-TC and DB-TC groups are 
more abundant and evenly distributed than in the con-
trol group. The abundance of conjunctival flora is lower 
in the DB-TC group than in the WT-TC group. Alpha 
diversity analysis did not show any statistically signifi-
cant difference in fungal species abundance and diver-
sity between the two groups (p > 0.05), indicating that 
diabetes did not significantly impact the abundance and 
diversity of fungal species (Fig. 5C). Beta diversity analy-
sis showed poor beta diversity clustering between the 
two groups (Fig.  6A), and the clustering analysis of all 

samples indicated that the fungal colony composition of 
the WT-TC and DB-TC groups did not significantly differ 
(Fig. 6B).

Elaborating the distribution of fungal mycota by ITS 
sequencing
Table  1 presents the results of ITS sequencing for the 
two groups of samples. Most of the fungi identified in 
the samples belonged to the phylum Ascomycota, class 
Sordariomycetes, order Sordariales, family Bolbitiaceae, 
and genus Agrocybe. At the species level, the highest fre-
quency OTU1 matched four different fungal ITS regions: 

Fig. 5 ITS sequencing results. (A) The dilution curve of conjunctival flora samples, which indicates a reasonable increase in results with increasing sample 
size. The x axis represents the number of sequencing samples randomly selected from a certain sample, and the y axis represents the number of OTUs 
that can be constructed based on this number of sequencing samples to reflect the depth of sequencing. (B) The abundance rank curve of the WT-TC 
and DB-TC groups, revealing that the abundance of conjunctival flora in the two groups is higher and more evenly distributed, while the abundance of 
the DB-TC group is lower than that of the WT-TC group. (C) Alpha diversity analysis revealed no statistical difference in fungal species abundance and 
diversity between the two groups (p > 0.05)
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Agrocybe pediades, Serendipita indica, Humicola grisea, 
and Rhizopus arrhizus.

Furthermore, the abundance of Eurotiomycetes, Euro-
tiales, Mucoraceae, and Mucor was significantly lower in 
the diabetic group compared to the control group (Fig. 7, 
p < 0.05).

Functional prediction of 16 S rDNA and ITS sequencing 
communities
Tax4Fun software was used to perform functional 
annotation of KEGG pathways based on the species 
annotation and abundance information of OTUs. The 
abundance information of each pathway and KO ID was 
counted, and 16 KEGG secondary functional pathways 
with relatively high abundance are shown in Fig.  8A. 
The predicted functional analysis revealed that all sam-
ples were related to carbohydrate, capacity, lipid, ter-
pene and polyketides, amino acid metabolic pathways, 

biodegradation and metabolism, environmental adapta-
tion, digestion, circulatory and excretory systems, cancer 
and immune diseases, and cellular process pathways of 
cell growth and death.

Additionally, a predicted functional analysis of all 
treated fungal communities was conducted using the 
FUNGuild tool. Figure 8B shows the relative abundance 
of 22 fungal functional taxa (excluding unassigned taxa), 
and the results indicated that “Bryophyte Parasite-Dung 
Saprotroph-Ectomycorrhizal-Fungal Parasite-Leaf Sap-
rotroph-Plant Parasite-Undefined Saprotroph-Wood 
Saprotroph” had the highest abundance among all sam-
ples, followed by undefined saprotroph and then orchid 
mycorrhizal.

Comparison of bacterial and fungal diversity
To assess the consistency of bacterial and fungal richness 
levels, correlation coefficients were used to analyze the 

Fig. 6 Results of Beta diversity analysis. (A) Using clustering analysis, poor clustering was shown between the two groups. (B) The fungal colony com-
position of the WT-TC and DB-TC groups. There are no significant differences between all groups, as indicated by the clustering analysis. These findings 
suggest that the occurrence of diabetes did not impact the fungal colony composition in the conjunctiva
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Classification Name of fungi Relative abundance of fungi
DB-TC-rep1 DB-TC-rep2 DB-TC-rep3 WT-TC-rep1 WT-TC-rep2 WT-TC-rep3

Phylum Ascomycota 68.451 59.405 61.868 69.107 65.060 62.344
Basidiomycota 19.567 26.950 17.617 20.330 22.339 29.596
Anthophyta 4.650 3.891 7.591 4.261 5.048 2.912
Mucoromycota 3.545 4.403 2.485 2.688 3.216 1.969
Chlorophyta 0.657 1.104 4.957 0.369 0.423 1.006
Mortierellomycota 0.643 1.375 2.051 0.634 0.783 0.758
Glomeromycota 0.005 0.011 0 0.336 0.328 0
Chytridiomycota 0.423 0.005 0 0.084 0.090 0
Monoblepharomycota 0.001 0 0.333 0 0 0.019
Ciliophora 0 0.264 0 0 0.004 0

Class Sordariomycetes 27.241 27.339 24.479 25.479 28.034 33.723
Agaricomycetes 17.489 23.047 15.343 18.869 20.564 25.582
Eurotiomycetes 7.763 8.272 6.308 10.727 11.048 10.969
Eudicotyledonae 4.650 3.891 7.591 4.261 5.048 2.912
Dothideomycetes 4.371 4.488 2.016 3.763 4.145 3.584
Mucoromycetes 3.545 4.403 2.485 2.688 3.216 1.969
Mortierellomycetes 0.643 1.375 2.051 0.634 0.783 0.758
Leotiomycetes 1.129 0.569 1.799 0.742 0.815 1.072
Tremellomycetes 0.640 2.029 0.398 0.170 0.233 1.309
Chlorophyceae 0 0.761 2.659 0.083 0.121 0.427

Order Sordariales 15.491 15.802 11.683 13.261 14.300 19.077
Agaricales 9.398 12.369 10.374 10.238 11.417 16.197
Hypocreales 7.780 8.727 7.674 7.752 8.917 11.643
Sebacinales 8.062 10.187 4.373 8.103 8.557 8.832
Eurotiales 4.992 6.779 6.248 9.386 9.604 9.008
Pleosporales 4.189 4.153 2.008 3.652 3.992 3.285
Mucorales 3.545 4.403 2.485 2.688 3.216 1.969
Brassicales 2.237 2.957 2.803 3.273 3.901 1.411
Mortierellales 0.643 1.375 2.051 0.634 0.783 0.758
Asterales 2.0884 0.787 0.023 0.745 0.890 1.300

Family Bolbitiaceae 8.086 11.697 9.123 9.280 10.397 14.078
Chaetomiaceae 7.948 8.628 6.776 7.261 7.803 10.945
Serendipitaceae 8.062 10.187 4.373 8.103 8.557 8.832
Trichocomaceae 3.114 5.684 4.136 6.414 6.940 6.840
Lasiosphaeriaceae 4.088 3.702 2.359 3.696 4.146 4.074
Nectriaceae 3.672 2.792 1.014 3.032 3.306 5.213
Rhizopodaceae 3.545 4.307 2.480 2.543 3.073 1.713
Brassicaceae 2.237 2.958 2.803 3.273 3.901 1.411
Stachybotryaceae 2.248 2.695 2.167 2.045 2.419 1.517
Aspergillaceae 1.879 1.094 2.111 2.972 2.664 2.168

Genus Agrocybe 8.086 11.697 9.123 9.280 10.397 14.078
Serendipita 8.062 10.187 4.373 8.103 8.557 8.832
Talaromyces 3.114 5.684 4.136 6.414 6.940 6.840
Humicola 3.562 2.798 2.217 2.792 2.928 4.074
Rhizopus 3.545 4.307 2.480 2.543 3.073 1.713
Aspergillus 1.193 1.043 2.106 2.369 2.021 2.029
Fusarium 1.650 1.800 0.896 1.510 1.667 1.130
Stachybotrys 1.267 1.117 1.369 1.043 1.247 0.994
Mortierella 0.643 1.375 2.051 0.634 0.783 0.758
Setophoma 0.960 0.464 0.496 1.094 1.272 0.615

Table 1 The results of ITS sequencing for the two groups of samples. Most of the fungi identified in the samples belonged to the 
phylum Ascomycota, class Sordariomycetes, order Sordariales, family Bolbitiaceae, and genus Agrocybe. At the species level, the highest 
frequency OTU1 matched four different fungal ITS regions: Agrocybe pediades, Serendipita indica, Humicola grisea, and Rhizopus arrhizus
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trends of bacterial and fungal species in each subgroup 
at the species diversity (alpha diversity) level. Correlation 
scatter plots were then created to visualize the effect of 
correlation. The results indicated that there was no signif-
icant correlation between changes in bacterial and fun-
gal species diversity, suggesting that bacteria and fungi 
responded differently to grouping differences (Fig.  9A). 
At the beta diversity correlation level, statistical tests 
were performed for within-group and between-group 
distance differences, and the combined distance box plot 
showed that grouping differences affected bacteria at the 
Phylum, Order, Family, Genus, and Species levels, while 
fungi were only affected at the Order, Family, and Genus 
levels (Fig. 9B).

The Sparse Correlations for Compositional data model 
was used to analyze the correlations between bacteria 
and fungi at different taxonomic levels (Fig.  9C and E). 
Species with mean values of abundance greater than 0.1% 
at the family, genus, and OTU levels were screened for 
correlation analysis. A combined heat map and circos 
were plotted based on the sPLS screening of strongly 
correlated species. The internal circos presented the cor-
relation results, including positive and negative correla-
tions and the intensity of the correlation. The external 
heat map showed the specific species abundance trends. 
The results showed that there were correlations between 
bacteria and fungi at the family, genus, and OTU levels, 
indicating that there were some interactions between 
bacteria and fungi.

Discussion
The risk of bacterial infections in the conjunctiva, such 
as acute infectious conjunctivitis, is significantly higher 
in diabetic patients [30]. The normal flora of the conjunc-
tiva inhibits the growth and invasion of pathogenic bac-
teria by limiting their nutrition and space for growth and 
enzyme secretion. The most frequently isolated micro-
organisms from the normal conjunctival flora include 
Staphylococcus epidermidis, Staphylococcus aureus, Pro-
pionibacterium acnes, Corynebacterium, Streptococcus, 

and Haemophilus [31, 32]. Orhan Ateş et al. measured 
conjunctival flora in type 1 and type 2 diabetic patients, 
as well as controls without any ocular disease, and found 
that Staphylococcus epidermidis and Staphylococcus 
aureus were present in all samples, with higher levels in 
type 2 diabetes [33]. Previous studies that used conven-
tional bacterial or fungal culture methods to study nor-
mal ocular surface fungi found that the most common 
fungal genera were Aspergillus, Rhizopus, Pseudoste-
lium, and Penicillium, respectively [34]. However, con-
ventional culture methods have limitations in the study 
of microbial communities as certain pathogens are dif-
ficult to grow under conventional conditions, and many 
fungi exist in nature that cannot yet be cultured, result-
ing in an incomplete picture of the ocular surface fungal 
community [35]. Therefore, the microbial detection level 
of conventional culture methods is lower compared to 
molecular macrogenomics or 16 S rDNA or ITS sequenc-
ing [36]. In this study, we combined transcriptome and 
microbial diversity analysis of conjunctival tissues to 
systematically analyze the microbial diversity in diabetic 
conjunctival tissues.

Initially, we employed RNA-seq to investigate the tran-
scriptomes of two groups of mouse conjunctival tissues 
and identified 449 differentially upregulated genes and 
1,006 differentially downregulated genes. Through func-
tional enrichment analysis of differentially expressed 
genes, we observed significant enrichment in various 
metabolic pathways. As metabolic abnormalities, such 
as dyslipidemia, hyperinsulinemia, insulin resistance, 
and obesity, are implicated in the pathogenesis and 
progression of T2DM, these findings were consistent 
with previous studies [37]. T2DM is a systemic inflam-
matory disease characterized by insulin resistance or 
reduced metabolic response to insulin in multiple tis-
sues, including adipose tissue, liver, and skeletal muscle, 
and by reduced insulin synthesis in pancreatic β-cells [38, 
39]. Moreover, immunometabolic investigations have 
revealed a close interrelationship between metabolic sta-
tus and immune processes, whereby metabolites from the 

Classification Name of fungi Relative abundance of fungi
DB-TC-rep1 DB-TC-rep2 DB-TC-rep3 WT-TC-rep1 WT-TC-rep2 WT-TC-rep3

Species Agrocybe pediades 8.086 11.697 9.123 9.280 10.397 14.078
Serendipita indica 8.062 10.187 4.373 8.103 8.557 8.832
Humicola grisea 3.562 2.798 2.217 2.792 2.928 4.074
Rhizopus arrhizus 3.542 4.307 2.480 2.494 3.018 1.713
Stachybotrys chartarum 1.241 1.016 1.337 1.007 1.212 0.971
Mortierella elongata 0.623 1.119 1.443 0.476 0.618 0.726
Setophoma terrestris 0.960 0.464 0.496 1.094 1.272 0.615
Fusarium solani 0.875 0.645 0.862 1.018 1.032 0.338
Trichoderma harzianum 0.253 1.218 0.972 0.869 1.021 0.332
Preussia globosa 0.733 0.675 1.030 0.587 0.601 0.591

Table 1 (continued) 
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host or microbiota regulate the immune response during 
health and disease [40]. Therefore, to gain deeper insights 
into the microbial community structure in healthy and 
diseased states, further analyses are warranted.

Subsequently, we analyzed the bacterial community 
structure in both groups of samples using 16  S rDNA 
and found that Proteobacteria, Firmicutes, Bacteroides, 

and Acinetobacter were the top four phyla in relative 
abundance in the conjunctival microbiota of healthy 
mice and diabetes mellitus mice. The top four genera 
were Enterococcus, Sediminibacterium, Staphylococcus, 
and Ralstonia. These results were consistent with a pre-
vious study by Li et al., which analyzed the conjunctival 
microbiota composition in healthy subjects and diabetic 

Fig. 7 The fungal taxonomic composition and abundance differences between the WT-TC and DB-TC groups based on ITS sequencing. The taxonomic 
composition of the fungal community at the phylum, class, order, family, and genus levels is presented. Ascomycota, Sordariomycetes, Sordariales, Bolbitia-
ceae, and Agrocybe were the dominant taxa found in the samples. At the species level, the most high-frequency OTU1 was identified as Agrocybe pediades, 
Serendipita indica, Humicola grisea, and Rhizopus arrhizus. The abundance of Eurotiomycetes, Eurotiales, Mucoraceae, and Mucor was significantly reduced 
in the diabetic group compared to the control group (p < 0.05)
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patients using 16  S rRNA [41]. However, among the 
top four phyla, the abundance of Firmicutes was signifi-
cantly increased in the diabetic group compared to the 
healthy group, and the proportion of Aspergillus and 

Bacteroidetes was significantly reduced. It has been sug-
gested that reducing the levels of Firmicutes in the gut 
can help control T2DM and reduce insulin resistance 
[42]. The altered Firmicutes: Bacteroidetes ratio in obese 

Fig. 9 Comparison of bacterial and fungal diversity. (A) The correlation scatter plots of bacterial and fungal species diversity indices, indicating no sig-
nificant correlation between the two at the alpha diversity level. (B) The statistical test results for within-group and between-group distance differences, 
as well as the combined distance box plot, demonstrating that grouping differences affected bacteria at the Phylum, Order, Family, Genus, and Species 
levels and fungi only at the Order, Family, and Genus levels. (C-E) The correlation analyses between bacteria and fungi at the family, genus, and OTU levels 
using the Sparse Correlations for Compositional data model. The heat map and circos plots are based on the sPLS screening of strongly correlated species, 
with the internal circos presenting correlation results and the external heat map displaying specific species abundance trends. The results show that there 
were correlations between bacteria and fungi at all three taxonomic levels, indicating interactions between bacteria and fungi

 

Fig. 8 Functional prediction of 16 S rDNA and ITS sequencing communities. (A) The predicted functional analysis of the KEGG pathways for all samples 
using Tax4Fun software. The top 16 KEGG secondary functional pathways with relatively high abundance are displayed, including pathways related to car-
bohydrate, capacity, lipid, terpene and polyketides, amino acid metabolic pathways, biodegradation and metabolism, environmental adaptation, diges-
tion, circulatory and excretory systems, cancer and immune diseases, and cellular process pathways of cell growth and death. (B) The relative abundance 
of 22 fungal functional taxa (excluding unassigned taxa) analyzed using the FUNGuild tool. The functional taxa are ranked by abundance, and the results 
indicate that “Bryophyte Parasite-Dung Saprotroph-Ectomycorrhizal-Fungal Parasite-Leaf Saprotroph-Plant Parasite-Undefined Saprotroph-Wood Saprotroph” 
had the highest abundance among all samples, followed by undefined saprotroph and then orchid mycorrhizal
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individuals is associated with an increased risk of obe-
sity-related DM [43]. Similarly, there are studies dem-
onstrating significantly fewer Proteusbacillus vulgaris in 
prediabetic or diabetic patients [44].

In ITS sequence analysis, most of the fungi present in 
the samples belonged to Ascomycota, Sordariomycetes, 
Sordariales, Bolbitiaceae, and Agrocybe. The abundance 
of Eurotiomycetes, Eurotiales, Mucoraceae, and Mucor 
was significantly reduced in the diabetic group of mice 
compared to the control group. These fungi were iden-
tified for the first time in diabetic conjunctival tissue. A 
previous study analyzing altered ocular surface fungal 
flora in patients with fungal keratitis found that Ascomy-
cota had the highest relative abundance in healthy and 
fungal keratitis patients, and the relative abundance was 
higher in patients with fungal keratitis than in the healthy 
population [45]. Nasal-orbital mucormycosis, which is 
commonly seen in immunocompromised subjects and 
in patients with decompensated diabetes, is an acute and 
fulminant fungal infection caused by vascular invasive 
fungi of the Mucoraceae [46].

In addition, we found that the bacterial alpha diversity 
index was lower in the diabetic group than in the healthy 
group, which is contrary to previous studies. For exam-
ple, Zhu et al. found that the alpha diversity of the con-
junctival flora was significantly higher in T2DM patients 
than in controls [47]. However, in a study by Matsha et 
al., the alpha diversity of oral microorganisms was found 
to be lower in diabetic patients compared to prediabetic 
or normoglycemic patients based on the Chao1 index 
[44]. Microbial diversity seems to be related to the dura-
tion of T2DM. For instance, the conjunctival microbiome 
diversity was found to be lower in T2DM patients with 
longer disease duration, which may indicate lower diver-
sity dysregulation at the ocular surface later in the disease 
[48]. The lower conjunctival microbiome alpha diversity 
in T2DM patients with a disease duration greater than 15 
years may also indicate a higher risk of ocular infection 
[47].

Furthermore, we did not find a significant difference in 
the fungal alpha diversity index, which is in line with the 
study by Bataineh et al. Predictive analyses of microbial 
community function revealed associations between bac-
terial communities and metabolic pathways, digestive, 
circulatory, and excretory systems, cancer and immune 
diseases, and cellular process pathways of cell growth 
and death. The mammalian immune system plays a criti-
cal role in maintaining the balance of the microbial com-
munity in vivo, thus ensuring that the reciprocity of the 
host-microbe relationship is maintained. At the same 
time, parasitic bacteria profoundly shape mammalian 
immunity [49].

Finally, the integration of 16  S rDNA and ITS analy-
ses revealed no significant correlation between changes 

in bacterial and fungal species diversity, indicating that 
bacteria and fungi respond differently to grouping dif-
ferences. We found that bacteria and fungi are related at 
three taxonomic levels—family, genus, and OTU—sug-
gesting some interactions between bacteria and fungi. 
Other studies have reported the effect of fungi on bac-
terial community composition [50, 51]. Fungi may be 
key components of the microbial community and have 
important effects on the gut ecosystem and possibly on 
host health [52]. However, the potential role of fungi and 
their interactions with the host, other members of the gut 
flora, and metabolic health require further understand-
ing. We also found multiple fungal species colonizing 
the conjunctiva, yet no mice developed fungal infections, 
suggesting that there may be some interaction between 
bacteria, fungi, and host immunity in the mainte-
nance of ocular surface health, which also needs further 
investigation.

Acknowledgements
Supported by the National Natural Science Foundation of China grants 
81800805 (to XZ).

Author contributions
Authors’ contributions: Y.W. participated in the conception and design of the 
study and the critical revision of the manuscript for important intellectual 
content. F.L., X.Z., and S.Y. contributed to the animal model for the study. F.L. 
and J.M. performed the data collection and analysis. Y.W. and M.C. interpreted 
the data and produced the draft of the manuscript. X.Z. obtained funding for 
the study. All authors reviewed the manuscript.

Funding
This study was supported by the National Natural Science Foundation of 
China (No. 81800805).

Data availability
The datasets used and/or analyzed during the current study are available from 
the corresponding author upon reasonable request. Competing interests: 
The authors declare that they have no competing interests.

Declarations

Ethics approval and consent to participate
The animal experiments were approved by the Institutional Animal Care 
and Use Committee, Qingdao University (Qingdao, Shandong, China). The 
procedures to use and handle the animals conformed with guidelines set by 
the Association for Research and the Vision and Ophthalmology statement for 
the use of animals in ophthalmic and vision research.

Competing interests
The authors declare no competing interests.

Consent for publication
Not applicable.

Received: 19 August 2023 / Accepted: 3 March 2024

References
1. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 

2017;389(10085):2239–51. https://doi.org/10.1016/S0140-6736(17)30058-2.
2. Giannopapas V, Palaiodimou L, Kitsos D, Papagiannopoulou G, Stavrogianni 

K, Chasiotis A, et al. The prevalence of diabetes Mellitus Type II (DMII) in the 

https://doi.org/10.1016/S0140-6736(17)30058-2


Page 16 of 17Li et al. BMC Microbiology           (2024) 24:90 

multiple sclerosis Population: a systematic review and Meta-analysis. J Clin 
Med. 2023;12(15). https://doi.org/10.3390/jcm12154948.

3. Tinajero MG, Malik VS. An update on the epidemiology of type 2 diabetes: 
A Global Perspective. Endocrinol Metab Clin North Am. 2021;50(3):337–55. 
https://doi.org/10.1016/j.ecl.2021.05.013.

4. Meigs JB. The genetic epidemiology of type 2 diabetes: opportunities for 
Health translation. Curr Diab Rep. 2019;19(8):62. https://doi.org/10.1007/
s11892-019-1173-y.

5. Mansuri F, Bhole PK, Parmar D. Study of dry eye disease in type 2 diabetes 
mellitus and its association with diabetic retinopathy in Western India. Indian 
J Ophthalmol. 2023;71(4):1463–7. https://doi.org/10.4103/IJO.IJO_2770_22.

6. Singh J, Shan X, Mahajan A, Herrmann M, Schauer C, Knopf J, et al. Induction 
of ocular surface inflammation and Collection of involved tissues. J Vis Exp. 
2022;186. https://doi.org/10.3791/63890

7. Di Zazzo A, Coassin M, Micera A, Mori T, De Piano M, Scartozzi L, et al. Ocular 
surface diabetic disease: a neurogenic condition? Ocul Surf. 2021;19:218–23. 
https://doi.org/10.1016/j.jtos.2020.09.006.

8. Shih KC, Lam KS, Tong L. A systematic review on the impact of diabetes 
mellitus on the ocular surface. Nutr Diabetes. 2017;7(3):e251. https://doi.
org/10.1038/nutd.2017.4.

9. Ansari AS, de Lusignan S, Arrowsmith B, Hinton W, Munro N, McGovern A. 
Association between Diabetes, Level of Glycemic Control, and Eye infection: 
a Cohort Study. Diabetes Care. 2017;40(3):e30–1. https://doi.org/10.2337/
dc16-2320.

10. Flaxel CJ, Adelman RA, Bailey ST, Fawzi A, Lim JI, Vemulakonda GA, et al. 
Idiopathic Epiretinal membrane and Vitreomacular Traction Preferred Practice 
Pattern(R). Ophthalmology. 2020;127(2):P145–83. https://doi.org/10.1016/j.
ophtha.2019.09.022.

11. Senthamizh T, Aravind H, Singh TP. Factors associated with postoperative 
visual outcome in acute endophthalmitis after cataract surgery-a cross-
sectional, analytical study. Digit J Ophthalmol. 2022;28(1):1–6. https://doi.
org/10.5693/djo.01.2021.08.001.

12. Jiang M, Zhang J, Wan X, Ding Y, Xie F. Conjunctival sac flora and drug 
susceptibility analysis in normal children in East China. BMC Ophthalmol. 
2023;23(1):248. https://doi.org/10.1186/s12886-023-02995-1.

13. Chen Z, Jia Y, Xiao Y, Lin Q, Qian Y, Xiang Z, et al. Microbiological characteris-
tics of Ocular Surface Associated with Dry Eye in Children and adolescents 
with Diabetes Mellitus. Invest Ophthalmol Vis Sci. 2022;63(13):20. https://doi.
org/10.1167/iovs.63.13.20.

14. Seo KS, Park N, Rutter JK, Park Y, Baker CL, Thornton JA, et al. Role of 
glucose-6-Phosphate in metabolic adaptation of Staphylococcus aureus 
in Diabetes. Microbiol Spectr. 2021;9(2):e0085721. https://doi.org/10.1128/
Spectrum.00857-21.

15. Chiang MC, Chern E. Ocular surface microbiota: Ophthalmic infectious 
disease and probiotics. Front Microbiol. 2022;13:952473. https://doi.
org/10.3389/fmicb.2022.952473.

16. Thakur S, Sheppard JD. Gut microbiome and its influence on ocular surface 
and Ocular Surface diseases. Eye Contact Lens. 2022;48(7):278–82. https://doi.
org/10.1097/ICL.0000000000000905.

17. Napolitano P, Filippelli M, Davinelli S, Bartollino S, dell’Omo R, Costagliola 
C. Influence of gut microbiota on eye diseases: an overview. Ann Med. 
2021;53(1):750–61. https://doi.org/10.1080/07853890.2021.1925150.

18. Andre C, Lebreton F, Van Tyne D, Cadorette J, Boody R, Gilmore MS, et al. 
Microbiology of Eye infections at the Massachusetts Eye and ear: an 8-Year 
Retrospective Review Combined with genomic epidemiology. Am J Ophthal-
mol. 2023;255:43–56. https://doi.org/10.1016/j.ajo.2023.06.016.

19. Utlu B, Ondas O, Yildirim M, Bayrakceken K, Yildirim S. Pseudomonas 
aeruginosa Keratitis in rats: study of the Effect of Topical 5% hesperidin 
practice on Healing. Eurasian J Med. 2023;55(1):64–8. https://doi.org/10.5152/
eurasianjmed.2023.22234.

20. Ingalagi P, Bhat KG, Kulkarni RD, Kotrashetti VS, Kumbar V, Kugaji M. Detection 
and comparison of prevalence of Porphyromonas gingivalis through culture 
and real time-polymerase chain reaction in subgingival plaque samples 
of chronic periodontitis and healthy individuals. J Oral Maxillofac Pathol. 
2022;26(2):288. https://doi.org/10.4103/jomfp.jomfp_163_21.

21. Mohr T, Aliyu H, Biebinger L, Godert R, Hornberger A, Cowan D, et al. Effects 
of different operating parameters on hydrogen production by parageobacil-
lus thermoglucosidasius DSM 6285. AMB Express. 2019;9(1):207. https://doi.
org/10.1186/s13568-019-0931-1.

22. Nanayakkara U, Khan MA, Hargun DK, Sivagnanam S, Samarawick-
rama C. Ocular streptococcal infections: a clinical and microbiological 

review. Surv Ophthalmol. 2023;68(4):678–96. https://doi.org/10.1016/j.
survophthal.2023.02.001.

23. Huang Y, Yang B, Li W. Defining the normal core microbiome of conjunctival 
microbial communities. Clin Microbiol Infect. 2016;22(7):643. https://doi.
org/10.1016/j.cmi.2016.04.008. e7- e12.

24. Zhao F, Zhang D, Ge C, Zhang L, Reinach PS, Tian X, et al. Metagenomic profil-
ing of ocular surface Microbiome Changes in Meibomian Gland Dysfunction. 
Invest Ophthalmol Vis Sci. 2020;61(8):22. https://doi.org/10.1167/iovs.61.8.22.

25. Doan T, Akileswaran L, Andersen D, Johnson B, Ko N, Shrestha A, et al. Pauci-
bacterial Microbiome and Resident DNA Virome of the healthy conjunctiva. 
Invest Ophthalmol Vis Sci. 2016;57(13):5116–26. https://doi.org/10.1167/
iovs.16-19803.

26. Shivaji S, Jayasudha R, Chakravarthy SK, SaiAbhilash CR, Sai Prashanthi G, 
Sharma S, et al. Alterations in the conjunctival surface bacterial microbiome 
in bacterial keratitis patients. Exp Eye Res. 2021;203:108418. https://doi.
org/10.1016/j.exer.2020.108418.

27. Shivaji S, Jayasudha R, Sai Prashanthi G, Kalyana Chakravarthy S, Sharma S. 
The human ocular surface fungal microbiome. Invest Ophthalmol Vis Sci. 
2019;60(1):451–9. https://doi.org/10.1167/iovs.18-26076.

28. Adukwu BU, Nwosu SNN, Emele FE, Uba-Obiano C, Onyiaorah AA. Conjunc-
tival Fungal Flora in a Tertiary Eye Hospital in Nigeria. J West Afr Coll Surg. 
2023;13(1):79–83. https://doi.org/10.4103/jwas.jwas_216_22.

29. Wang Z, Zhang P, Huang C, Guo Y, Dong X, Li X. Conjunctival sac bacterial 
culture of patients using levofloxacin eye drops before cataract surgery: a 
real-world, retrospective study. BMC Ophthalmol. 2022;22(1):328. https://doi.
org/10.1186/s12886-022-02544-2.

30. Kruse A, Thomsen RW, Hundborg HH, Knudsen LL, Sorensen HT, Schonhey-
der HC. Diabetes and risk of acute infectious conjunctivitis–a population-
based case-control study. Diabet Med. 2006;23(4):393–7. https://doi.
org/10.1111/j.1464-5491.2006.01812.x.

31. Ramos-Remus C, Suarez-Almazor M, Russell AS. Low tear production in 
patients with diabetes mellitus is not due to Sjogren’s syndrome. Clin Exp 
Rheumatol. 1994;12(4):375–80.

32. Chen Z, Xiang Z, Cui L, Qin X, Chen S, Jin H, et al. Significantly different 
results in the ocular surface microbiome detected by tear paper and 
conjunctival swab. BMC Microbiol. 2023;23(1):31. https://doi.org/10.1186/
s12866-023-02775-3.

33. Bilen H, Ates O, Astam N, Uslu H, Akcay G, Baykal O. Conjunctival flora in 
patients with type 1 or type 2 diabetes mellitus. Adv Ther. 2007;24(5):1028–
35. https://doi.org/10.1007/BF02877708.

34. Ando N, Takatori K. Fungal flora of the conjunctival sac. Am J Ophthalmol. 
1982;94(1):67–74. https://doi.org/10.1016/0002-9394(82)90193-3.

35. Hanson B, Zhou Y, Bautista EJ, Urch B, Speck M, Silverman F, et al. Character-
ization of the bacterial and fungal microbiome in indoor dust and outdoor 
air samples: a pilot study. Environ Sci Process Impacts. 2016;18(6):713–24. 
https://doi.org/10.1039/c5em00639b.

36. Zhou Y, Holland MJ, Makalo P, Joof H, Roberts CH, Mabey DC, et al. The 
conjunctival microbiome in health and trachomatous disease: a case 
control study. Genome Med. 2014;6(11):99. https://doi.org/10.1186/
s13073-014-0099-x.

37. Daryabor G, Atashzar MR, Kabelitz D, Meri S, Kalantar K. The effects of type 
2 diabetes Mellitus on Organ Metabolism and the Immune System. Front 
Immunol. 2020;11:1582. https://doi.org/10.3389/fimmu.2020.01582.

38. Daryabor G, Kabelitz D, Kalantar K. An update on immune dysregulation 
in obesity-related insulin resistance. Scand J Immunol. 2019;89(4):e12747. 
https://doi.org/10.1111/sji.12747.

39. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. 
Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1:15019. https://doi.
org/10.1038/nrdp.2015.19.

40. Makowski L, Chaib M, Rathmell JC, Immunometabolism. From basic mecha-
nisms to translation. Immunol Rev. 2020;295(1):5–14. https://doi.org/10.1111/
imr.12858.

41. Li S, Yi G, Peng H, Li Z, Chen S, Zhong H, et al. How ocular surface microbiota 
debuts in type 2 diabetes Mellitus. Front Cell Infect Microbiol. 2019;9:202. 
https://doi.org/10.3389/fcimb.2019.00202.

42. Aitken JD, Gewirtz AT. Gut microbiota in 2012: toward understanding 
and manipulating the gut microbiota. Nat Rev Gastroenterol Hepatol. 
2013;10(2):72–4. https://doi.org/10.1038/nrgastro.2012.252.

43. Yamashiro Y. Gut microbiota in Health and Disease. Ann Nutr Metab. 
2017;71(3–4):242–6. https://doi.org/10.1159/000481627.

https://doi.org/10.3390/jcm12154948
https://doi.org/10.1016/j.ecl.2021.05.013
https://doi.org/10.1007/s11892-019-1173-y
https://doi.org/10.1007/s11892-019-1173-y
https://doi.org/10.4103/IJO.IJO_2770_22
https://doi.org/10.3791/63890
https://doi.org/10.1016/j.jtos.2020.09.006
https://doi.org/10.1038/nutd.2017.4
https://doi.org/10.1038/nutd.2017.4
https://doi.org/10.2337/dc16-2320
https://doi.org/10.2337/dc16-2320
https://doi.org/10.1016/j.ophtha.2019.09.022
https://doi.org/10.1016/j.ophtha.2019.09.022
https://doi.org/10.5693/djo.01.2021.08.001
https://doi.org/10.5693/djo.01.2021.08.001
https://doi.org/10.1186/s12886-023-02995-1
https://doi.org/10.1167/iovs.63.13.20
https://doi.org/10.1167/iovs.63.13.20
https://doi.org/10.1128/Spectrum.00857-21
https://doi.org/10.1128/Spectrum.00857-21
https://doi.org/10.3389/fmicb.2022.952473
https://doi.org/10.3389/fmicb.2022.952473
https://doi.org/10.1097/ICL.0000000000000905
https://doi.org/10.1097/ICL.0000000000000905
https://doi.org/10.1080/07853890.2021.1925150
https://doi.org/10.1016/j.ajo.2023.06.016
https://doi.org/10.5152/eurasianjmed.2023.22234
https://doi.org/10.5152/eurasianjmed.2023.22234
https://doi.org/10.4103/jomfp.jomfp_163_21
https://doi.org/10.1186/s13568-019-0931-1
https://doi.org/10.1186/s13568-019-0931-1
https://doi.org/10.1016/j.survophthal.2023.02.001
https://doi.org/10.1016/j.survophthal.2023.02.001
https://doi.org/10.1016/j.cmi.2016.04.008
https://doi.org/10.1016/j.cmi.2016.04.008
https://doi.org/10.1167/iovs.61.8.22
https://doi.org/10.1167/iovs.16-19803
https://doi.org/10.1167/iovs.16-19803
https://doi.org/10.1016/j.exer.2020.108418
https://doi.org/10.1016/j.exer.2020.108418
https://doi.org/10.1167/iovs.18-26076
https://doi.org/10.4103/jwas.jwas_216_22
https://doi.org/10.1186/s12886-022-02544-2
https://doi.org/10.1186/s12886-022-02544-2
https://doi.org/10.1111/j.1464-5491.2006.01812.x
https://doi.org/10.1111/j.1464-5491.2006.01812.x
https://doi.org/10.1186/s12866-023-02775-3
https://doi.org/10.1186/s12866-023-02775-3
https://doi.org/10.1007/BF02877708
https://doi.org/10.1016/0002-9394(82)90193-3
https://doi.org/10.1039/c5em00639b
https://doi.org/10.1186/s13073-014-0099-x
https://doi.org/10.1186/s13073-014-0099-x
https://doi.org/10.3389/fimmu.2020.01582
https://doi.org/10.1111/sji.12747
https://doi.org/10.1038/nrdp.2015.19
https://doi.org/10.1038/nrdp.2015.19
https://doi.org/10.1111/imr.12858
https://doi.org/10.1111/imr.12858
https://doi.org/10.3389/fcimb.2019.00202
https://doi.org/10.1038/nrgastro.2012.252
https://doi.org/10.1159/000481627


Page 17 of 17Li et al. BMC Microbiology           (2024) 24:90 

44. Matsha TE, Prince Y, Davids S, Chikte U, Erasmus RT, Kengne AP, et al. Oral 
Microbiome signatures in Diabetes Mellitus and Periodontal Disease. J Dent 
Res. 2020;99(6):658–65. https://doi.org/10.1177/0022034520913818.

45. Prashanthi GS, Jayasudha R, Chakravarthy SK, Padakandla SR, SaiAbhilash 
CR, Sharma S, et al. Alterations in the Ocular Surface Fungal Microbiome in 
Fungal Keratitis patients. Microorganisms. 2019;7(9). https://doi.org/10.3390/
microorganisms7090309.

46. Jeong W, Keighley C, Wolfe R, Lee WL, Slavin MA, Kong DCM, et al. The epi-
demiology and clinical manifestations of mucormycosis: a systematic review 
and meta-analysis of case reports. Clin Microbiol Infect. 2019;25(1):26–34. 
https://doi.org/10.1016/j.cmi.2018.07.011.

47. Zhu X, Wei L, Rong X, Zhang Y, Zhang Q, Wen X, et al. Conjunctival Microbiota 
in patients with type 2 diabetes Mellitus and influences of Periopera-
tive Use of Topical Levofloxacin in ocular surgery. Front Med (Lausanne). 
2021;8:605639. https://doi.org/10.3389/fmed.2021.605639.

48. Kriss M, Hazleton KZ, Nusbacher NM, Martin CG, Lozupone CA. Low diversity 
gut microbiota dysbiosis: drivers, functional implications and recovery. Curr 
Opin Microbiol. 2018;44:34–40. https://doi.org/10.1016/j.mib.2018.07.003.

49. Kawano Y, Edwards M, Huang Y, Bilate AM, Araujo LP, Tanoue T et al. 
Microbiota imbalance induced by dietary sugar disrupts immune-mediated 

protection from metabolic syndrome. Cell. 2022;185(19):3501-19 e20; https://
doi.org/10.1016/j.cell.2022.08.005.

50. Zuo T, Wong SH, Cheung CP, Lam K, Lui R, Cheung K, et al. Gut fungal 
dysbiosis correlates with reduced efficacy of fecal microbiota transplantation 
in Clostridium difficile infection. Nat Commun. 2018;9(1):3663. https://doi.
org/10.1038/s41467-018-06103-6.

51. Ost KS, Round JL. Commensal fungi in intestinal health and disease. Nat Rev 
Gastroenterol Hepatol. 2023. https://doi.org/10.1038/s41575-023-00816-w.

52. Lam S, Zuo T, Ho M, Chan FKL, Chan PKS, Ng SC. Review article: fungal altera-
tions in inflammatory bowel diseases. Aliment Pharmacol Ther. 2019;50(11–
12):1159–71. https://doi.org/10.1111/apt.15523.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 

https://doi.org/10.1177/0022034520913818
https://doi.org/10.3390/microorganisms7090309
https://doi.org/10.3390/microorganisms7090309
https://doi.org/10.1016/j.cmi.2018.07.011
https://doi.org/10.3389/fmed.2021.605639
https://doi.org/10.1016/j.mib.2018.07.003
https://doi.org/10.1016/j.cell.2022.08.005
https://doi.org/10.1016/j.cell.2022.08.005
https://doi.org/10.1038/s41467-018-06103-6
https://doi.org/10.1038/s41467-018-06103-6
https://doi.org/10.1038/s41575-023-00816-w
https://doi.org/10.1111/apt.15523

	﻿High-throughput sequencing reveals differences in microbial community structure and diversity in the conjunctival tissue of healthy and type 2 diabetic mice
	﻿Abstract
	﻿Introduction
	﻿Methods
	﻿Study subjects and housing
	﻿Conjunctival tissue Sample Collection


	﻿RNA extraction and sequencing
	﻿Differential gene expression analysis
	﻿Enrichment analysis of gene functions and pathways
	﻿Protein-protein interaction network construction
	﻿16 S rDNA and ITS extraction and sequencing
	﻿OTU clustering and species annotation
	﻿Diversity analysis
	﻿Functional prediction
	﻿Statistical analysis and mapping
	﻿Results
	﻿Transcriptome analysis of samples
	﻿16 S rDNA sequencing results and changes in microbial diversity
	﻿Elaborating the distribution of bacterial flora through 16 S rDNA sequencing
	﻿ITS sequencing results and changes in microbial diversity
	﻿Elaborating the distribution of fungal mycota by ITS sequencing
	﻿Functional prediction of 16 S rDNA and ITS sequencing communities
	﻿Comparison of bacterial and fungal diversity

	﻿Discussion
	﻿References


