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Abstract 

Background  Although the spread of antimicrobial resistance (AMR) through food and its production poses a signifi-
cant concern, there is limited research on the prevalence of AMR bacteria in various agri-food products. Sequencing 
technologies are increasingly being used to track the spread of AMR genes (ARGs) in bacteria, and metagenom-
ics has the potential to bypass some of the limitations of single isolate characterization by allowing simultane-
ous analysis of the agri-food product microbiome and associated resistome. However, metagenomics may still be 
hindered by methodological biases, presence of eukaryotic DNA, and difficulties in detecting low abundance targets 
within an attainable sequence coverage. The goal of this study was to assess whether limits of detection of ARGs 
in agri-food metagenomes were influenced by sample type and bioinformatic approaches.

Results  We simulated metagenomes containing different proportions of AMR pathogens and analysed them for tax-
onomic composition and ARGs using several common bioinformatic tools. Kraken2/Bracken estimates of species 
abundance were closest to expected values. However, analysis by both Kraken2/Bracken indicated presence of organ-
isms not included in the synthetic metagenomes. Metaphlan3/Metaphlan4 analysis of community composition 
was more specific but with lower sensitivity than the Kraken2/Bracken analysis. Accurate detection of ARGs dropped 
drastically below 5X isolate genome coverage. However, it was sometimes possible to detect ARGs and closely 
related alleles at lower coverage levels if using a lower ARG-target coverage cutoff (< 80%). While KMA and CARD-RGI 
only predicted presence of expected ARG-targets or closely related gene-alleles, SRST2 (which allows read to map 
to multiple targets) falsely reported presence of distantly related ARGs at all isolate genome coverage levels. The 
presence of background microbiota in metagenomes influenced the accuracy of ARG detection by KMA, resulting 
in mcr-1 detection at 0.1X isolate coverage in the lettuce but not in the beef metagenome.

Conclusions  This study demonstrates accurate detection of ARGs in synthetic metagenomes using various bioin-
formatic methods, provided that reads from the ARG-encoding organism exceed approximately 5X isolate coverage 
(i.e. 0.4% of a 40 million read metagenome). While lowering thresholds for target gene detection improved sensitivity, 
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this led to the identification of alternative ARG-alleles, potentially confounding the identification of critical ARGs 
in the resistome. Further advancements in sequencing technologies providing increased coverage depth or extended 
read lengths may improve ARG detection in agri-food metagenomic samples, enabling use of this approach for track-
ing clinically important ARGs in agri-food samples.

Keywords  Metagenomics, Antimicrobial resistance, Sequence coverage, Limit of detection

Background
Antimicrobial use in medicine and agriculture is a poten-
tial driver of antimicrobial resistance (AMR) dissemina-
tion [1]. Many environments including plants, animals, 
food, and water sources can function as routes for trans-
fer of AMR genes (ARGs) within and between bacterial 
populations [2, 3]. Food production connects many of 
these habitats, potentially furthering the spread of both 
AMR and pathogenic bacteria [3].

Food production occurs along a continuum from agri-
cultural and manufacturing production processes to 
distribution and consumption, with multiple points for 
the entry of microbial contaminants [4]. Food-testing 
practices for detecting bacterial pathogens traditionally 
require sampling of food products and production facili-
ties followed by enrichment and culturing for organisms 
of interest. However, these methods are time consum-
ing, labor intensive, and only target and identify specific 
pathogenic bacteria (e.g. Salmonella and Listeria mono-
cytogenes), which may not be the principal reservoirs 
for clinically important ARGs. In contrast, other genera 
commonly found in agri-food samples, such as Citrobac-
ter, Enterobacter, Hafnia, Klebsiella, and Proteus more 
often exhibit AMR of concern [5–7].

AMR detection is achievable using a variety of differ-
ent phenotypic and molecular methods [8]. Similar to 
pathogen detection, culture-based approaches are often 
laborious, species-specific, and exclude unculturable iso-
lates [9–11]. Molecular methods that target known ARGs 
are generally quicker and more cost-effective. Common 
techniques include PCR, quantitative or real-time PCR 
(qPCR), hybridization techniques, high resolution melt-
ing curve analysis, and matrix-assisted laser desorption 
ionization-time of flight mass spectrometry (MALDI-
TOF MS) [12–17]. Yet, these approaches are also limited 
to analysis of well-studied organisms or ARGs and are 
not always useful for screening a large number of targets. 
Additional limitations arise due to the large number of 
ARG allelic variants, making development of all-encom-
passing assays for a single gene target almost impossible. 
In addition, discovery of novel ARGs may result in the 
need to design additional assays and re-analyse samples.

Metagenomic sequencing has the potential to bypass 
the limitations of culture-based and other molecular 
techniques, while also enabling evaluation of a sample’s 

microbial diversity [18]. Yet, this approach is not without 
its own intrinsic limitations. For example, when sequenc-
ing DNA from a sample, it’s generally assumed that the 
sequenced fraction represents a random subset of the 
total microbial community within that sample. Variations 
in species composition and abundance might emerge 
depending on the specific subsample analyzed, with rarer 
species more likely to be unevenly identified across dif-
ferent subsamples [19, 20]. Furthermore, agri-food sam-
ple matrices often exhibit complexity, as they encompass 
unpredictable and unknown microbiota in combina-
tion with substantial quantities of eukaryotic DNA. The 
coexistence of diverse eukaryotic cells, novel bacterial 
and viral species, and pathogenic bacteria complicates 
taxonomic classification of metagenomic sequence data, 
particularly for unknown species [21]. Current databases, 
while extensive, are not exhaustive, with pathogenic spe-
cies being disproportionately represented [22, 23]. The 
presence of shared genomic elements across various spe-
cies adds another layer of complexity to the precise iden-
tification of specific bacterial species. Finally, targeted 
species may be present at relative proportions below the 
limit of detection of metagenomic approaches [21]. Thus, 
it remains unclear whether metagenomics is sufficiently 
robust and sensitive for use in microbial surveillance in 
food production.

Previous studies have applied metagenomics to evalu-
ate AMR in various sample matrices [9, 24–33]. A recog-
nized challenge of this approach is the difficulty linking 
the ARG to its respective host bacterial species, especially 
given that these genes often reside on mobile genetic ele-
ments transferrable between species [34, 35]. Moreover, 
the presence of an ARG cannot necessarily be correlated 
to expression of a resistance phenotype. Fitzpatrick and 
Walsh [25] observed a difference in the distribution of 
ARGs where a high abundance was observed in human 
microbiomes but abundance in marine and soil metage-
nomes varied in comparison. They concluded that there 
are limits to detection and identification of ARGs in com-
plex microbiome populations, noting that ARGs may 
not have been detected because they were present below 
these limits, and that failure to detect ARGs in a metage-
nome does not equate to absence of ARGs. Ni et  al. 
[36] estimated the amount of metagenomic sequenc-
ing required to fulfill the objectives of a given study. 
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They note that prokaryotes encounter different selective 
pressures in different environments which may affect 
required sequencing depth [36]. Previous studies have 
suggested that 10–20 X coverage of a bacterial genome is 
required to reliably detect ARGs in a metagenome, par-
ticularly when using stringent cutoffs for allele detection 
[37, 38]. However, considering shotgun metagenomic 
sequencing only captures a fraction of the total commu-
nity within DNA sample, it is unlikely that all organisms 
within a sample will be equally abundant at genome cov-
erage above 1X.

The objectives of the current study were to determine 
the limit of detection (LOD) for ARGs in metagenomic 
samples and to compare different bioinformatic tools to 
evaluate proficiency in accurately assigning taxonomy 
or identifying ARGs in complex sample matrices, such 
as those found in agri-food testing. Given the inherent 
diversity and complexity of natural microbiomes, which 
frequently included uncharacterized species or strains, 
synthetic metagenomes with known values for species 
composition and ARG content were generated. This 
approach facilitated assessment of method performance.

Materials and methods
To facilitate reproducibility, the commands used to run 
bioinformatics steps are provided in Supplementary 
Information File 1.

Sequences used in synthetic metagenome synthesis
Sequences for Enterococcus faecalis, Escherichia coli, 
Listeria monocytogenes, Klebsiella pneumoniae, and Sal-
monella enterica serovar Heidelberg from the Ottawa 
Laboratory Carling Canadian Food Inspection Agency 
(OLC-CFIA) strain collection were selected for synthetic-
metagenome creation. Where possible, different genera 
encoding differing target ARGs of interest were selected. 
Sequence data was generated for this study or obtained 
from public repositories as indicated in Table 1. Sequenc-
ing and assembly methods for bacterial sequences uti-
lized to create mock-metagenomes are as described 
previously [37]. The metagenomic sequences used as the 
base for spiked-metagenome formulation were short-
read Illumina HiSeq raw-read sequences (Table 1).

Synthetic metagenome construction
Synthetic metagenomes were constructed by simulat-
ing reads from assembled genomes of the five different 
ARG encoding organisms described in Table 1 and com-
bining them at different coverage levels. These synthetic 
metagenomes were then shuffled into publicly available 
beef fecal and lettuce metagenomic datasets (Table  1). 
Synthetic metagenomes were analyzed both on their 
own, and after spiking into metagenomic datasets.

Illumina HiSeq short reads were synthesized from the 
draft genome assemblies and raw reads of the bacterial 
genomes using the FetaGenome2 (fabricate metagen-
ome) tool developed in house [42]. Briefly, Art version 
2.5.8 was used to simulate paired-end HiSeq reads of 
150  bp in length with a 300  bp insert size. To simulate 
variability in coverage levels (e.g. higher coverage in plas-
mids vs chromosomal sequences), the FetaGenomePlas-
midAware edition uses BWA to map reads to the original 
assembly to determine coverage depth of each contig in 
the given assembly, then uses the coverage report output 
to create more reads for higher-depth locations and fewer 
reads for low-depth locations of the genome. Reads were 
subsampled 10 times to 0.1-, 1-, 2-, 5-, and 10-X genome 
coverage for the bacterial genomes (Table S1). Fifty 
total samples (n = 50, Table S2) were prepared by creat-
ing ten replicates of five distinct mixtures. Each mixture 
consisted of varying coverage levels of the five bacteria 
listed in Table  1. All replicates of all synthetic mixtures 
were then mixed into the lettuce and beef metagenomes 
(Table 1). This spiking was conducted by first concatenat-
ing the replicate synthetic mixtures with the beef and let-
tuce metagenomes; followed by shuffling the reads using 
fastq-shuffle [43] with the randomseed (-r) setting acti-
vated [43]. Overall, this created 100 synthetic spiked-
metagenome replicates (50 of each beef and lettuce) and 
50 control synthetic-bacterial communities for analysis.

Taxonomic profiling
Taxonomy of all synthetic metagenomes was inferred 
using Kraken2 version 2.1.1 [44, 45] and both Metaphlan 
versions 3 and 4 [46, 47]. Kraken2 analysis was conducted 
with the prebuilt standard PlusPF (plus plant and fungal) 
database [48]. After running Kraken2, Bracken (Bayesian 
Reestimation of Abundance with KrakEN) [49] was run at 
the species level to re-estimate the taxa abundance in the 
synthetic metagenomes using the taxonomic assignment 
reports from Kraken2. Reports from Kraken2/Bracken 
were converted to BIOM-format using kraken-biom [50] 
for use with Phyloseq [51] in R statistical software version 
4.0.2 (R Core Team, 2014). Metaphlan3 and Metaphlan4 
analyses were run using the CHOCOPhlAn 3 version 
v30_201901 and CHOCOPhlAnSGB vOct22_202212 
marker gene databases, respectively, with default param-
eters to include absolute abundances.

Statistical analysis of taxonomic classifiers
All statistical analyses were conducted using R statisti-
cal software version 3.6.3 [52]. For taxonomic assign-
ment analysis, the increase in the number of operational 
taxonomic units (OTUs) assigned to target genera 
as a function of coverage was determined. From the 
Kraken2 output, the number of OTUs assigned to each 
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of the top 5 non-target genera (Bacillus, Citrobacter, 
Enterobacter, Shigella, Staphylococcus) was also calcu-
lated and plotted with each target genus. As there were 
some zero-values present, a pseudocount of 0.1 was 
added to the number of OTUs for all data to allow log 
transformation. For each target-genus, a linear regres-
sion model with logarithmic transformation of both y 
and x (formula = log10(y+ 0.1) ∼ log10(x) ∗ Genus ) 
was fit to determine the relationship between sequence 
coverage (covariate) and the number of assigned OTUs 
(outcome variable) for each of the target/non-target 
genus combinations. From the models, pairwise com-
parisons of the slope of the regression model for OTUs 
versus coverage were conducted using the lstrends 

command followed by the pairs functions from the 
Least-squares Means R package (formerly lsmeans, now 
emmeans) [53, 54].

Comparison between expected taxonomy and the 
classifiers Bracken, Kraken2, and Metaphlan3/Met-
aphlan4 was also conducted using R version 3.6.3 
[52]. L2 distances (Euclidean distance) of abundances 
were calculated between each taxonomic classifier 
and expected abundance values for each genus or mix. 
Principal coordinate analyses were conducted includ-
ing all replicates (n = 10) using the packages plyr [55] 
and phyloseq [51] with Bray–Curtis dissimilarity index 
and principle coordinate analysis (PCoA) ordination 
method.

Table 1  Sequences used for synthetic metagenome creation

Abbreviations: SRA sequence read archive, ARG​ antimicrobial resistance gene, ESBL extended spectrum-β-lactamase, ATCC American Type Culture Collection
a Data for ATCC 51299 strain (Catalog Number: 51299) is not available through the SRA. Raw sequence data locations for ATCC strains can be found on the ATCC-
Bioinformatics github [40]
b (multiple copies) is listed next to gene(s) which were detected in multiple locations within the isolates’ genome. Isolate sequences’ AMR results are for genes 
with ≥ 80% template coverage. Beef and lettuce metagenome ARGs include all hits from analysis of raw-sequence data (1.0% coverage to 100% coverage)
c The target ARG encoded by corresponding isolate that is focused on in this study

Sequence 
Identifier 
(SRA)a

Strain Description ARGsb Resistance of Interest ARG Targetc Reference

51299a ATCC 51299 Enterococcus faecalis catA8, aph(3’)-IIIa, ant(6)-Ia, 
vanW-B, vanY-B, vanS-B, vanR-
B, vanH-B, vanX-B, vanB, Isa(A), 
erm(B), dfrE, sat4

Vancomycin vanB [39, 40]

SRR25084145 DT10023001 Escherichia coli tetB, tetA, sul1, sul2, sul3, 
qacEdelta1, mcr-1.1, blaTEM-1, 
aph(6)-Id, aph(3’)-Ia, aph(3’’)-Ib, 
addA2, blaEC-19, catA1, cmlA1, 
dfrA1, aadA1 (multiple copies)

Colistin mcr-1.1 This study

SRR25084104 OLC1107 Klebsiella pneumoniae blaCTX-M-15, oqxA10, blaSHV-148, 
fosA (multiple copies), oqxB

ESBL blaCTX-M-15 This study

SRR10830862 CFIAFB20160069 Listeria monocytogenes tetM, fosX, bcrABC Tetracycline tet(M) [7]

SRR10859129 CFIAFB20130200 Salmonella enterica ser. 
Heidelberg

blaCMY-2 ESBL blaCMY-2 [37]

SRR3053167 Beef fecal metagenome aad9,aadA9,aadE,ant(6)-Ia,ant(6)-Ib,ant(9)-Ia,aph(3’)-
IIIa,blaACI-1,blaEC-18,cblA,cfr(C),cfxA_gen,cfxA6,cmx,erm(
33),erm(A),erm(B),erm(C),erm(G),erm(Q),erm(T),erm(X),lnu
(AN2),lnu(C),lnu(G),mef(A),mef(En2),mph(B),msr(D),sat4,s
pw,str,tcrB,tet(32),tet(33),tet(40),tet(44),tet(B),tet(C),tet(M),t
et(O),tet(Q),tet(T),tet(W)

NA [26]

SRR7414924 Lettuce metagenome aac(2’)-Ib,aac(2’)-Ic,aac(3)-IV,aac(6’)-Ie_fam,aacA-
STR-10,aacA34,aadA11,aadA2,aadA6,
ant(3’’)-IIc,ant(6)-Ia,aph(3’)-IIa,aph(4)-Ia,aph(6)-
Id,aph(6)-Smalt,BcII,bla1,blaADC-151,blaCME-1,blaIN-
D-9,blaL1,blaOXA-308,blaOXA-571,blaOXA-60,blaOXA-
658,blaSPU-1,blaTEM-123,bleO,catA9,cfr-Cb,cipA,cmlR,
cmx,erm(A),erm(X),erm(X),estDL136,floR,fosB_gen,fosB-
251804940,lsa(B),mecI_of_mecC,mef(A),mgt,mphL,msr
(D),oleD,oqxB12,oqxB16,otr(A),rgt1438,rox,rph,rphC,rph
D,sul1,sul2,tet(C),tet(G),tet(O),tet(V),tetA(P),vanA-Pa,vanI
,vanJ,vanK-Sc,vanM,vanO,vanR-A,vanR-O,vanS-O,vanX-
Sc,vga(B)

NA [41]
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Antimicrobial resistance gene detection
For each synthetic-metagenome replicate, raw-reads 
were analysed for ARGs using the k-mer alignment 
(KMA) tool version 1.42 [56], short read sequence 
typer version 2 (SRST2) [57], and CARD-RGI (Com-
prehensive Antibiotic Resistance Database – Resist-
ance Gene Identifier) version 5.2.1 using the protein 
homolog model [58, 59]. Both KMA and SRST2 were 
run using the NCBI AMRFinderPlus Reference Gene 
Catalog AMR CDS database version 3.10 (downloaded 
from the NCBI FTP server on 2019–11-01).

KMA
KMA version 1.42 with default settings was used for 
database indexing (NCBI AMRFinderPlus database 
described above) and detection of ARGs in paired-end 
raw reads. KMA analysis was also conducted on all 
subsampled isolate sequence replicates, prior to mix-
ing, using the extended features (-ef ) flag to output the 
mapped read counts for each ARG template.

SRST2
Database clustering for use with SRST2 version 0.2.0 
was conducted according to authors’ instructions [60] 
using Cd-hit [61]. For ARG detection with SRST2 mini-
mum coverage was set to 1, and all other settings were 
left at default.

CARD‑RGI
CARD-RGI version 6.0.0 was installed via conda. 
The CARD database version 3.2.2 was downloaded 
and annotated for use with RGI according to authors’ 
instructions [59, 62]. RGI analysis of synthetic metage-
nomes was conducted using the unpublished (currently 
under beta-testing) RGI bwt algorithm with KMA 
aligner and the CARD reference sequence database.

AMR data analysis
From KMA analysis of subsampled sequences, the read 
count data included in the mapstat files were merged 
using a custom python script based on the merge script 
from Metaphlan [63]. To perform ordination, data was 
imported into R version 3.6.3 as a phyloseq object using 
a custom function [63] based on the metaphlanToPhy-
loseq function by Wipperman [64]. Ordination of read 
counts mapping to ARGs for the subsampled Entero-
coccus, E. coli, and Klebsiella replicates was conducted 
using non-metric multi-dimensional scaling (NMDS) 

and Bray–Curtis dissimilarity. Reported ARG outputs 
from KMA, SRST2, and CARD-RGI analysis of syn-
thetic metagenomes were enumerated, and categorized 
as target-gene, target-allele (eg. an allele closely related 
to the target gene), and non-target.

Data availability
Raw paired-end sequence data for synthesized metagen-
omes have been deposited to the SRA under BioProject 
PRJNA922558 (Table S2). Paired-end raw reads for bac-
terial isolates used to synthesize mock-metagenomes are 
also available (Accessions in Table 1).

Estimation of number of reads required for ARG detection
To estimate the ratio of target-isolate reads to metagenome 
reads needed for detecting ARGs at 5- and 10-X isolate cov-
erage, we used a straightforward model assuming the "best-
case scenario." This model assumes that all reads within a 
metagenome are derived from bacteria. Estimates for 5- 
and 10-X coverage of 3, 4, and 5 Mbp (million base pairs) 
isolate genomes were calculated (see equations below) and 
the required ratio (abundance %) of each for detection in 
metagenomes of 5, 10, 40, 50, 100, and 125 Mbp, with read 
length of 150 bp, were determined (Table 2).

Results
Incorrect taxonomic assignment of genera in subsampled 
isolate whole‑genome sequences due to close relatives
Taxonomic assignment tools (Kraken2/Bracken, Met-
aphlan3/Metaphlan4) were initially assessed using syn-
thetic sequencing read sets generated from subsampling 
single isolate whole-genome sequences. Taxonomic 
assignment conducted using Kraken2 with the standard 
plusPF database resulted in incorrect detection of mul-
tiple genera in single isolate sequences (Fig.  1, Figure 
S1). The top 10 non-target bacterial genera reported by 
Kraken2 included Bacillus, Citrobacter, Enterobacter, 
Shigella, and Staphylococcus (Fig. 1A, Figure S1).

To determine whether incorrect read assignment 
occurred due to tools detecting and reporting gene 
markers of closely related genera, the number of reads 
reported for the target organism (i.e. the subsampled 
isolate) were compared to the number of reads reported 
for each of the top non-target organisms (Bacillus, Citro-
bacter, Enterobacter, Shigella, and Staphylococcus). This 

Read count =
genome coverage × genome size

read length

Required isolate abundance =
Read count

Total # of reads in metagenome
× 100
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was conducted by plotting the number of reported OTUs 
for each genus as a function of each subsampled target 
isolate’s genome coverage (Fig. 1A). A linear model was 
applied to the relationship between coverage level and 
OTUs for each genus, and the slopes of these relation-
ships for each target genus:non-target genus combination 
were compared. This investigation sought to determine if 
the number of assigned OTUs for non-target organisms 

rose in tandem with increased coverage of the target 
organism. Essentially, if the slopes of the model’s fit for 
both target and non-target aren’t significantly different, 
it suggests that as the target’s coverage expands, there’s a 
concurrent increase in OTUs misassigned to similar non-
target organisms.

The best-fitting model for the relationship between 
coverage level and OTUs for the target genus was a 

Table 2  Bacterial isolate-derived sequencing read abundance (%) in metagenomes of varying sizes for detection of antimicrobial 
resistance genes in isolates with 3, 4, or 5 Mbp genomes

Abbreviations: M million, Mbp million base pairs
a Metagenome size refers to number of reads in metagenome
b For each genome size (3, 4, and 5 Mbp) 5- and 10-X genome coverage is estimated for read length of 150 bp (with number of reads to create specified coverage level 
in parentheses). Percentages are corresponding to metagenome size in the first column

Metagenome Sizea 
(M)

Isolate Percentage in Metagenomeb

3 Mbp 4 Mbp 5 Mbp

5X (100000) 10X (200000) 5X (133333) 10X (266666) 5X (166666) 10X (333333)

5 2.00 4.00 2.67 5.33 3.33 6.67

10 1.00 2.00 1.33 2.67 1.67 3.33

40 0.25 0.50 0.33 0.67 0.42 0.83

50 0.25 0.40 0.27 0.53 0.33 0.67

100 0.1 0.20 0.13 0.27 0.17 0.33

125 0.8 0.16 0.11 0.21 0.13 0.27

Fig. 1  Incorrect assignment of operational taxonomic units (OTUs) to closely related genera. A Assigned OTUs (y-axis) as a function of target 
isolate’s genome coverage (x-axis). Analyses were conducted on subsampled reads of each target-genus (top-panel headings) and grouped 
by genus (color legend). For each coverage level (0.1, 1, 2, 5, or 10X) n = 10 subsampled replicates of the target organism were created. Lines 
represent the linear regression (log (y + 0.1) ~ log(x)) fit to each genus (see legend). B to F: Pairwise comparisons between top 10 genera 
with mapped OTUs and subsampled targets: B. Enterococcus, C. Escherichia, D. Klebsiella, E. Listeria, and F. Salmonella. Points represent the modelled 
slope of the regression analysis ± 95% confidence intervals (y-axis). Target organism is indicated by a red circle and red text (x-axis). Significance 
values are displayed above select data points of interest: p > 0.05 = ns; p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***
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log–log linear regression (log(y) ~ log(x)) with equation 
y = b0 + b1x1 , and R2 value of ≥ 0.99 for all target gen-
era. This model was fit for all genera including the non-
targets in the subsampled isolate sequence data (Fig. 1A). 
For each target organism, the difference between the 
slope of the regression for the target and at least one 
non-target organism was not significant, indicating an 
increased detection of non-target OTU assignments 
as the target’s coverage expanded (Table  3, Fig.  1). For 
instance, subsampled reads from E. coli were often misi-
dentified as related Enterobacteriaceae including Citro-
bacter, Enterobacter, Klebsiella, Salmonella, and Shigella. 
As a result, the estimated slopes for E. coli and these non-
target species showed no significant differences (Table 3), 
demonstrating that as the sequencing depth of a particu-
lar target organism like E. coli increases, there is a con-
comitant rise in the number of reads incorrectly assigned 
to closely related genera.

Bracken analysis of the Kraken2 reports for the sub-
sampled isolate sequences assigned fewer OTUs to 
non-target organisms. Bacillus was not present in the 
top 10 genera of Bracken analyses of Listeria and Ente-
rococcus reads and was instead replaced by the genus 
Priestia, which is also of the Bacillaceae family (Fig-
ure S2). Although the relationship between coverage 

and assigned OTUs appeared to be similar for non-
target and target organisms (Figure S2), most of the 
models for non-target and target organisms were sig-
nificantly different for Bracken outputs (Figures S2 
and S3). Non-significant differences were observed for 
the non-targets Listeria and Priestia from subsampled 
Enterococcus reads; as well as between Citrobacter and 
Salmonella (Figure S2). In contrast, analyses by Met-
aphlan3/Metaphlan4 were more specific, and did not 
report any non-target organisms in the subsampled 
sequences.

Taxonomic assignment of genera 
in synthetic‑metagenome mixtures
Following analysis of the subsampled sequences from 
isolate genomes, synthetic metagenomes were created 
by mixing subsampled sequences from each of the five 
pathogens (n = 10 replicates, five combinations) (Table 
S2), and were then analysed for taxonomic composi-
tion and ARGs using various bioinformatic tools. Simi-
lar to the single isolate sequence analysis, Metaphlan3/
Metaphlan4 analyses were the most specific, reporting 
only the target genera even at high organism abundance. 
However, Metaphlan3/4 analyses were less sensitive for 

Table 3  Comparison of linear model fit between target and non-target genera

* Results for Listeria versus Enterococcus and Staphylococcus were slightly significant, but are still displayed
a Equation for the linear log–log model for relationship between coverage level and operational taxonomic units is below each genus
b For each genus in the first column, only non-target genera with interesting (non-significant) results are listed
c Equation for the log–log linear model fit to the relationship between coverage level and assigned operational taxonomic units for corresponding non-target genus
d p-value following statistical comparison of slopes between target genus and non-target genus. Non-significant results are displayed (p > 0.05); p < 0.05 = *

Target genusa Non-target genusb Model equationc p-valued

Enterococcus ŷ = 4.03 + 1.00x Bacillus ŷ = 0.276 + 1.07x p > 0.997

Staphylococcus ŷ = 1.11 + 1.26x p > 0.051

Salmonella ŷ = -0.304 + 1.02x p > 0.999

Escherichia ŷ = 4.09 + 1.00x Citrobacter ŷ = 1.48 + 0.928x p > 0.848

Enterobacter ŷ = 1.39 + 0.999x p = 1.0

Klebsiella ŷ = 1.46 + 0.967x p > 0.999

Salmonella ŷ = 1.05 + 1.01x p = 1.0

Shigella ŷ = 1.34 + 1.06x p > 0.931

Klebsiella ŷ = 4.22 + 0.999x Citrobacter ŷ = 1.22 + 1.06x p > 0.988

Enterobacter ŷ = 1.74 + 0.995x p = 1.0

Escherichia ŷ = 1.6 + 1.06x p > 0.993

Listeria ŷ = 4 + 1.00x Bacillus ŷ = 1.07 + 1.09x p > 0.595

Enterococcus ŷ = 0.543 + 1.16x p < 0.024 *

Staphylococcus ŷ = 0.457 + 1.17x p < 0.016 *

Salmonella ŷ = 4.18 + 1.00x Citrobacter ŷ = 0.584 + 1.17x p > 0.282

Enterobacter ŷ = 0.22 + 1.02x p > 0.999

Escherichia ŷ = 1.96 + 1.01x p > 0.999

Klebsiella ŷ = 0.683 + 1.03x p > 0.999
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organism detection. Whereas Kraken2/Bracken reported 
Klebsiella even when it was present at low levels (Mix 3 
replicates), Metaphlan3 and Metaphlan4 assigned OTUs 
to Klebsiella in only two and four (respectively) of the ten 
low-coverage replicates even though this organism was 
present (Fig. 2A, Mix 3).

Abundance estimation of genera in the synthetic 
metagenomes by Bracken was closest to expected values 
as determined by L2-distance and principal coordinate 
analysis (PCoA) (Fig.  2  B to E). L2-distances between 
expected genus abundance and reported genus abun-
dance by Bracken and Kraken2 were almost identical for 
all replicates (Fig.  2  B and C). In contrast, both L2-dis-
tance and PCoA for expected values versus Metaphlan3/
Metaphlan4 reported values varied between replicates 
(Fig. 2 B to E).

Coverage affects ARG content and detection
Analysis of the subsampled isolate sequences prior to 
mixing was conducted to investigate the effects of isolate 
genome coverage on ARG content and detection. KMA 
was used to determine the number of reads mapping to 
each ARG in the database for each subsampled replicate. 
Ordination was performed on the number of reads map-
ping to ARGs for Enterococcus, E. coli, and Klebsiella rep-
licate subsamples (Fig.  3). Salmonella and Listeria were 
excluded as these datasets were insufficient for ordina-
tion, likely due to the low number of encoded ARGs. At 
lower subsampled-sequence coverage, the number of 
reads mapping to encoded ARGs was more varied. As 
sequence coverage increased, ARG composition patterns 
became more homogeneous (Fig. 3).

Following analysis of individual subsampled isolate 
sequences, AMR analysis of the synthetic metagenome 
mixtures prior to spiking into the metagenomes (lettuce 
and beef fecal) was conducted to determine what role 
isolate sequence coverage played in ARG detection of a 
low-complexity community. Detection of ARGs of inter-
est was divided into three categories: Target gene, refers 
to the target gene-allele detected in the original isolate 
assembly (Fig. 4, top row); Target clade, refers to detec-
tion of alleles that are within the same phylogenetic clade 

or closely related to the target gene (Fig. 4, middle row); 
Non-target refers to alleles of the target gene family that 
are not as closely related to the target gene (Fig. 4, bot-
tom row). For example, blaCMY-74 (non-target) is only 90% 
identical to blaCMY-2 (target), whereas blaCMY-44 (target-
clade) is 98.95% identical to blaCMY-2.

KMA accurately identified the target gene or closely 
related alleles even at low ARG target coverage (Fig. 4). 
Similarly CARD-RGI accurately identified most gene-
alleles as the target, with the exception of blaCMY-2 which 
the RGI tool sometimes mapped to closely related CMY-
alleles even at higher genome coverage levels (Fig.  4). 
In contrast, SRST2, which uses bowtie2 for read map-
ping, predicted non-target ARGs at ≥ 80% target cover-
age in some replicates, even when the isolate genome 
was present in the metagenome at 10X coverage (Fig. 4). 
For example, at 1X Salmonella genome coverage KMA 
detected blaCMY-2 at ≥ 80% target coverage in three of 
ten replicates and related CMY-alleles in the other seven 
replicates at between 40 and 79% CMY-template cover-
age, and one related CMY-allele at < 20% template cover-
age, totaling 11 predictions in the 10 replicate sequences 
(Table  4, Fig.  4). CARD-RGI, which utilizes KMA for 
target-mapping, also detected blaCMY-2 at ≥ 80% in two 
of ten replicates and 10 related CMY-alleles in the other 
eight replicates (Table  4, Fig.  4). In contrast, SRST2 
detected blaCMY-2 at ≥ 80% in two of ten replicates and 
nine related CMY-2-alleles in the other eight replicates, 
but also detected several non-target CMY alleles at vari-
ous coverage levels totaling 46 gene predictions in the ten 
replicates (Table 4, Fig. 4).

ARGs present at lower coverage levels may be detected 
using target gene‑coverage cutoffs below 80%
As genome coverage increased to 10X, ARGs were reli-
ably detected at ≥ 80% ARG target coverage (Fig.  4). At 
lower isolate genome-coverage levels, the target gene 
was sometimes detected at a lower template coverage: for 
example, for E. coli at 2X coverage the target mcr-1.1 gene 
was detected by SRST2 at ≥ 80% in approximately 30% 
of trials and at 60–80% target-gene coverage in approxi-
mately 20% of trials (Fig. 4, ✕). At lower isolate-genome 

Fig. 2  Taxonomic assignment of control mixtures by different bioinformatics tools. A Abundance (y-axis) of each genus (see color legend) 
in synthetic-community mixtures. Data for expected values are plotted next to results (average of 10 replicates) from analyses by Bracken, Kraken2, 
Metaphlan3, and Metaphlan4 classifiers. B, C Distance between the abundance profile for each classifier compared to the expected composition 
(n = 10 replicates). B L2 abundance distances for each taxonomic classifier compared to the expected composition, assessed for each genus. 
Genera are differentiated by point shape. C L2 abundance distances for each taxonomic classifier compared to the expected composition, assessed 
for each synthetic-community mixture. Synthetic-community mixtures are differentiated by point-shape. D, E Principal coordinate analysis of all 
synthetic-metagenomic mixture replicates’ (n = 10) (D) calculated organism abundances and (E) assigned number of operational taxonomic units. 
Mixtures are differentiated by colour. Point shape denotes classification method. The percentage in parentheses on each axis gives the estimated 
contribution of each principal coordinate to the total variance

(See figure on next page.)
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coverage levels, alleles closely related to the target gene 
were sometimes detected at a lower template coverage. 
For example, at 0.1X coverage, KMA detected the CMY-2 

clade blaCMY-61 allele (99.91% identity to CMY-2) in one 
replicate at 40 – 60% target template coverage but did not 
detect any alleles at ≥ 60% (Fig. 4).

Fig. 2  (See legend on previous page.)
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Isolate genome coverage affects ARG detection in complex 
or agri‑food metagenomes
Analysis of microbial background effects on ARG detec-
tion was conducted by spiking the synthetic mock-com-
munities into lettuce and beef fecal metagenomes (Table 1, 

Table S1). Focusing on Salmonella ser. Heidelberg, the 
target ARG, blaCMY-2 gene and additional CMY-alleles 
were not observed in the unspiked (control) metagenomes 
(Fig. 5, 0X panel). Coverage of the Salmonella. ser. Heidel-
berg isolate in the metagenome affected the proportion 

Fig. 3  As sequence coverage increases detection of encoded AMR gene composition becomes more consistent and reliable. Non-metric 
multidimensional scaling (NMDS) of the number of reads mapped to AMR genes in subsampled sequence replicates for (A) Enterococcus, (B) 
Escherichia coli, and (C) Klebsiella isolates. Ordination was conducted using NMDS and Bray–Curtis dissimilarity. Subsampled genome coverage 
is differentiated by point shape and colour. n = 10 replicates for each of the five coverage levels (50 total per isolate). Ellipses represent 99% 
confidence regions. Ellipses for 0.1X genome coverage have been omitted

Fig. 4  ARG detection in low complexity bacterial metagenomes. Synthetic metagenomes (n = 50) consisting of short-reads from five organisms 
mixed at different relative proportions (0.1-, 1-, 2-, 5-, and 10-X genome coverage; n = 10 at each coverage level) were evaluated for presence 
of ARGs using KMA (□), CARD-RGI (Ο), and SRST2 (✕) in silico tools. Percent ARG detection (y-axis) in 10 replicates as a function of target gene 
template coverage (x-axis) is shown. Point color differentiates between organism and ARG-detection tool used (see legend). Where multiple 
points of the same colour/shape are present for a given template-identity range (x-axis), each point represents a different allele. Detection greater 
than 100% indicates detection of multiple alleles, rather than only the target allele



Page 11 of 20Cooper et al. BMC Microbiology           (2024) 24:31 	

Ta
bl

e 
4 

N
um

be
r o

f C
M

Y-
ge

ne
(s

) a
nd

 a
lle

le
(s

) d
et

ec
te

d 
by

 K
M

A
 a

nd
 S

RS
T2

 in
 b

ee
f m

et
ag

en
om

es
 c

on
ta

in
in

g 
S.

 s
er

. H
ei

de
lb

er
g 

is
ol

at
e 

pr
es

en
t a

t 1
X 

ge
no

m
e 

co
ve

ra
ge

 (n
 =

 1
0)

Ab
br

ev
ia

tio
ns

: K
M

A 
k-

m
er

 a
lig

nm
en

t m
et

ho
d,

 S
RS

T2
 s

ho
rt

 re
ad

 s
eq

ue
nc

e 
ty

pe
r v

er
si

on
 2

, R
G

I r
es

is
ta

nc
e 

ge
ne

 id
en

tifi
er

 (b
y 

Co
m

pr
eh

en
si

ve
 A

nt
ib

io
tic

 R
es

is
ta

nc
e 

D
at

ab
as

e)
a  A

lle
le

s 
de

te
ct

ed
 b

y 
bi

oi
nf

or
m

at
ic

 to
ol

s 
KM

A
 v

er
si

on
 1

.4
2,

 S
RS

T2
, a

nd
 C

A
RD

-R
G

I v
er

si
on

 5
.2

.1
 w

ith
 K

M
A

 v
 1

.4
2 

as
 th

e 
al

ig
nm

en
t m

et
ho

d.
 N

um
be

r i
n 

bo
ld

 in
di

ca
te

s 
to

ta
l n

um
be

r o
f a

lle
le

s 
de

te
ct

ed
 in

 th
e 

10
 re

pl
ic

at
es

. 
En

zy
m

e-
al

le
le

 a
re

 li
st

ed
 b

el
ow

 fo
r e

ac
h 

CM
Y-

ca
te

go
ry

 a
nd

 C
M

Y-
te

m
pl

at
e 

co
ve

ra
ge

 ra
ng

e
b  To

ta
ls

 a
re

 li
st

ed
 fo

r e
ac

h 
CM

Y-
te

m
pl

at
e 

co
ve

ra
ge

 c
at

eg
or

y 
(ro

w
 to

ta
ls

), 
as

 w
el

l a
s 

th
e 

to
ta

l n
um

be
r o

f g
en

e-
al

le
le

s 
pr

ed
ic

te
d 

fo
r a

ll 
10

 re
pl

ic
at

es
 c

om
bi

ne
d 

fo
r e

ac
h 

to
ol

 (b
ot

to
m

 ro
w

, b
ol

d 
nu

m
be

r)

CM
Y 

Te
m

pl
at

e 
Co

ve
ra

ge

D
et

ec
te

d 
A

RG
 R

el
at

ed
ne

ss
 to

 C
M

Y-
2a

CM
Y-

2
CM

Y-
2 

cl
ad

e
O

th
er

 C
M

Y 
A

lle
le

s 
(N

on
-t

ar
ge

t)
To

ta
ls

b

KM
A

SR
ST

2
RG

I
KM

A
SR

ST
2

RG
I

KM
A

SR
ST

2
RG

I
KM

A
SR

ST
2

RG
I

< 
20

-
-

-
1:

 C
M

Y-
53

-
-

-
20

: 4
 ×

 C
M

Y-
70

, 1
 ×

 C
M

Y-
83

, 1
 ×

 C
M

Y-
10

0,
 

6 
×

 C
M

Y-
15

7,
 8

 ×
 C

M
Y-

15
9

-
1

20
-

20
 –

 4
0

-
-

-
-

1:
 C

M
Y-

44
1:

 C
M

Y-
59

-
5:

 C
M

Y-
65

, C
M

Y-
74

, C
M

Y-
82

, C
M

Y-
10

0,
 

C
M

Y-
15

7
-

-
6

1

40
 –

 6
0

-
-

-
2:

 C
M

Y-
33

, C
M

Y-
13

0
1:

 C
M

Y-
21

5:
 1

 ×
 C

M
Y-

59
, 2

 ×
 C

M
Y-

60
, 1

 ×
 C

M
Y-

59
, 1

 ×
 C

M
Y-

13
0

-
4:

 C
M

Y-
50

, C
M

Y-
65

, C
M

Y-
82

, C
M

Y-
90

-
2

5
5

60
 –

 8
0

-
-

-
3:

 C
M

Y-
44

, C
M

Y-
12

1,
 C

M
Y-

13
2

4:
 2

 ×
 C

M
Y-

44
, 2

 ×
 C

M
Y-

16
1

2:
 C

M
Y-

57
, C

M
Y-

59
-

5:
 C

M
Y-

68
, C

M
Y-

72
, C

M
Y-

89
, C

M
Y-

90
, 

C
M

Y-
11

4
-

3
9

2

 ≥
 8

0
3

2
2

2:
 C

M
Y-

13
0,

 C
M

Y-
13

2
3:

 C
M

Y-
15

3,
 C

M
Y-

16
1,

2:
 C

M
Y-

61
, C

M
Y-

13
0

-
1:

 C
M

Y-
68

-
5

6
4

To
ta

l:
11

46
12



Page 12 of 20Cooper et al. BMC Microbiology           (2024) 24:31 

of trials that the blaCMY-2 target gene was accurately 
detected (Fig.  5). As genome coverage increased to 10X 
(Fig.  5, 10X panel), the target ARG (blaCMY-2) was reli-
ably detected at ≥ 80% target coverage in all ten replicates 
using both KMA and SRST2. The blaCMY-2 gene was also 
detected at ≥ 80% ARG target coverage in all 5X replicates 
using KMA, but only eight out of ten replicates for SRST2 
(Fig. 5). However, SRST2 also detected two closely related 
CMY-alleles at ≥ 80% in two of the 5X coverage replicates.

Background microbiota influence ARG detection
Differences were observed between detected target-
ARGs in the beef fecal metagenome versus the lettuce 

soil metagenome and synthetic bacterial metagen-
ome (Fig.  5). For example, in Fig.  5 at 10X target iso-
late coverage KMA detected multiple CMY-2 related 
alleles at 20–40% target coverage in eight of ten spiked 
lettuce sample-replicates, but none of the spiked beef 
replicates (Fig. 5, 10X panels). Similarly, at 0.1X target 
E. coli isolate coverage KMA also detected the target 
mcr-1 gene at 18–40% coverage in five of ten spiked let-
tuce replicates, but in none of the spiked beef-fecal rep-
licates (Fig. 5). Similar results were also noted for KMA 
at other target isolate coverage levels, however KMA 
never reported non-target alleles (Fig.  5). In contrast 
SRST2 did not exhibit noticeable differences depend-
ing on metagenome background, instead predicting the 

Fig. 5  Accurate ARG detection is dependent on isolate coverage in metagenome. Synthetic metagenomes containing A) lettuce soil metagenome 
and B) beef fecal metagenome mixed with synthetic-community mixed reads at 0.1-, 1-, 2-, 5-, and 10-X genome coverage (n = 10 at each coverage 
level) were evaluated for presence of ARGs using both KMA (□) and SRST2 (✕) in silico tools. Only results for CTX-M-15, CMY-2, and mcr-1 are 
displayed (see colour legend). Lettuce, soil and beef fecal metagenomes without added synthetic-community reads were analysed as a control (0X 
panel, n = 1). Percent ARG detection (y-axis) of 10 replicates, with upper and lower 95% confidence intervals (dashed lines), are plotted as a function 
of detected ARG template gene coverage (x-axis). Target gene panel (right y-axis label, top row), refers to the gene-allele detected in the original 
isolate assembly; Target clade (middle row), refers to detection of alleles within the same phylogenetic clade as the target gene (e.g. a CMY-allele 
closely related to CMY-2); Non-target (bottom row), refers to alleles of the target gene family that are not as closely related to the target gene 
(e.g. ≤ 90% nucleotide identity to CMY-2). Darker point-color intensity is a result of multiple points (different gene-alleles) overlapping. Where 
multiple points of the same shape/colour are present (e.g. B: Bottom right: 10X – Non-target Alleles—≥ 80% coverage there are five CMY-2 ✕s), 
each point represents a different allele (e.g. blaCMY-81, blaCMY-83, blaCMY-90, blaCMY-97, and blaCMY-114, were all detected by SRST2 and are 
each denoted by separate ✕ points)
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same number of target and non-target genes in all syn-
thetic metagenome and spiked metagenome replicates 
(Fig. 5).

Results from KMA analysis of the unspiked synthetic 
metagenomes more closely resembled the results from 
lettuce sample analysis for detection of mcr-1 (at 0.1X 
coverage), and both CMY-2 and CTX-M-15 related 
alleles at all coverage levels (Figs.  4  and  5). Kraken2 
analysis of the unspiked beef and lettuce metagenomes 
found 17.74% and 18.33% of reads mapped to bacteria 
(respectively). Bracken estimation of abundance reported 
89,007 (2.46%) of reads in the unspiked beef metagen-
ome mapped to the order Enterobacterales, whereas only 
30,433 (0.86%) of reads in the unspiked lettuce metage-
nome mapped to this order. The beef metagenome also 
had a higher number of reads mapping to Aeromonadales 
(0.12%) compared to the lettuce metagenome (0.07%).

Proportion of isolate reads in a metagenome required 
for ARG detection
To assess the impact of relative proportion of target ARG 
encoding organism on ARG detection, an analysis was 
done to determine the ratio of isolate to metagenome 
reads for isolate genome sizes of 3, 4, and 5 Mbp, with 

genome coverage at 5X and 10X. We determined that as 
the total number of reads in a metagenomic sequence 
increased, the proportion of reads representing the iso-
late sequence necessary for ARG detection decreased, 
thereby enhancing the sensitivity of ARG detection (see 
Fig.  6). Notably, ARG detection was influenced by both 
the size of the isolate genome and the level of coverage, 
with smaller organisms requiring fewer reads for accu-
rate ARG detection. In practical terms, this indicates that 
detection of an ARG requires that reads from an ARG 
encoding organism represent approximately one percent 
of the reads in a 25 million read metagenome and 0.1% 
of the reads in a 250 million read metagenome for reli-
able detection. Note that gene copy number and presence 
on mobile elements may also affect detection but was not 
investigated in this study.

Discussion
Antimicrobial use in agriculture is widely believed to be 
one of the contributing factors to rising rates of AMR 
[2, 3]. As agri-food production connects many differ-
ent environments and anthropogenic activities, high 
throughput methods enabling detection and surveil-
lance of ARGs in agri-food samples are crucial [2, 3]. 

Fig. 6  The fewer the number of bacterial reads in a metagenome, the higher the proportion the target bacteria must constitute in order 
to accurately detect ARGs. The ratio of isolate reads required for ARG detection in a metagenome (log10 y-axis), grouped by isolates’ genome size, 
was plotted as a function of total reads in metagenome (x-axis, M = million). Estimates were conducted for a “best case scenario”, where all reads 
in the metagenome mapped to bacteria. Isolate genome sizes of 3, 4, and 5 Mbp (million base pairs) are differentiated by point shape and colour. 
For each genome size (colour), isolate genome coverage levels are differentiated by linetype: 5X coverage, dotted; 10X coverage, solid
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Metagenomics has the potential to be a high-throughput 
culture-free method enabling evaluation of the AMR 
within a sample. However, metagenomic sequences 
derived from agri-food samples are often composition-
ally complex and provide incomplete coverage of individ-
ual bacterial genomes [19, 20, 36]. Therefore, it is highly 
likely that only high-abundance organisms will be pre-
sent at detectable levels and that current metagenomic 
techniques may not be robust or sensitive enough for 
detection of critically important AMR in agri-food sam-
ples, especially where the organism only constitutes an 
exceedingly small fraction of the sample [36, 65]. This is 
important because under certain conditions of selective 
pressure (e.g., exposure to antibiotics) a minor microbial 
constituency could overgrow other members of the com-
munity to become the dominant species [66].

To assess the utility of shotgun metagenomics for 
detection of AMR bacteria, we used synthetic metage-
nomes to assess the LOD for ARG detection and 
taxonomic classification by a variety of different bioinfor-
matics tools. Overall, our findings indicate that reliable 
detection of ARGs requires exceptionally high coverage, 
indicating that shotgun metagenomics may be inade-
quate for ARG detection and surveillance. This is particu-
larly true in situations where target organisms constitute 
a minor component of a microbiome and may only be 
present at very low coverage levels, therefore if they har-
bour ARGs of concern it is unlikely to be detected using 
metagenomics. We also found that certain commonly 
used tools for taxonomic assignment may exhibit inac-
curacies, indicating the need for further improvements 
to enhance their suitability for surveillance and detection 
purposes.

Taxonomic assignment
Community composition analysis relies on annotated 
databases; however, these databases may contain errors 
and pathogenic species may be over-represented in pub-
lic repositories with the concomitant underrepresen-
tation of commensal organisms such as those present 
in food and environmental samples [67]. Furthermore, 
different species can possess highly similar stretches 
of DNA sequences (e.g., acquired through horizontal 
gene transfer), leading to potential misassignments even 
when using a “perfect” comprehensive and accurate 
database [68, 69]. Following taxonomic assignment with 
Kraken2, an increase in detection of non-target OTUs 
was observed as the fold-genome coverage of the target 
organisms increased (Fig.  1). Other studies have inves-
tigated numerous taxonomic classifiers, including Met-
aphlan3/Metaphlan4 and Kraken2, using much larger 
metagenomic datasets [70, 71]. Our results corroborate 
recent findings by Johnson et al. [71] who reported that 

Kraken2 consistently misclassified high-abundance taxa 
thereby creating what they term “phantom” taxa, which 
are false-positive identification of organisms result-
ing from misclassification of said high-abundance taxa. 
These “phantom” taxa followed a similar pattern of clas-
sification to our observations for high-abundance taxa. 
That is, as the Kraken2/Bracken reported number of 
reads mapping to the target taxon increased with cover-
age, the number of reads mapping to the phantom taxa 
also increased at the same rate and therefore correlated 
with the target organism’s increasing coverage (Table 3). 
This has potential implications for those intending to 
compare taxonomy in their data, as the current databases 
are not specific for all organisms and may result in mis- 
or over-reporting of taxa in metagenomic samples [71].

Taxonomic classification based on read mapping tools 
can be hindered by the presence of closely related species. 
For example, Citrobacter exhibit high genomic similarity 
to Salmonella, with some strains having average nucleo-
tide identities of up to 94% compared to Salmonella 
[72–74]. Similarly, Bacillus, Listeria, Staphylococcus, and 
Enterococcus, all belonging to the order Bacillales, pos-
sess gene regions that show similarities between gen-
era [75]. Interestingly, in our metagenome analysis, we 
observed mis-assignments of several reads from Entero-
coccus to Salmonella, despite Enterococcus being a Gram-
positive organism and Salmonella being Gram-negative 
(Fig.  1B). It is possible that taxonomy database markers 
may map to regions of Enterococcus and Salmonella that 
have similar homology. Buchrieser et  al. [75] describe 
homology between gene clusters responsible for vitamin 
B12 biosynthesis in L. monocytogenes and Salmonella. 
However, this non-significant difference between model 
fit was not observed for any other Gram-positive—
Gram-negative pair in our study (Fig. 1).

To evaluate taxonomic classification tools, synthetic 
metagenomes with a known composition were generated. 
Although Metaphlan3/Metaphlan4 did not misclassify 
reads to genera absent from the communities as Kraken2/
Bracken did, abundance estimates were still closest to 
expected values using Bracken (Fig. 2). There are differ-
ences in the reference database types used by Bracken/
Kraken2 and Metaphlan. While Bracken/Kraken2 utilizes 
a DNA-to-DNA method that compares reads to a com-
prehensive database, Metaphlan is a DNA-to-marker 
method where the reference database only includes spe-
cific gene families [22]. The Metaphlan3/Metaphlan4 
databases, CHOCOPhlAn 3 and CHOCOPhlAn SGB 
3, contain defined unique clade-level marker genes pre-
sent within all strains in a clade [46, 47]. It is possible 
the CHOCOPhlAn 3 marker database may only include 
a limited number of clade-specific genes for Klebsiella, 
which resulted in lack of detection in some replicates by 
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Metaphlan3/Metaphlan4 when Klebsiella was only pre-
sent at 0.1X coverage (Fig. 2, Mix 3) [47]. This is likely the 
case for this study, as both number of assigned OTUs and 
abundance values determined by Kraken2/Bracken were 
very similar between replicates; whereas Metaphlan3/
Metaphlan4 results varied greatly among replicates sug-
gesting that the clade-specific genes were unevenly dis-
tributed among subsamples (Fig.  2B to E). Furthermore 
for all genera the results from Metaphlan3/Metaphlan4 
differed considerably between replicates, especially at 
lower coverage levels (Fig.  2 B), suggesting the CHOC-
OPhlAn 3 markers were not mapping equally to each of 
these low abundance replicates. As genetic content was 
variable between subsampled replicates, it is possible 
there were no markers in the database that mapped to 
some of the low-coverage replicates.

ARG detection is most accurate for highly abundant 
organisms
In contrast to previous work using isolate WGS data [37, 
38, 76], ARG detection in a more complex sample such 
as an agri-food derived metagenome, is less sensitive 
and required lowering the stringency of target detection 
criteria (e.g. ≥ 80% target coverage vs ≥ 90%). We found 
that bacterial isolates must be present in a metagenome 
at an abundance sufficient to provide approximately 5- to 
10-X genome coverage in order for ARGs to be accurately 
detected (at ≥ 80% target-gene coverage). At low coverage 
levels, increased variation was observed in the sequence 
content mapping to ARGs encoded in the subsampled 
sequences (Fig. 3). Although our results contrast with the 
15X coverage requirements recommended by Rooney 
et  al. [38], they utilized an assembly-based approach 
and were also investigating optimal sequencing depths 
required for detection of single nucleotide polymorphism 
(SNP) based resistance. Our findings are congruent with 
other studies which have also utilized varying sequence 
identity cutoffs for detecting resistomes in metagenomic 
sequences [3, 77, 78], and have recommended cutoffs 
between 80%-95% depending on desired sensitivity and 
stringency.

A study by Wissel et  al. [65] to assess AMR predic-
tions in metagenomes and reported that all ARG detec-
tion tools used performed similarly at different isolate 
genome coverage levels. In contrast, this study found 
that whereas all tools accurately predicted phenotypic 
resistance using isolate WGS [37], with metagenom-
ics there is a risk of reporting false-positives for closely 
related ARG-alleles if the bioinformatic method used 
permits reads to map to multiple genes in the database, 
as does SRST2 which utilizes bowtie2 for read mapping 
(Figs. 4, 5, Table 4). This may also result in over-estima-
tion of the ARG burden in a sample where multiple genes 

are reported at ≥ 80% identity but only one was actually 
present in the sample. At lower target-organism cover-
age ARGs may be detected at lower ARG target-coverage 
cutoffs (e.g. 40 – 60%) (Figs. 4 and 5). However, although 
the ARGs encoded by these low abundance organisms 
can be detected at lower cutoffs one must also be aware 
of possible detection of false-positives for alternative 
ARG-alleles (Figs. 4 and 5).

This study did not attempt analysis with CARD-RGI 
using either bowtie2 or bwa for read mapping as the 
creators of CARD-RGI recommend using KMA as the 
read aligner due “its documented better performance for 
redundant databases”, which are affected by the allele net-
work problems described by Lanza et al. [79] (i.e., ARGs 
are closely related and often have overlapping sequence 
content) [62]. When using CARD-RGI in conjunction 
with the KMA alignment, there was a reduced detection 
of the E. coli-encoded mcr-1 at 10X coverage. In contrast, 
this gene was detected in all samples by both KMA alone 
and SRST2 (Fig. 4). This discrepancy might be attributed 
to additional processing steps, like trimming, which are 
performed before the CARD-RGI analysis, unlike the 
other tools examined. Note that the CARD-RGI tool was 
originally created for ARG detection in isolate assem-
blies. The “bwt” function added to enable use of the tool 
with metagenomic short reads is relatively new and, 
as of this publication, is still under development [62]. 
Results from the KMA analysis of the unspiked synthetic 
metagenomes more closely resembled the results from 
lettuce sample analysis for detection of mcr-1, blaCTX-

M-15, and blaCMY-2 related alleles at all coverage levels 
(Figs. 4 and 5). In comparison to the lettuce metagenome 
the beef metagenome encoded more bacteria of the order 
Enterobacterales, many of which encode chromosomal 
ampC and other β-lactam resistance genes [80–85]. It is 
possible that other genetic content in the beef metagen-
ome resulted in alternative k-mer mismatching of these 
gene-alleles for the lower coverage levels (Figs. 4 and 5B) 
[56]. Collectively, this suggests other genetic content pre-
sent in the beef metagenome could have resulted in mis-
classification of reads by the KMA algorithm.

Technological advancements have greatly improved 
DNA collection and sequencing from complex samples. 
Ni et al. [36] proposed a method to estimate the amount 
of metagenomic sequencing required when the abun-
dances of different prokaryotes in a sample are known. 
However, in many complex sample matrices prokary-
otic abundances of all organisms are not easily deduced. 
Even if the prokaryotic composition was known, differ-
ent DNA storage, extraction, and sequencing techniques 
would still introduce biases in the sequence community 
composition (reviewed by [20, 86, 87]). As metagenomic 
sequencing only captures a fraction of the community 
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within a DNA sample, it is unlikely all organisms will be 
equally present at high coverage levels. In fact, microbial 
communities within complex samples are highly uneven, 
with 3 – 4 orders of magnitude difference in abundance 
of organisms between samples of the same matrix [19, 
20].

Considering a metagenome of 40 million reads where 
all reads are bacterial (a “clean” sample), a 5 Mbp organ-
ism would need to constitute approximately 0.8% of the 
metagenome to be present at 10X coverage (Table  2, 
Fig.  6). However, in complex matrices such as those 
found in agri-food production, host DNA may comprise 
10 to 90% of the metagenome [21, 26, 88], and microbi-
ome profiling becomes more inaccurate as the level of 
host DNA in a sample increases [21]. Therefore if only 
10% of 40 million reads map to bacteria, a 5Mbp bacte-
rial genome would have to amount to approximately 
8.3% of the bacterial reads in the sample for 10X cover-
age enabling accurate ARG detection. One must consider 
the likelihood that a target organism would comprise 
8% of the bacteria in a complex sample without employ-
ing significant selective protocols prior to sequencing. 
Minor bacterial populations that may be clinically rel-
evant would likely be missed. For example, the major spe-
cies in healthy animal feces would largely be anaerobes, 
and aerobic bacteria of public health significance such 
as Enterobacteriaceae could constitute as little as 0.1% of 
the community [89–91].

A goal of sample preparation for metagenomics is the 
removal of host DNA and enrichment of low abundance 
material such as pathogenic microorganisms [92, 93]. A 
single eukaryotic cell could harbor 1000 × more gDNA 
than a single bacterial cell, greatly impacting the rela-
tive number of informative sequencing reads. Methods 
for removing host DNA during extraction rely on dif-
ferences in genomic DNA from eukaryotic and prokary-
otic cells and can help minimize the impact of host DNA 
on sequencing efficiency [92–96]. While bioinformatic 
methods to remove host reads subsequent to sequencing 
have been developed, this can be challenging, particu-
larly if a sample contains a complex mixtures of eukary-
otes including plants and animals, along with microbial 
eukaryotes [94–98].

Previous studies have utilized metagenomics to inves-
tigate the resistome in various sample matrices including 
urban wastewater, cattle, animal feces, and leafy greens 
[21, 26, 88]. Ferreira et al. [99] compared the sensitivity of 
quantitative PCR (qPCR) and metagenomics for detect-
ing ARGs in animal feces, water and wastewater sam-
ples. They reported that while metagenomics provided 
a markedly higher coverage of ARGs, qPCR presented 
higher sensitivity for ARG detection in water/wastewater, 

yet was not more sensitive for the fecal samples. How-
ever, for their metagenome analyses they only counted 
ARG sequences with 100% identity to their primer pairs 
as positives for comparison [99]. While studies exist 
investigating the LOD for AMR detection in metagen-
omics, many of these focus on the human microbiome 
or water/wastewater with few investigating methods for 
AMR or pathogen detection in agri-food sample types 
(such as animal feces and produce) [99–102].

An alternative method using targeted bait-capture 
techniques has been employed recently in a number of 
studies [79, 102–107]. In this target-baiting technique 
biotinylated “baits” complementary to desired target 
sequences (e.g. ARG sequences) are utilized to selec-
tively bind and extract target DNA fragments from total 
DNA extracts. Work by Lanza et  al. [79] utilized a tar-
geted sequence capture system to analyse the resistome 
of human and swine fecal samples which enriched tar-
get sequence detection of ARGs 279-fold to shotgun 
sequencing alone. Targeted enrichment or targeted 
genome capture (TGC) of pathogens has also been uti-
lized to enrich specific DNA sequences [103]. Similarly, 
Shay et  al. [106] observed a > 300-fold improvement in 
recovery and detection of resistance-gene targets in 
retail food samples. Lee et  al. [103] found a number of 
veterinary pathogens detected using PCR were not iso-
lated by targeted genome capture (TGC) next genera-
tion sequencing (NGS) indicating that even enrichment 
approaches may not be sensitive enough for detection of 
clinically relevant sub-populations within a sample.

Although we were able to successfully detect the mcr-
1, blaCTX-M-15, and blaCMY-2 genes in metagenomes spiked 
with synthetic-communities at 5X and 10X coverage, this 
was using lettuce and beef metagenomes that contained 
an arguably low abundance of organisms with closely 
related resistance genes. For example many Enterobacte-
riaceae species encode chromosomal β-lactamase resist-
ance genes such as blaACT​ and blaCMY alleles in some 
Enterobacter and Citrobacter species, respectively, which 
may interfere with accurate detection of clinically rel-
evant β-lactamase genes (e.g. blaCTX-M-15, or blaCMY-2) 
where the genes have high homology [80–85]. Differ-
ences were observed in detection of closely related ARG-
alleles the spiked beef metagenome at lower coverage 
levels, suggesting presence of closely related ARGs within 
a metagenome may affect read-mapping and should be 
investigated further.

Conclusion
While shotgun metagenomics is a highly valuable 
technology that offers new insights into community 
structure along the agri-food continuum, current 
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methodologies may not be suitable for effectively moni-
toring low abundance AMR bacteria in complex matri-
ces like agri-food samples. This study highlights the 
necessity for at least 5X coverage of an organism to 
ensure reliable detection of AMR genes, making it chal-
lenging to identify organisms of concern present at 
low abundance (e.g., < 1% of the bacterial population) 
using this approach. Additionally, misclassification of 
sequencing reads may result in the biased misidentifi-
cation of bacterial species, favoring overrepresented 
pathogenic species in genome databases. The potential 
for false-positive detection of pathogens in these sam-
ples poses a risk, as it could necessitate further inves-
tigations and subsequent actions. Nonetheless, use of 
these data may be appropriate under certain circum-
stances, and it is vital that these limitations be under-
stood if data is to be used to inform risk assessment or 
for surveillance purposes.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12866-​023-​03148-6.

Additional file 1. Commands used for bioinformatic analyses of sequence 
data. 

Additional file 2: Table S1. Characteristics of sequences used for 
synthetic-metagenome synthesis.

Additional file 3 Table S2. Synthetic-community compositions.

Additional file 4. 

Additional file 5. 

Additional file 6.  

Acknowledgements
We gratefully acknowledge Dr. Deli Ogunremi for providing the Enterococcus 
isolate, and Dr. Ed Topp and Andrew Scott for providing the Escherichia coli 
used in this study. We also acknowledge technical assistance from Paul Man-
ninger, Mylène Deschênes, and Bridgette Kelly, as well as Dr. Adam Koziol and 
Liam Brown for critical review of the manuscript.

Authors’ contributions
AC and CC conceived and designed the experiments; AL wrote code to 
synthesize metagenomes; AC performed in silico data generation and 
analysis; AC analysed the data, created graphical outputs, and performed 
statistical analyses; CC, BB, ST, and AW contributed materials; AC wrote the first 
draft of the manuscript; CC, AL, BB, AW and ST contributed to writing of the 
manuscript; AC and CC finalized the manuscript. All authors contributed to 
manuscript revision, read and approved the submitted version.

Funding
This project was funded by the Government of Canada interdepartmental 
Genomic Research Development Initiative (GRDI)-AMR program.

Availability of data and materials
Raw paired-end sequence data for synthesized metagenomes has been 
deposited to the SRA under BioProject PRJNA922558 (Table S2). Paired-end 
raw reads for bacterial isolates used to synthesize mock-metagenomes are 
also available (Accessions in Table 1). Code for the Fetagenome-plasmidaware 
tool used to subsample genomes is available via github (https://​github.​com/​
OLC-​Bioin​forma​tics/​FetaG​enome2).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
ST (Sandeep Tamber) is a member of the BMC Microbiology Editorial board.We 
have no other competing interests.
The authors declare that they have no other competing interests.

Author details
1 Research and Development, Ottawa Laboratory (Carling), Canadian Food 
Inspection Agency, Ottawa, ON, Canada. 2 Department of Biology, Carleton 
University, Ottawa, ON, Canada. 3 Microbiology Research Division, Bureau 
of Microbial Hazards, Health Canada, Ottawa, ON, Canada. 

Received: 21 August 2023   Accepted: 7 December 2023

References
	 1.	 Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, 

et al. Tackling antibiotic resistance: the environmental framework. Nat 
Rev Microbiol. 2015;13(5):310.

	 2.	 Huijbers PMC, Blaak H, de Jong MCM, Graat EAM, Vandenbroucke-
Grauls CMJE, de Roda Husman AM. Role of the environment in the 
transmission of antimicrobial resistance to humans: a review. Environ 
Sci Technol. 2015;49(20):11993–2004.

	 3.	 Bengtsson-Palme J. Antibiotic resistance in the food supply chain: 
where can sequencing and metagenomics aid risk assessment? Curr 
Opin Food Sci. 2017;1(14):66–71.

	 4.	 Founou LL, Founou RC, Essack SY. Antimicrobial resistance in the 
farm-to-plate continuum: more than a food safety issue. Future Sci OA. 
2021;7(5):FSO692.

	 5.	 Hudson JA, Frewer LJ, Jones G, Brereton PA, Whittingham MJ, Stewart G. 
The agri-food chain and antimicrobial resistance: a review. Trends Food 
Sci Technol. 2017;1(69):131–47.

	 6.	 Government of Canada PHA of C. Canadian Antimicrobial Resistance 
Surveillance System - Update 2020. Public Health Agency of Canada; 
2020 Jun. Available from: https://​www.​canada.​ca/​en/​public-​health/​
servi​ces/​publi​catio​ns/​drugs-​health-​produ​cts/​canad​ian-​antim​icrob​ial-​
resis​tance-​surve​illan​ce-​system-​2020-​report.​html.

	 7.	 Cooper A. On the Utility of Genomics-Based Methods for Surveillance 
of Antimicrobial-Resistant Bacteria in the Food Production Continuum. 
Carleton University; 2021. Available from: https://​curve.​carle​ton.​ca/​
d16b2​e75-​6f90-​4625-​ba0a-​fd04b​8c289​06. Accessed 1 Oct 2023.

	 8.	 Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to 
determine the minimal inhibitory concentration (MIC) of antimicrobial 
substances. Nat Protocols. 2008;3(2):163–75.

	 9.	 Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term impacts of 
antibiotic exposure on the human intestinal microbiota. Microbiology. 
2010;156(11):3216–23.

	 10.	 Hug LA. Sizing up the uncultured microbial majority. mSystems. 
2018;3(5):10–128.

	 11.	 Steen AD, Crits-Christoph A, Carini P, DeAngelis KM, Fierer N, Lloyd KG, 
et al. High proportions of bacteria and archaea across most biomes 
remain uncultured. ISME J. 2019;13(12):3126–30.

	 12.	 Fluit AC, Visser MR, Schmitz FJ. Molecular detection of antimicrobial 
resistance. Clin Microbiol Rev. 2001;14(4):836–71.

	 13.	 Rosengren LB, Waldner CL, Reid-Smith RJ. Associations between anti-
microbial resistance phenotypes, antimicrobial resistance genes, and 
virulence genes of fecal escherichia coli isolates from healthy grow-
finish pigs. Appl Environ Microbiol. 2009;75(5):1373–80.

	 14.	 Licker M, Anghel A, Moldovan R, Hogea E, Muntean D, Horhat F, et al. 
Genotype-phenotype correlation in multiresistant Escherichia coli and 

https://doi.org/10.1186/s12866-023-03148-6
https://doi.org/10.1186/s12866-023-03148-6
https://github.com/OLC-Bioinformatics/FetaGenome2
https://github.com/OLC-Bioinformatics/FetaGenome2
https://www.canada.ca/en/public-health/services/publications/drugs-health-products/canadian-antimicrobial-resistance-surveillance-system-2020-report.html
https://www.canada.ca/en/public-health/services/publications/drugs-health-products/canadian-antimicrobial-resistance-surveillance-system-2020-report.html
https://www.canada.ca/en/public-health/services/publications/drugs-health-products/canadian-antimicrobial-resistance-surveillance-system-2020-report.html
https://curve.carleton.ca/d16b2e75-6f90-4625-ba0a-fd04b8c28906
https://curve.carleton.ca/d16b2e75-6f90-4625-ba0a-fd04b8c28906


Page 18 of 20Cooper et al. BMC Microbiology           (2024) 24:31 

Klebsiella pneumoniae strains isolated in Western Romania. Eur Rev 
Med Pharmacol Sci. 2015;19(10):1888–94.

	 15.	 Anjum MF, Zankari E, Hasman H. Molecular methods for detection of 
antimicrobial resistance. Microbiol Spectr. 2017;5(6):33–50.

	 16.	 Sirous M, Khosravi AD, Tabandeh MR, Salmanzadeh S, Ahmadkhosravi 
N, Amini S. Molecular detection of rifampin, isoniazid, and ofloxacin 
resistance in Iranian isolates of Mycobacterium tuberculosis by high-
resolution melting analysis. Infect Drug Resist. 2018;18(11):1819–29.

	 17.	 Florio W, Baldeschi L, Rizzato C, Tavanti A, Ghelardi E, Lupetti A. Detec-
tion of antibiotic-resistance by MALDI-TOF mass spectrometry: an 
expanding area. Front Cell Infect Microbiol. 2020;11(10):572909.

	 18.	 Miller RR, Montoya V, Gardy JL, Patrick DM, Tang P. Metagenomics for 
pathogen detection in public health. Genome Med. 2013;20:5.

	 19.	 Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, et al. 
Microbial diversity in the deep sea and the underexplored “rare bio-
sphere.” PNAS. 2006 Aug 8;103(32):12115–20.

	 20.	 Hugerth LW, Andersson AF. Analysing microbial community composi-
tion through amplicon sequencing: from sampling to hypothesis 
testing. Front Microbiol. 2017;8:1561.

	 21.	 Pereira-Marques J, Hout A, Ferreira RM, Weber M, Pinto-Ribeiro I, van 
Doorn LJ, et al. Impact of host DNA and sequencing depth on the taxo-
nomic resolution of whole metagenome sequencing for microbiome 
analysis. Front Microbiol. 2019;10:1277.

	 22.	 Sun Z, Huang S, Zhang M, Zhu Q, Haiminen N, Carrieri AP, et al. 
Challenges in benchmarking metagenomic profilers. Nat Methods. 
2021;18(6):618–26.

	 23.	 Blackwell GA, Hunt M, Malone KM, Lima L, Horesh G, Alako BTF, et al. 
Exploring bacterial diversity via a curated and searchable snapshot of 
archived DNA sequences. PLoS Biol. 2021;19(11):e3001421.

	 24.	 Cantas L, Shah SQA, Cavaco LM, Manaia CM, Walsh F, Popowska M, et al. 
A brief multi-disciplinary review on antimicrobial resistance in medicine 
and its linkage to the global environmental microbiota. Front Microbiol. 
2013;4:96.

	 25.	 Fitzpatrick D, Walsh F. Antibiotic resistance genes across a wide variety 
of metagenomes. FEMS Microbiol Ecol. 2016;92(2):fiv168.

	 26.	 Noyes NR, Yang X, Linke LM, Magnuson RJ, Dettenwanger A, Cook S, 
et al. Resistome diversity in cattle and the environment decreases dur-
ing beef production. Elife. 2016;8(5):e13195.

	 27.	 Thomas M, Webb M, Ghimire S, Blair A, Olson K, Fenske GJ, et al. 
Metagenomic characterization of the effect of feed additives on the 
gut microbiome and antibiotic resistome of feedlot cattle. Sci Rep. 
2017;7(1):12257.

	 28.	 Oniciuc EA, Likotrafiti E, Alvarez-Molina A, Prieto M, Santos JA, Alvarez-
Ordóñez A. The present and future of whole genome sequencing 
(WGS) and whole metagenome sequencing (WMS) for surveillance of 
antimicrobial resistant microorganisms and antimicrobial resistance 
genes across the food chain. Genes (Basel). 2018;9(5):268.

	 29.	 Danko D, Bezdan D, Afshin EE, Ahsanuddin S, Bhattacharya C, Butler DJ, 
et al. A global metagenomic map of urban microbiomes and antimicro-
bial resistance. Cell. 2021;184(13):3376–3393.e17.

	 30.	 Duarte ASR, Röder T, Van Gompel L, Petersen TN, Hansen RB, Hansen IM, 
et al. Metagenomics-based approach to source-attribution of antimi-
crobial resistance determinants – identification of reservoir resistome 
signatures. Front Microbiol. 2021;11:601407.

	 31.	 Hemamalini N, Shanmugam SA, Kathirvelpandian A, Deepak A, Kaliy-
amurthi V, Suresh E. A critical review on the antimicrobial resistance, 
antibiotic residue and metagenomics-assisted antimicrobial resistance 
gene detection in freshwater aquaculture environment. Aquac Res. 
2022;53(2):344–66.

	 32.	 Rubiola S, Macori G, Chiesa F, Panebianco F, Moretti R, Fanning S, et al. 
Shotgun metagenomic sequencing of bulk tank milk filters reveals the 
role of Moraxellaceae and Enterobacteriaceae as carriers of antimicro-
bial resistance genes. Food Res Int. 2022;1(158):111579.

	 33.	 Serpa PH, Deng X, Abdelghany M, Crawford E, Malcolm K, Caldera S, 
et al. Metagenomic prediction of antimicrobial resistance in criti-
cally ill patients with lower respiratory tract infections. Genome Med. 
2022;14(1):74.

	 34.	 Meziti A, Rodriguez-R LM, Hatt JK, Peña-Gonzalez A, Levy K, Konstan-
tinidis KT. The reliability of metagenome-assembled genomes (MAGs) 
in representing natural populations: insights from comparing MAGs 

against isolate genomes derived from the same fecal sample. Appl 
Environ Microbiol. 2021;87(6):e02593–e2620.

	 35.	 Zhao R, Yu K, Zhang J, Zhang G, Huang J, Ma L, et al. Deciphering 
the mobility and bacterial hosts of antibiotic resistance genes under 
antibiotic selection pressure by metagenomic assembly and binning 
approaches. Water Res. 2020;1(186):116318.

	 36.	 Ni J, Yan Q, Yu Y. How much metagenomic sequencing is enough to 
achieve a given goal? Sci Rep. 2013;3(1):1968.

	 37.	 Cooper AL, Low AJ, Koziol AG, Thomas MC, Leclair D, Tamber S, et al. 
Systematic evaluation of whole genome sequence-based predictions 
of salmonella serotype and antimicrobial resistance. Front Microbiol. 
2020;11:549.

	 38.	 Rooney AM, Raphenya AR, Melano RG, Seah C, Yee NR, MacFadden DR, 
et al. Performance characteristics of next-generation sequencing for 
the detection of antimicrobial resistance determinants in escherichia 
coli genomes and metagenomes. MSystems. 2022;7(3):00022–22.

	 39.	 Benton B, King S, Greenfield SR, Puthuveetil N, Reese AL, Duncan 
J, et al. The ATCC genome portal: microbial genome reference 
standards with data provenance. Microbiol Res Announcements. 
2021;10(47):e00818–e821.

	 40.	 ATCC-Bioinformatics AGP-Raw-Data. ATCC-Bioinformatics AGP-Raw-
Data. Available from: https://​github.​com/​ATCC-​Bioin​forma​tics/​AGP-​
Raw-​Data. Accessed 22 May 2023

	 41.	 Virginia Tech. Greenhouse Vegetable Surfaces Raw sequence reads. 
National Center for Biotechnology Information. 2018. Available from: 
https://​data.​nal.​usda.​gov/​datas​et/​green​house-​veget​able-​surfa​ces-​raw-​
seque​nce-​reads.

	 42.	 Low, A. OLC-Bioinformatics/FetaGenome2. Available from: https://​
github.​com/​OLC-​Bioin​forma​tics/​FetaG​enome2.

	 43.	 Förster F. fastq-shuffle. Available from: https://​github.​com/​chlor​oExtr​
actor​Team/​fastq-​shuff​le. Accessed 12 Dec 2019

	 44.	 Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence clas-
sification using exact alignments. Genome Biol. 2014;15(3):R46.

	 45.	 Lu J, Salzberg SL. Ultrafast and accurate 16S rRNA microbial community 
analysis using Kraken 2. Microbiome. 2020;8(1):124.

	 46.	 Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N. Microbial strain-
level population structure and genetic diversity from metagenomes. 
Genome Res. 2017;27(4):626–38.

	 47.	 Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan 
S, et al. Integrating taxonomic, functional, and strain-level profiling of 
diverse microbial communities with bioBakery 3. Turnbaugh P, Franco E, 
Brown CT, editors. eLife. 2021 May 4;10:e65088.

	 48.	 Kraken2, KrakenUniq and Bracken indexes. Available from: https://​benla​
ngmead.​github.​io/​aws-​index​es/​k2. Accessed 4 Apr 2022

	 49.	 Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species 
abundance in metagenomics data. PeerJ Comput Sci. 2017;2(3):e104.

	 50.	 Dabdoub S. kraken-biom. Available from: https://​github.​com/​smdab​
doub/​kraken-​biom. Accessed 4 Apr 2022

	 51.	 McMurdie PJ, Holmes S. phyloseq: an R package for reproducible 
interactive analysis and graphics of microbiome census data. PLoS ONE. 
2013;8(4):e61217.

	 52.	 R Core Team. R: A language and environment for statistical computing. 
Vienna, Austria: R Foundation for Statistical Computing; 2014. Available 
from: http://​www.R-​proje​ct.​org/.

	 53.	 Lenth RV. Least-squares means: the R package lsmeans. J Stat Softw. 
2016;69(1):1–33.

	 54.	 Lenth RV. emmeans: Estimate Marginal Means, aka Least-Squares 
Means. 2022. Available from: https://​CRAN.R-​proje​ct.​org/​packa​ge=​
emmea​ns.

	 55.	 Wickham H. The split-apply-combine strategy for data analysis. J Stat 
Softw. 2011;40(1):1–29.

	 56.	 Clausen PTLC, Aarestrup FM, Lund O. Rapid and precise alignment of 
raw reads against redundant databases with KMA. BMC Bioinformatics. 
2018;19(1):307.

	 57.	 Inouye M, Dashnow H, Raven LA, Schultz MB, Pope BJ, Tomita T, et al. 
SRST2: Rapid genomic surveillance for public health and hospital 
microbiology labs. Genome Med. 2014;6:90.

	 58.	 McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. 
The comprehensive antibiotic resistance database. Antimicrob Agents 
Chemother. 2013;57(7):3348–57.

https://github.com/ATCC-Bioinformatics/AGP-Raw-Data
https://github.com/ATCC-Bioinformatics/AGP-Raw-Data
https://data.nal.usda.gov/dataset/greenhouse-vegetable-surfaces-raw-sequence-reads
https://data.nal.usda.gov/dataset/greenhouse-vegetable-surfaces-raw-sequence-reads
https://github.com/OLC-Bioinformatics/FetaGenome2
https://github.com/OLC-Bioinformatics/FetaGenome2
https://github.com/chloroExtractorTeam/fastq-shuffle
https://github.com/chloroExtractorTeam/fastq-shuffle
https://benlangmead.github.io/aws-indexes/k2
https://benlangmead.github.io/aws-indexes/k2
https://github.com/smdabdoub/kraken-biom
https://github.com/smdabdoub/kraken-biom
http://www.R-project.org/
https://CRAN.R-project.org/package=emmeans
https://CRAN.R-project.org/package=emmeans


Page 19 of 20Cooper et al. BMC Microbiology           (2024) 24:31 	

	 59.	 Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalat-
mand A, et al. CARD 2020: Antibiotic resistome surveillance with the 
comprehensive antibiotic resistance database. Nucleic Acids Res. 
2020;48(D1):D517–25.

	 60.	 Holt K. SRST2. Available from: https://​github.​com/​katho​lt/​srst2. 
Accessed 1 Nov 2019

	 61.	 Li W, Godzik A. Cd-hit: a fast program for clustering and compar-
ing large sets of protein or nucleotide sequences. Bioinformatics. 
2006;22(13):1658–9.

	 62.	 Alcock B, Huynh W, Chalil R, Smith K, Raphenya A, Wlodarski M, et al. 
CARD 2023: expanded curation, support for machine learning, and 
resistome prediction at the Comprehensive Antibiotic Resistance Data-
base. 2020. Available from: https://​github.​com/​arpca​rd/​rgi. Accessed 15 
Sep 2022

	 63.	 KMA-mapstat-analysis. Available from: https://​github.​com/​OLC-​Bioin​
forma​tics/​KMA-​mapst​at-​analy​sis. Accessed 17 May 2023

	 64.	 Wipperman M. Wipperman-Microbiota. Available from: https://​github.​
com/​wippe​rman/​wippe​rman/​blob/​master/​R/​micro​biota.R. Accessed 
17 May 2023

	 65.	 Wissel EF, Talbot BM, Toyosato NAB, Petit RA, Hertzberg V, Dunlop A, 
et al. hAMRoaster: a tool for comparing performance of AMR gene 
detection software. bioRxiv; 2023. p. 2022.01.13.476279. Available from: 
https://​www.​biorx​iv.​org/​conte​nt/​10.​1101/​2022.​01.​13.​47627​9v2.https://​
doi.​org/​10.​1101/​2022.​01.​13.​47627​9v1

	 66.	 Brown EEF, Cooper A, Carrillo C, Blais B. Selection of multidrug-resistant 
bacteria in medicated animal feeds. Front Microbiol. 2019;10:456.

	 67.	 Lydon KA, Lipp EK. Taxonomic annotation errors incorrectly assign 
the family Pseudoalteromonadaceae to the order Vibrionales in 
Greengenes: implications for microbial community assessments. PeerJ. 
2018;10(6):e5248.

	 68.	 Sheinman M, Arkhipova K, Arndt PF, Dutilh BE, Hermsen R, Massip F. 
Identical sequences found in distant genomes reveal frequent horizon-
tal transfer across the bacterial domain. Neher RA, Storz G, Neher RA, 
editors. eLife. 2021 Jun 14;10:e62719.

	 69.	 Puigbò P, Lobkovsky AE, Kristensen DM, Wolf YI, Koonin EV. Genomes in 
turmoil: quantification of genome dynamics in prokaryote superge-
nomes. BMC Biol. 2014;12(1):66.

	 70.	 Ye SH, Siddle KJ, Park DJ, Sabeti PC. Benchmarking metagenomics tools 
for taxonomic classification. Cell. 2019;178(4):779–94.

	 71.	 Johnson J, Sun S, Fodor AA. Systematic classification error profoundly 
impacts inference in high-depth whole genome shotgun sequencing 
datasets. bioRxiv; 2022. p. 2022.04.04.487034. Available from: https://​
www.​biorx​iv.​org/​conte​nt/. https://​doi.​org/​10.​1101/​2022.​04.​04.​48703​
4v1.

	 72.	 Delgado G, Souza V, Morales R, Cerritos R, González-González A, 
Méndez JL, et al. Genetic characterization of atypical Citrobacter freundii. 
PLoS ONE. 2013;8(9):e74120.

	 73.	 Pilar AVC, Petronella N, Dussault FM, Verster AJ, Bekal S, Levesque 
RC, et al. Similar yet different: phylogenomic analysis to delineate 
Salmonella and Citrobacter species boundaries. BMC Genomics. 
2020;21(1):377.

	 74.	 Pławińska-Czarnak J, Wódz K, Kizerwetter-Świda M, Nowak T, Bogdan J, 
Kwieciński P, et al. Citrobacter braakii yield false-positive identification as 
Salmonella, a note of caution. Foods. 2021;10(9):2177.

	 75.	 Buchrieser C, Rusniok C, The Listeria Consortium, Kunst F, Cossart P, Gla-
ser P. Comparison of the genome sequences of Listeria monocytogenes 
and Listeria innocua: clues for evolution and pathogenicity. FEMS 
Immuno Med Microbiol. 2003;35(3):207–13.

	 76.	 Hodges LM, Taboada EN, Koziol A, Mutschall S, Blais BW, Inglis GD, et al. 
Systematic evaluation of whole-genome sequencing based prediction 
of antimicrobial resistance in Campylobacter jejuni and C. coli. Front 
Microbiol. 2021;12:776967.

	 77.	 Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L. 
DeepARG: a deep learning approach for predicting antibiotic resistance 
genes from metagenomic data. Microbiome. 2018;6(1):23.

	 78.	 Liao H, Li H, Duan CS, Zhou XY, An XL, Zhu YG, et al. Metagenomic 
and viromic analysis reveal the anthropogenic impacts on the 
plasmid and phage borne transferable resistome in soil. Environ Int. 
2022;1(170):107595.

	 79.	 Lanza VF, Baquero F, Martinez JL, Ramos-Ruiz R, Gonzalez-Zorn B, 
Andremont A, et al. In-depth resistome analysis by targeted metagen-
omics. Microbiome. 2018;6:11.

	 80.	 Chavda KD, Satlin MJ, Chen L, Manca C, Jenkins SG, Walsh TJ, et al. Evalu-
ation of a Multiplex PCR assay to rapidly detect enterobacteriaceae with 
a broad range of β-lactamases directly from perianal swabs. Antimicrob 
Agents Chemother. 2016;60(11):6957–61.

	 81.	 Kurittu P, Khakipoor B, Aarnio M, Nykäsenoja S, Brouwer M, Myllyniemi 
AL, et al. Plasmid-borne and chromosomal ESBL/AmpC genes in 
escherichia coli and klebsiella pneumoniae in global food products. 
Front Microbiol. 2021;12:592291.

	 82.	 Ben Said L, Jouini A, Alonso CA, Klibi N, Dziri R, Boudabous A, et al. 
Characteristics of extended-spectrum β-lactamase (ESBL)- and pAmpC 
beta-lactamase-producing Enterobacteriaceae of water samples in 
Tunisia. Sci Total Environ. 2016;15(550):1103–9.

	 83.	 Bush K. Bench-to-bedside review: The role of β-lactamases in antibiotic-
resistant Gram-negative infections. Crit Care. 2010;14(3):224.

	 84.	 Sheng WH, Badal RE, Hsueh PR, SMART Program. Distribution of 
extended-spectrum β-lactamases, AmpC β-lactamases, and carbapen-
emases among Enterobacteriaceae isolates causing intra-abdominal 
infections in the Asia-Pacific region: results of the study for Monitoring 
Antimicrobial Resistance Trends (SMART). Antimicrob Agents Chem-
other. 2013;57(7):2981–8.

	 85.	 Rodríguez-Baño J, Miró E, Villar M, Coelho A, Gozalo M, Borrell N, et al. 
Colonisation and infection due to enterobacteriaceae producing 
plasmid-mediated AmpC β-lactamases. J Infect. 2012;64(2):176–83.

	 86.	 Brandt J, Albertsen M. Investigation of detection limits and the influ-
ence of DNA extraction and primer choice on the observed microbial 
communities in drinking water samples using 16S rRNA gene amplicon 
sequencing. Front Microbiol. 2018;9:2140.

	 87.	 Nayfach S, Pollard KS. Toward accurate and quantitative comparative 
metagenomics. Cell. 2016;166(5):1103–16.

	 88.	 Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al. 
Strains, functions and dynamics in the expanded human microbiome 
project. Nature. 2017;550(7674):61–6.

	 89.	 Albuquerque TA, Zurek L. Temporal changes in the bacterial community 
of animal feces and their correlation with stable fly oviposition, larval 
development, and adult fitness. Front Microbiol. 2014;5:590.

	 90.	 Shimizu H, Arai K, Asahara T, Takahashi T, Tsuji H, Matsumoto S, et al. 
Stool preparation under anaerobic conditions contributes to retention 
of obligate anaerobes: potential improvement for fecal microbiota 
transplantation. BMC Microbiol. 2021;21(1):275.

	 91.	 Sommer F, Bäckhed F. The gut microbiota — masters of host develop-
ment and physiology. Nat Rev Microbiol. 2013;11(4):227–38.

	 92.	 Payne A, Holmes N, Clarke T, Munro R, Debebe B, Loose M. Readfish 
enables targeted nanopore sequencing of gigabase-sized genomes. 
Nat Biotechnol. 2021;39:442–50.

	 93.	 Bloomfield SJ, Zomer AL, O’Grady J, Kay GL, Wain J, Janecko N, et al. 
Determination and quantification of microbial communities and anti-
microbial resistance on food through host DNA-depleted metagenom-
ics. Food Microbiol. 2023;1(110):104162.

	 94.	 Haque MM, Bose T, Dutta A, Reddy CVSK, Mande SS. CS-SCORE: Rapid 
identification and removal of human genome contaminants from 
metagenomic datasets. Genomics. 2015;106(2):116–21.

	 95.	 Castro JC, Rodriguez-R LM, Harvey WT, Weigand MR, Hatt JK, Carter MQ, 
et al. imGLAD: accurate detection and quantification of target organ-
isms in metagenomes. PeerJ. 2018;2:6.

	 96.	 Clarke EL, Taylor LJ, Zhao C, Connell A, Lee JJ, Fett B, et al. Sunbeam: an 
extensible pipeline for analyzing metagenomic sequencing experi-
ments. Microbiome. 2019;7(1):46.

	 97.	 Czajkowski MD, Vance DP, Frese SA, Casaburi G. GenCoF: a graphical 
user interface to rapidly remove human genome contaminants from 
metagenomic datasets. Bioinformatics. 2019;35(13):2318–9.

	 98.	 Bush SJ, Connor TR, Peto TEA, Crook DW, Walker AS. Evaluation of 
methods for detecting human reads in microbial sequencing datasets. 
Microb Genom. 2020;6(7):mgen000393.

	 99.	 Ferreira C, Otani S, Aarestrup FM, Manaia CM. Quantitative PCR versus 
metagenomics for monitoring antibiotic resistance genes: balancing 
high sensitivity and broad coverage. FEMS Microbes. 2023;4:xtad008.

	100.	 Ogunremi D, Dupras AA, Naushad S, Gao R, Duceppe MO, Omidi K, 
et al. A New Whole Genome Culture-Independent Diagnostic Test 

https://github.com/katholt/srst2
https://github.com/arpcard/rgi
https://github.com/OLC-Bioinformatics/KMA-mapstat-analysis
https://github.com/OLC-Bioinformatics/KMA-mapstat-analysis
https://github.com/wipperman/wipperman/blob/master/R/microbiota.R
https://github.com/wipperman/wipperman/blob/master/R/microbiota.R
https://www.biorxiv.org/content/10.1101/2022.01.13.476279v2
https://doi.org/10.1101/2022.01.13.476279v1
https://doi.org/10.1101/2022.01.13.476279v1
https://www.biorxiv.org/content/
https://www.biorxiv.org/content/
https://doi.org/10.1101/2022.04.04.487034v1
https://doi.org/10.1101/2022.04.04.487034v1


Page 20 of 20Cooper et al. BMC Microbiology           (2024) 24:31 

(WG-CIDT) for rapid detection of salmonella in lettuce. Front Microbiol. 
2020;11:602.

	101.	 Zaheer R, Noyes N, Ortega Polo R, Cook SR, Marinier E, Van Domselaar 
G, et al. Impact of sequencing depth on the characterization of the 
microbiome and resistome. Sci Rep. 2018;12:8.

	102.	 Noyes NR, Weinroth ME, Parker JK, Dean CJ, Lakin SM, Raymond 
RA, et al. Enrichment allows identification of diverse, rare elements 
in metagenomic resistome-virulome sequencing. Microbiome. 
2017;5(1):142.

	103.	 Lee JS, Mackie RS, Harrison T, Shariat B, Kind T, Kehl T, et al. Targeted 
enrichment for pathogen detection and characterization in three felid 
species. J Clin Microbiol. 2017;55(6):1658–70.

	104.	 Gaudin M, Desnues C. Hybrid capture-based next generation sequenc-
ing and its application to human infectious diseases. Front Microbiol. 
2018;9:2924.

	105.	 Guitor AK, Raphenya AR, Klunk J, Kuch M, Alcock B, Surette MG, et al. 
Capturing the Resistome: a Targeted Capture Method To Reveal Antibi-
otic Resistance Determinants in Metagenomes. Antimicrobial Agents 
Chemother. 2019;64(1):10–128.

	106.	 Shay JA, Haniford LSE, Cooper A, Carrillo CD, Blais BW, Lau CHF. Exploit-
ing a targeted resistome sequencing approach in assessing antimicro-
bial resistance in retail foods. Environ Microbiome. 2023;18(1):25.

	107.	 Smith SD, Choi J, Ricker N, Yang F, Hinsa-Leasure S, Soupir ML, et al. 
Diversity of Antibiotic Resistance genes and Transfer Elements-Quanti-
tative Monitoring (DARTE-QM): a method for detection of antimicrobial 
resistance in environmental samples. Commun Biol. 2022;17(5):216.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Modeling the limits of detection for antimicrobial resistance genes in agri-food samples: a comparative analysis of bioinformatics tools
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Materials and methods
	Sequences used in synthetic metagenome synthesis
	Synthetic metagenome construction
	Taxonomic profiling
	Statistical analysis of taxonomic classifiers
	Antimicrobial resistance gene detection
	KMA
	SRST2
	CARD-RGI

	AMR data analysis
	Data availability
	Estimation of number of reads required for ARG detection

	Results
	Incorrect taxonomic assignment of genera in subsampled isolate whole-genome sequences due to close relatives
	Taxonomic assignment of genera in synthetic-metagenome mixtures
	Coverage affects ARG content and detection
	ARGs present at lower coverage levels may be detected using target gene-coverage cutoffs below 80%
	Isolate genome coverage affects ARG detection in complex or agri-food metagenomes
	Background microbiota influence ARG detection
	Proportion of isolate reads in a metagenome required for ARG detection

	Discussion
	Taxonomic assignment
	ARG detection is most accurate for highly abundant organisms

	Conclusion
	Acknowledgements
	References


