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Abstract 

Background Antimicrobial resistance (AMR) poses a significant global health threat, and an accurate prediction 
of bacterial resistance patterns is critical for effective treatment and control strategies. In recent years, machine 
learning (ML) approaches have emerged as powerful tools for analyzing large-scale bacterial AMR data. However, 
ML methods often ignore evolutionary relationships among bacterial strains, which can greatly impact performance 
of the ML methods, especially if resistance-associated features are attempted to be detected. Genome-wide associa-
tion studies (GWAS) methods like linear mixed models accounts for the evolutionary relationships in bacteria, but they 
uncover only highly significant variants which have already been reported in literature.

Results In this work, we introduce a novel phylogeny-related parallelism score (PRPS), which measures 
whether a certain feature is correlated with the population structure of a set of samples. We demonstrate that PRPS 
can be used, in combination with SVM- and random forest-based models, to reduce the number of features 
in the analysis, while simultaneously increasing models’ performance. We applied our pipeline to publicly available 
AMR data from PATRIC database for Mycobacterium tuberculosis against six common antibiotics.

Conclusions Using our pipeline, we re-discovered known resistance-associated mutations as well as new candidate 
mutations which can be related to resistance and not previously reported in the literature. We demonstrated that tak-
ing into account phylogenetic relationships not only improves the model performance, but also yields more biologi-
cally relevant predicted most contributing resistance markers.
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Introduction
Mycobacterium tuberculosis (Mtb), the causative agent 
of tuberculosis (TB), has been a major threat to public 
health for many years, and remains such a threat now. 
According to the World Health Organization (WHO), 
the estimated number of TB-caused deaths in 2021 
alone was 1.6 million [1]. TB continues to pose a signif-
icant threat to global public health because of its ability 
to easily transmit and the occurrence of drug-resistant 
strains of Mtb. In 2019, WHO reposterd over ten mil-
lion cases, including up to 4.5% of infections with drug 
resistant bacteria [1]. Early diagnosis and effective 
treatment are important steps in controlling the spread 
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of TB and reducing its effect on public health. Given 
long cultivation time and complex phenotypic resist-
ance testing of Mtb, screening for genetic markers of 
resistance presents an attractive alternative [2].

Known TB drugs act on Mtb via three mechanisms: 
first, by preventing the synthesis of the enzymes that 
makes up the cell wall; second, by interfering with ribo-
somes that affects protein production; and third, by 
inhibiting several DNA-level activities, including RNA/
DNA synthesis [3]. Despite much research conducted on 
the subject, the drug resistance of Mtb is not fully under-
stood, yet it is known that single nucleotide polymor-
phisms (SNPs) and other polymorphisms like insertions 
and deletions (INDELS) play a crucial role in that [4].

The increasing utilization of whole genome sequenc-
ing (WGS) for Mtb strains opens up new possibilities in 
identifying antimicrobial resistance. First, the phylogeny 
based methods such as phylogenetic convergence test and 
identification of genes under positive selection specific 
to resistant genomes were successfully applied for hun-
dreds of genomes revealing genes and intergenic regions 
putatively responsible for resistance [5, 6]. Another com-
monly employed method for detecting significant resist-
ance associated mutations in the data is genome-wide 
association study (GWAS). For bacteria, information 
about their population variations is primarily derived 
from sequences of their genomes. This, in combination 
with the fact that bacteria have very long genomic seg-
ments with strong linkage disequilibrium, creates a very 
specific setup for bacterial GWAS. This is aggravated by 
the presence of loci with multiple allelic variants and a 
large accessory genome (genes that are present only in 
some strains of a bacterial species, but not in others) [7]. 
Indeed, in Mtb recombination rates are particularly low 
[8], and thus virtually all loci of the genome are in linkage 
disequilibrium. On the other hand, the accessory genome 
of Mtb is very small, in contrast to other bacterial spe-
cies, in which genes conferring resistance to particular 
antibiotics are often transferred via plasmids [9, 10].

Strong linkage disequilibrium between loci in bacteria 
implies that the population structure plays a major role 
and should be accounted for in GWAS studies. Indeed, 
many passenger mutations may be associated with a phe-
notype-relevant variant and will be called together with 
it, because they all step from a branch of closely related 
strains on the species’ phylogenetic tree. Such effects 
have been accounted for by using linear mixed models . 
In these models, the effect of each locus on the pheno-
type is modeled in the context of all other loci that are 
considered to contribute random effects. In this way, the 
effect of each locus that is strongly correlated with the 
background is systematically decreased. Linear mixed 
models showed promising results in bacterial GWAS for 

resistance phenotypes in many species including E. coli, 
S. aureus, K. pneumoniae, and Mtb [11]. Combination of 
GWAS approach with a phylogenetic convergence test in 
Mtb significantly improved the approach and allowed to 
identify epistatic interactions between drug-resistance-
associated genes [12]. This approach is based on the idea 
that the true resistance-conferring mutations often origi-
nate at multiple branches of the phylogenetic tree of Mtb 
strains, while non-relevant passenger mutations occur in 
single (but maybe very populated) branches. Such effects 
are not visible when the strains are considered to be inde-
pendent as in classical GWAS, but may be accounted for 
when population structure is taken into account.

Apart from population structure and epistasis, other 
factors like recombination rate, within-host diversity, 
polygenicity and multi-allelic SNPs also need to be taken 
into account while performing the GWAS in bacteria. 
Various computational tools and methods have been 
developed to account for these factors [13]. For example, 
CCTSWEEP [14], VENN [14] and GWAMAR [15], use 
phylogenetic trees to account for population structure, 
but do not take other factors into account. Other phylo-
genetic tree based methods like treeWAS [16] takes all 
factors into account except within-host diversity, while 
Scoary [17] does not consider within-host diversity as 
well as recombination rate. Among all the available bac-
terial GWAS tools, SEER [18] and pyseer (python imple-
mentation of SEER) [19] are the only two that considers 
most of the pitfalls one can stumble upon in bacterial 
GWAS. Both the tools use linear models with fixed or 
mixed effects to perform the GWAS studies. Although 
the linear mixed models are the best performing models 
in GWAS studies, they are not well suited for detecting 
interactive and non-linear effects. In such cases, previous 
studies have used various machine learning approaches 
like random forests, gradient boosting, neural networks 
etc. as they can perform significant attribute selection, 
can identify complex interactions between attributes and 
can also capture non-linear interaction of SNPs [20–22]

Over the last few years, certain rule-based approaches 
like TB-Profiler [23] have been developed to detect 
the phenotype of newly sequenced Mtb strains. These 
approaches work by calling out the variants and com-
paring them against curated databases. Thus, these 
approaches can only detect resistance caused by known 
markers. To overcome this, prediction approaches based 
on machine learning (ML) have been recently explored 
for the identification of resistance associated mutations 
in bacteria. Similar to GWAS, the resulting popula-
tion structure can be a significant confounder in the ML 
models as well. To account for population structure, 414 
strains of P. aeruginosa have been investigated with a host 
of classical machine-learning techniques by employing 
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a training strategy based on blocks of phylogenetically 
related sequence [24]. In another study which used 1681 
E.coli strains for predicting AMR, they generated the 
population structure matrix based on core genome align-
ment of strains and showed that the performance of their 
ML models improved when accounted for population 
structure [25]

In recent years, various studies have been published 
studying drug resistance specifically in Mtb. Zhang et. al 
used dN/dS ratio (the ratio of non-synonymous to syn-
onymous SNPs) to identify important genes and SNPs 
related to Mtb resistance. They showed that apart from 
SNPs in coding regions, SNPs in intergenic regions are 
also strongly correlated to resistance in Mtb [5]. Other 
approaches for detecting resistance in Mtb employed dif-
ferent ML models and achieved area under ROC curve 
values up to 0.95 in a classification task for resistance 
towards selected drugs using features from 23 selected 
target genes known to be implicated in resistance devel-
opment [26, 27]. A recent computational framework, 
TB-ML, provides implementations for different ML 
methods such are random forest, direct association and 
convolutional neural networks [28]. Treesist-TB, a cus-
tomized decision tree-based machine learning algo-
rithm for predicting resistance in Mtb, aims to extract 
genomic variants which might have been missed because 
of overfitting problems of the standard machine learn-
ing algorithms [29]. Furthermore, since resistance to 
multiple drugs (multidrug resistance) is possible in bac-
teria, multi-label ML methods have been utilized to 
predict resistance and to detect novel resistance asso-
ciated mutations [30, 31]. Besides traditional machine 
learning, different deep learning approaches have also 
been applied to predict the resistance in bacteria. Deep-
AMR is one such method that integrates deep denoising 
auto-encoder and multi-label classification into an end-
to-end model with added explainability to models [32]. 
AMR-Diag is another example of a deep learning based 
method that uses assembly-free neural network for pre-
dicting phenotypic resistance of E.coli and K.pneumoniae 
towards 3rd generation cephalosporins and carbapenems 
[33]. Training datasets for these methods can be found in 
public resources, such as, for example, the PATRIC data-
base [34].

However, to date most models trained with ML algo-
rithms do not account for specifics of the bacteria 
data, such as population structure and linkage disequi-
librium, and thus can be prone to misinterpretation. 
Therefore, just as for GWAS studies, ranking genetic 
variants is a crucial part that should be conducted 
before applying algorithms for model training to filter 
out non-significant features from training dataset. One 
of suggested ways to rank such variants is to predict 

their potential impact on protein function [35]. An 
indirect way to take population structure into account 
is to design the training process specifically for each set 
of bacterial genomes by splitting the isolates into train-
ing, test, and validation sets based on genomic distance 
between them [36].

Quantification of the phylogenetic signal of genotypic 
traits also might be used for variants ranking based on 
the population structure. Originally phylogenetic sig-
nal indices, such as Pagel’s � , Blomberg’s K, Moran’s I, 
Abouheif ’s Cmean , were developed for molecular ecology 
questions, where non-independence of traits was used to 
seek evidence for adaptation in the patterns of correlated 
trait evolution (such as size, shape, life history and behav-
ior) across contemporary species [37, 38]. If the phyloge-
netic signal index of a particular trait is calculated, it can 
be compared with values expected under random traits 
distribution which can be generated analytically or be 
numerically simulated by random permutations to test 
the null hypothesis of no phylogenetic signal. Analytically 
random traits distribution for continuous characters is 
traditionally generated under a Brownian motion (BM) 
model, which assumes random walk along the branches 
of the phylogenetic tree, with the variance in the distribu-
tion of trait values being directly proportional to branch 
length [39]. Note that these indices respond differently to 
inaccuracies in phylogenetic tree construction, absence 
of branch length information and low sample size [40].

As many variables analyzed in comparative genomics 
are binary, several approaches for estimation of phylo-
genetic signal in a binary trait were later also developed 
[41–43]. In particular, Fritz et  al. suggested D-score, a 
measure based on the sum of sister-clade differences in a 
given phylogeny [43]. While developed to predict extinc-
tion risk for species or clades of unknown risk status, it is 
still widely used to answer different ecological questions 
[44, 45]. Note that this statistic is sensitive to inaccura-
cies in tree topology and requires tree rooting, thus it is 
not suitable for short-scale bacterial phylogenetic trees 
which are often affected by homologous recombination 
and horizontal gene transfer [46]. Recently we developed 
an alternative approach to estimate the discordance of 
genomic features with phylogeny in a bacterial popula-
tion [47]. To rank the binary traits based on their inde-
pendence from population structure, we first performed 
the ancestral reconstruction of trait states across the phy-
logenetic tree and then estimated the inconsistency based 
on the number of state changes and the phylogenetic 
distances between nodes where it happened. This meas-
ure, called parallelism score, is less sensitive to tree root-
ing and inconsistencies in clades with short branches, 
which is often the case while reconstructing phylogeny of 
closely-related bacterial species.
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In this study, we present a novel phylogeny-based 
method for ranking genetic variants followed by training 
ML models for predicting antibiotic resistance in Mtb. 
We demonstrate that this filtering is crucial and improves 
performance of the ML models. Using bacterial GWAS 
methods as a baseline, we identified known resistance-
associated variants in a set of Mtb strains with known 
resistance profiles from the PATRIC database, as well as 
detect novel potential resistance-associated variants.

Results
First, we established a baseline with GWAS analysis. The 
pyseer software identified key known resistance mecha-
nisms for the corresponding antibiotics (Fig.  1, Supp. 
Table S2): mutations in 16S ribosomal RNA gene for ami-
noglycosides, mutations in 30S ribosomal protein S12, 
catalase peroxidase katG, and 3-oxoacyl-ACP reductase 
fabG genes for streptomycin, SNPs upstream of the ami-
noglycoside acetyltransferase eis gene for kanamycin, and 
mutations in DNA gyrase subunit A for ofloxacin. We 
did not observe any mutations known to confer resist-
ance to ethionamide; instead for this drug, which is a 

second-line therapyone, we observed a mutation in the 
16S ribosomal RNA gene, which may be an indication of 
multi-resistance against first-line streptomycin or other 
aminoglycosides. In addition, we observed several unre-
ported mutations in and upstream of genes which encode 
hypothetical proteins and a transcription regulator from 
the AraX/XylS family that have less significant p-values.

In the ML analysis, first we calculate phylogeny-related 
parallelism score (PRPS), a measure of inconsistency 
between SNPs phylogenetic pattern and the species tree 
topology, to exclude mutations that are strongly linked with 
the population structure from the training dataset (see Meth-
ods). According to our procedure, SNPs whose distribution 
is consistent with phylogenetic tree structure have low PRPS. 
In contrast, high PRPS indicate independent acquisition 
of SNPs by different lineages. PRPS reflects whether a SNP 
is monophyletic or polyphyletic, where high PRPS scores 
correspond to highly polyphyletic features (Fig. 2, top). For 
comparison, a known resistance-associated mutation A90V 
in GyrA that confers a strong resistance to fluoroquinolones 
[48], has a PRPS score of 2.824321 and is in the top 11% of 
the PRPS-ranked feature list (Fig. 2, bottom).

Fig. 1 Associations between SNP and antibiotic resistance found using GWAS (see Methods). Horizontal line shows selected threshold 
for significance
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Top 30% of features with highest PRPS were used for 
training our ML models. In all cases, even though a sig-
nificant number of mutations (70%) were not considered 
in the models, both MCC and ROCAUC values increase 
in almost all cases when high-PRPS mutations are used 
as features (the only exception being the RF models for 
amikacin, where the performance is almost perfect any-
way). To test the significance of this observation, we 
randomly deleted 70% of the mutations from our data 
and re-trained the models. In this case, all performance 
measures dropped drastically, which proved that SNPs 
selected by the phylogeny analysis were not random and 
were enriched in predictive features, while containing 
less noise (Table 1). Moreover, using high-PRPS features 
increased the training speed and reduced the amount of 
resources used for model training in terms of memory 
and CPU time. Additionally, we checked for presence 
of known antibiotics resistance markers among the pre-
dictive features using features importance analysis, and 
in all cases these markers are retained in the high-PRPS 
models and disappear in random-30% models (data not 

shown). Thus, we used top 30% high-PRPS features for all 
further analysis.

We further investigated our SVM and RF models with 
permutation-based feature importance analysis [49] to 
identify features that are most contributing to predic-
tion outcome and thus should be investigated for being 
causative variants for resistance mechanisms (Supple-
ment 3 Tables 1 & 2). First, with our ML approach we 
identified a list of common known resistance-associ-
ated mutations. For example, missense variants in the 
DNA gyrase gene gyrA are known to cause ofloxacin 
resistance, and mutations in the 16S ribosomal RNA 
gene rrs and small ribosomal subunit protein gene rpsL 
are causative for aminoglycosides resistance. Futher-
more, mutations in the catalase-peroxidase gene katG 
that are known to cause resistance to isoniazid and pro-
thionamide, and in the arabinosyltransferase A gene 
embA cause resistance to ethambutol. In several cases 
we observed SNPs upstream of known resistance-asso-
ciated genes, which may signify the importance of regu-
lation of gene expression in resistance, also reported in 

Fig. 2 Top: High- and low-PRPS SNPs. Branches corresponding to the strains containing the SNP are colored red. Bottom: Mutation A90V in GyrA 
associated with resistance to fluoroquinolones (left) and ofloxacin-resistant strains (right). Branches corresponding to strains with the mutation 
A90V in GyrA are colored magenta and indicated with arrows. Branches corresponding to ofloxacin-resistant strains are colored green, 
and the corresponding clades are marked with green arrows
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literature [50–52]. In particular, we identified -15C>T 
(15 bases upstream of the start codon) mutation in 
the fabG1 gene that is known to be associated with 
ethionamide resistance and -165T>C mutation in rpsL 
gene that is associated with aminoglycoside resistance. 
Moreover, we observed new connections of known 
resistance markers with other antibiotics. For example, 
katG is known to be associated with resistance to iso-
niazid and prothionamide [53, 54], which are a first and 
second-line drugs respectively, but we see a Arg463Leu 
mutation in katG to be predictive of resistance to strep-
tomycin. In addition to known resistance-associated 
variants, we identified previously undescribed variant 
resulting in non-synonymous mutation: Ile145Met in a 
probable amino acid aminotransferase PabC.

To investigate the robustness of our models, we also 
have trained models with different seeds for random split 
(see Methods). 10 randomly selected seeds have been 
used, and they all yielded similar results both for model’s 

MCC (Matthews correlation coefficient) and AUROC 
(Area under the receiver operating characteristic) val-
ues, as well as permutation importance feature analysis. 
We have observed higher MCC and AUROC values for 
random forest as compared to SVM for every antibiotic 
(Table 2).

To predict the impact of non-synonymous coding vari-
ants on the proteins’ function we analyzed their location 
in the protein three-dimensional structure with Struct-
MAn [55]. This tool predicts location of mutated posi-
tion with respect to potential binding interfaces as well 
as protein core based on analysis of all experimentally 
resolved structures of complexes of homologous pro-
teins. Thus, even if a certain binding event has never been 
detected for a particular bacterium, we can hypothesize 
about them by transferring information from related spe-
cies. Most known resistance-associated mutations as well 
as previously undescribed variants can be mapped onto 
a structure where they lie on an interaction interface or 

Table 1 Comparison of different feature sets

Support Vector Machine (SVM) Random Forest

All features 30% PRPS 30% Random All features 30% PRPS 30% Random

MCC

     AMK 0.720 0.752 0.302 0.881 0.883 0.481

     CAP 0.539 0.620 0.334 0.779 0.780 0.569

     ETH 0.325 0.370 0.269 0.550 0.605 0.488

     KAN 0.766 0.685 0.415 0.812 0.856 0.546

     OFL 0.508 0.549 0.294 0.778 0.778 0.452

     STR 0.602 0.613 0.477 0.782 0.801 0.650

ROCAUC 

     AMK 0.842 0.872 0.663 0.927 0.918 0.765

     CAP 0.779 0.816 0.683 0.858 0.863 0.718

     ETH 0.665 0.686 0.640 0.780 0.807 0.746

     KAN 0.873 0.844 0.718 0.880 0.916 0.741

     OFL 0.757 0.781 0.649 0.870 0.870 0.723

     STR 0.798 0.816 0.747 0.865 0.890 0.785

Sensitivity

     AMK 0.721 0.786 0.485 0.868 0.843 0.671

     CAP 0.650 0.720 0.517 0.733 0.760 0.453

     ETH 0.603 0.603 0.676 0.689 0.779 0.691

     KAN 0.787 0.755 0.585 0.777 0.681 0.532

     OFL 0.719 0.771 0.573 0.771 0.771 0.625

     STR 0.687 0.741 0.642 0.752 0.815 0.601

Specificity

     AMK 0.965 0.958 0.840 0.987 0.994 0.858

     CAP 0.910 0.912 0.849 0.983 0.979 0.982

     ETH 0.727 0.769 0.603 0.810 0.835 0.802

     KAN 0.961 0.933 0.851 0.983 0.992 0.949

     OFL 0.796 0.790 0.725 0.970 0.970 0.820

     STR 0.910 0.891 0.853 0.977 0.965 0.969
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in the protein core. For some new variants, there are nei-
ther any experimentally resolved structures of the cor-
responding protein, nor of its homologs. In this case we 
relied on structures predicted with AlphaFold and four 
out of six of these variants are classified as surface. No 
complexes of these proteins have been resolved, so it is 
possible that these surface mutations in fact take part in 
some biologically important interactions (Table 3).

For example, mutation Ile145Met in the putative 
amino acid aminotransferase PabC (corresponds to SNP 
906857A>G) is located on a protein-protein interaction 
interface of the protein (Fig. 3). Although the role of this 
protein in ethionamide resistance is not clear, this muta-
tion may change affinity of interaction between the subu-
nits, and thus impact protein function.

Discussion
Large collections of M. tuberculosis genomes provide 
a basis to study genomic features that cause antibiotic 
resistance in their populations. Understanding of molec-
ular mechanisms, how both classical and new antituber-
cular drugs work and identifying specific mutations that 
allow Mtb to escape the effects of these drugs are impor-
tant for development of new extended diagnostic panels 
as well as new efficient methods of treatments.

Traditional pipelines for Mtb drug resistance are based 
on calling known resistance-associated mutations in the 
newly sequenced genomic data (direct association), and 
work quite well with nearly perfect specificity. Mean-
while, ML approaches can improve this performance fur-
ther [26]. However, this study focussed only on 23 genes 

Table 2 Performance of trained ML models with random seeds

Support Vector Machine (SVM) Random Forest

Hold-out Cross Validation Hold-out Cross Validation

MEAN STDEV MEAN STDEV MEAN STDEV MEAN STDEV

MCC

    AMK 0.775 0.034 0.771 0.057 0.859 0.026 0.853 0.059

    CAP 0.671 0.061 0.661 0.060 0.766 0.035 0.799 0.040

    ETH 0.367 0.072 0.353 0.068 0.519 0.054 0.566 0.074

    KAN 0.688 0.031 0.686 0.047 0.820 0.044 0.866 0.025

    OFL 0.555 0.037 0.571 0.068 0.801 0.035 0.809 0.024

    STR 0.626 0.026 0.611 0.030 0.799 0.013 0.816 0.018

ROCAUC 

    AMK 0.873 0.021 0.874 0.031 0.904 0.027 0.895 0.042

    CAP 0.843 0.028 0.849 0.034 0.865 0.012 0.885 0.023

    ETH 0.685 0.039 0.677 0.036 0.760 0.027 0.777 0.031

    KAN 0.850 0.021 0.853 0.033 0.889 0.023 0.919 0.019

    OFL 0.780 0.018 0.786 0.032 0.887 0.015 0.891 0.014

    STR 0.821 0.013 0.815 0.013 0.892 0.007 0.898 0.013

Table 3 Structural classification of known resistance-associated and novel predictive variants

Variant ID Gene Mutation Uniprot ID RIN-based simple 
classification

Observed 
resistance to

Reported resistance to

Known resistance-associated mutations

    (7570, ’C,T’, ’snp’) gyrA A90V P9WG47 Ligand interaction OFL, ETH FQ [53, 54]

    (7362, ’G,C’, ’snp’) gyrA E21Q P9WG47 Protein interaction OFL FQ [53, 54]

    (781687, ’A,G’, ’snp’) rpsL K43R P9WH63 RNA interaction STR STR [53, 54]

    (2154724, ’C,A’, ’snp’) katG R463L P9WIE5 Surface STR INH, PTO [53, 54]

Previously unreported variants

    (781395, ’T,C’, ’snp’) rpsL T-164C P9WH63 - STR -

    (906857, ’A,G’, ’snp’) pabC I145M Q79FW0 Protein interaction ETH -

Previously unreported variants with no structural templates (AlphaFold [56] models used)

    (1670814, ’C,T’, ’snp’) DUF58 G134G A0A7U4G1E6 Core ETH -



Page 8 of 12Yurtseven et al. BMC Microbiology          (2023) 23:404 

known to be associated with drug resistance, considering 
only on a small number of arguably most relevant fea-
tures, and thus missing the possibility to discover novel 
resistance mechanisms. ML methods show promise not 
only for Mtb drug resistance, but for work on other path-
ogens as well [24], slowly making their way into personal-
ized clinical guidelines [58].

In this work we propose a set of ML models for predict-
ing antibiotics resistance in Mtb trained on public data. 
Despite the fact that our models are agnostic of prior 
biological knowledge on resistance markers and mecha-
nisms, they were able to re-discover many of these known 
resistance markers. In addition to that, we have observed 
previously unreported resistance-associated mutations: 
For instance, we detected markers known to be associ-
ated with resistance to other antibiotics than those that 
were used in the phenotypic screens under consideration: 
for example, in the data for streptomycin (first-line drug) 
we detected a mutation in katG that is associated with 
resistance to a first and second-line drugs isoniazid and 
prothionamide [53, 54], which may hint at multi-resist-
ance. This emphasizes the importance of using whole-
genome sequences in such models as they are a mine of 
additional information.

Using whole-genome sequences, however, is connected 
with a danger of discovering many false-positive associa-
tions, due to low recombination rates and strong popula-
tion structure in bacteria [11]. Different approaches have 
been suggested to account for this: using linear mixed 
models [11], adding a feature that reflects predicted 
functional impact of the genetic variant [35], or training 
while accounting for population structure in the sam-
ple [24]. We proposed a simple procedure and measure 

(parallelism-related phylogenetic score, PRPS) to rank 
genetic variants by their propensity to occur at multiple 
locations within the species’ phylogenetic tree and show 
that using only top-PRPS features improves performance 
of the models and minimizes the number of potential 
false positives. Combinations of multiple such scores are 
thinkable: for example, with predicted functional impact 
of corresponding mutations [59–61] or with their poten-
tial impact on protein structure and interactions [55].

We have demonstrated the potential of ML meth-
ods and compared them to the state-of-the-art GWAS 
approaches. In a certain sense, the way an ML algo-
rithm combines the effects of different features is simi-
lar to how polygenic risk scores (which are also used in 
GWAS, but primarily in connection with human dis-
ease [62]) combine the effect of different mutations. 
Whereas classical PRS combine the effects linearly, ML 
approaches are finding their way in more advanced ver-
sions of PRS to capture non-linear (epistatic) effects 
[62–64].

ML methods are not restricted to SNPs. Whereas 
SNPs play a major role for resistance development in 
Mtb, other mechanisms are prevalent in other patho-
gens, such as horizontal gene transfer of resistance-
associated genes via plasmids. Accordingly, features 
related to gene presence can be easily incorporated into 
models. Thanks to advances and increasing accessibility 
of long-read sequencing technologies, other potential 
mechanisms can be included and their impact on resist-
ance can be explored: gene copy number, chromosomal 
rearrangements etc. [65–67]. Whereas sequencing 
becomes cheaper, phenotypic screens that are required 
to train ML models are still laborious and costly, hence 
algorithmic developments to make most out of limited 
data are essential, too.

Conclusion
We present ML models for the discovery of antibiotic 
resistance markers in Mtb. The models are trained using 
whole-genome sequences with accompanying resistance 
screens, and the resistance markers are extracted with 
feature importance analysis. We emphasize the impor-
tance of accounting for population structure within a 
bacterial species by introducing PRPS, phylogeny-related 
parallelism score. We show that ML models that employ 
PRPS-aware features demonstrate superior performance, 
as well as discover more biologically meaningful markers. 
Additionally, we show that it is possible to uncover mark-
ers related to first-line drugs when analyzing screens 
for second-line drugs, as multi-resistance occurs quite 
frequently. We report several new potential resistance 
markers and discuss the corresponding possible molecu-
lar mechanisms.

Fig. 3 Structural analysis of the novel potential resistance marker. 
Corresponding mutation is shown as violet sticks, different chains 
in multimeric protein complex is shown with ribbons in different 
colors. Figure was created with PyMOL [57]. Mutation Ile145Met 
in the putative amino acid aminotransferase PabC, mapped on 3D 
structure, PDB id 6Q1S



Page 9 of 12Yurtseven et al. BMC Microbiology          (2023) 23:404  

Methods
Genomic and phenotypic data and variant calling
Genome sequences and the resistant phenotype data 
of the Mtb strains for six antibiotics (amikacin, capreo-
mycin, ethionamide, kanamycin, ofloxacin and strepto-
mycin) were downloaded from PATRIC database [34] 
(retrieved on November 26, 2021). First, the strains were 
filtered out because the corresponding fasta files were 
corrupted in the database. Next, the duplicate genomes 
and the cases when identical genomes were annotated 
with conflicting phenotypes were further removed. 
Additionally, genomes with more than 5 consecutive ‘N’ 
nucleotides, L90 > 100 and those comprising more than 
999 contigs were excluded from our study. To get rid of 
contamination, all genomes with maximum pairwise 
Mash genetic distance exceeding 0.2 to any other genome 
were removed. Finally, genomes with the length deviating 
by more than two standard deviations from the average 
Mtb genome length and those with more than 5% con-
tamination were excluded from our study. After applying 
these filters, our final dataset consisted of 4869 genomes 
(Supplement 4 Table  2) which were used in our study 
(Table 4).

Whole genome sequences of all the 4869 strains were 
mapped to the H37Rv reference genome (NCBI acces-
sion: NC_000962) and variant calling was performed 
using the Snippy [68]. Variants present in less than 0.2% 
strains were filtered out to account for sequencing errors. 
Among the variants, we removed INDELS and only 
retained single-nucleotide polymorphism (SNPs). Finally, 
we were left with 24,425 SNPs which were then used as a 
features for further downstream studies.

Genome wide association studies (GWAS)
As a baseline, genome wide association analysis was car-
ried out using pyseer [19], since this tool accounts for 
most of the pitfalls that one can come across in bacte-
rial GWAS [13]. To account for strong population struc-
ture, a similarity kinship matrix was generated using 

“similarity_pyseer” command of pyseer and was used as 
input for GWAS analysis. Further, the linear mixed mod-
els (LMM) which models other SNPs as random effects 
to control for population structure was used to perform 
the GWAS analysis. Finally, to control for multiple test-
ing, the Bonferroni correction was used, and a p-value 
threshold of 0.05 divided by number of variants was 
adopted for all antibiotics to select the significant vari-
ants associated with resistance phenotype.

Phylogenetic reconstruction and phylogeny-related 
parallelism score
To build the phylogeny of the Mtb strains, we used the 
PanACoTA pipeline [69]. Orthologous groups were con-
structed with 80% threshold for protein identity, concat-
enated codon alignment of 161 single-copies common 
genes was used to construct the maximum-likelihood 
phylogenetic tree using fasttree [70] with 1000 bootstrap 
replicates. The phylogenetic tree with resistance profiles 
was visualized using the iTOL online tool [71]. To calcu-
late the phylogeny-related parallelism score (PRPS) for 
each SNP we perform the following procedure (adopted 
from [72]). First we generate a matrix of the pairwise 
distances between all the nodes in the tree. Then we col-
lapse the clades where all leaves have a SNP and assign 
this SNP to the corresponding ancestral node. Finally we 
calculate the PRPS as a logarithm of a sum of pairwise 
distances between the nodes with SNP:

where N are nodes which the SNP is assigned to, D is the 
phylogenetic distance between them. Thus, PRPS reflects 
the number of occurrences of a SNP across the tree and 
distances between the nodes where it occurred.

Machine learning for predicting antimicrobial resistance
Resistance profiles from the PATRIC database were used 
as the target variable for machine learning methods. To 

PRPSSNP = log
i,jǫNi �=j

D Ni,Nj

Table 4 Datasets used in this study. For the number of strains and SNPs, the final numbers after all filtering are provided

Drug name Line of therapy Pharmacological group Number of 
strains

Number (fraction) of 
resistant strains

Number 
of SNPs 
(features)

STR First line Aminoglycosides 4,726 1158 (24,5%) 24,425

AMK Second line Aminoglycosides 1,149 208 (18,1%) 18,864

CAP Second line Aminoglycosides 1,086 205 (18,9%) 17,045

KAN Second line Aminoglycosides 1,362 297 (21,8%) 17,335

OFL Second line Fluoroquinolones 795 307 (38,6%) 14,185

ETH Second line Nicotinamide derivative 571 210 (36,8%) 12,974

Total 4,869 24,425
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this end, the minimal inhibitory concentration (MIC) 
values were converted into a binary variable represent-
ing ‘resistant’ and ‘susceptible’ phenotypes. We used two 
supervised learning models; support vector machine 
(SVM) with linear kernels and random forest (RF) algo-
rithms. For SVM, data were divided into training and test 
sets randomly with 67% and 33% going into the training 
and test sets, respectively. Models were trained on the 
training set with the hold-out validation technique with 
different C values and tested on the test set. Best mod-
els were selected by choosing the ones with the highest 
MCC (Matthews correlation coefficient) score. To vali-
date robustness of the models, we have trained additional 
20 models with different randomization seeds with 30% 
top PRPS score features. We used the hold-out strategy 
with 67% training and 33% test split (10 models), and 
4-fold cross validation with 80% going to training/vali-
dation and 20% to the test set (10 models). Training and 
validation sets were used to optimize for different C val-
ues. For RF, the whole training procedure was analogous 
to SVMs. Hyperparameters were optimized with Auto-
sklearn 2.0 [73] using the hold-out resampling strategy. 
Again, we trained additional ML models with different 
randomization seeds and applied hold-out and cross-val-
idation strategies. All ML models were implemented with 
scikit-learn [74] and auto-sklearn [73] in Python.

Three feature sets were used for our ML models: (1) all 
SNPs selected as described above; (2) 30% features with 
highest PRPS; (3) 30% features chosen randomly from all 
features. The 30% threshold was chosen, since it consist-
ently delivered best performance for the PRPS-ranked 
features (data not shown). Further, feature importance 
analysis was performed to extract predictive resistance 
genetic markers. For RF models, we used permutation-
based feature importance analysis [74] with significance 
threshold of r2 > 0.03 . For SVMs we used both permuta-
tion-based feature importance analysis with significance 
threshold of r2 > 0.03 and coefficients. For additional 
models, important features for each model are calculated 
by using permutation-based feature importance analysis 
[74]. For each model, important features were collected 
with r2 > 0.03 . For each antibiotic and model tech-
nique, a feature is deemed important if it was observed 
as important in at least 8 out of 10 corresponding rand-
omized models.
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