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Abstract
Intrinsic metabolism shapes the immune environment associated with immune suppression and tolerance in 
settings such as organ transplantation and cancer. However, little is known about the metabolic activities in an 
immunosuppressive environment. In this study, we employed metagenomic, metabolomic, and immunological 
approaches to profile the early effects of the immunosuppressant drug tacrolimus, antibiotics, or both in gut lumen 
and circulation using a murine model. Tacrolimus induced rapid and profound alterations in metabolic activities 
within two days of treatment, prior to alterations in gut microbiota composition and structure. The metabolic 
profile and gut microbiome after seven days of treatment was distinct from that after two days of treatment, 
indicating continuous drug effects on both gut microbial ecosystem and host metabolism. The most affected 
taxonomic groups are Clostriales and Verrucomicrobiae (i.e., Akkermansia muciniphila), and the most affected 
metabolic pathways included a group of interconnected amino acids, bile acid conjugation, glucose homeostasis, 
and energy production. Highly correlated metabolic changes were observed between lumen and serum 
metabolism, supporting their significant interactions. Despite a small sample size, this study explored the largely 
uncharacterized microbial and metabolic events in an immunosuppressed environment and demonstrated that 
early changes in metabolic activities can have significant implications that may serve as antecedent biomarkers 
of immune activation or quiescence. To understand the intricate relationships among gut microbiome, metabolic 
activities, and immune cells in an immune suppressed environment is a prerequisite for developing strategies to 
monitor and optimize alloimmune responses that determine transplant outcomes.
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Introduction
The intrinsic metabolism is a major regulator of the 
immune environment, including metabolic activities 
associated with immune tolerance such as in transplan-
tation and cancer [1–3]. The immunosuppressive agents 
used to prevent allograft rejection have serious long-
term effects not only on immunity and the transplanted 
organ, but also on metabolic disorders [4]. Metabolic 
derangements such as post-transplant diabetes mellitus, 
non-alcoholic fatty liver disease, hypertension, dyslipid-
emia, and obesity affect the majority of organ transplant 
recipients [5]. As major non-immune factors, metabolic 
disorders contribute significantly to chronic allograft 
dysfunction, graft survival, and quality of life [6–8]. Gut 
dysbiosis appears also to be involved in these metabolic 
changes, though its specific impact remains undefined 
[9]. Despite of current understanding of a few metabo-
lites implicated in cancer immunosuppression [9, 10], 
there is a significant gap in our understanding of the 
shifts in the metabolic landscape and the specific micro-
biomes that are responsible for such changes. Notably, 
many metabolic changes have been characterized after 
the emergence of symptomatic pathophysiological signs, 
leaving the early shifts less explored.

Many metabolic disorders are characterized as an 
imbalanced composition and function of intestinal 
microbiota with reduced microbial biodiversity and 
altered metabolic capacity, or gut dysbiosis [11, 12]. In a 
dysbiotic state, microbial metabolic activities are altered 
and a large range of metabolites are affected, such as 
amino acids [13], short-chain fatty acids (SCFAs) [14], 
bile acids (BAs) [15], tryptophan metabolites [16], tri-
methylamine N-oxide (TMAO) [17], polyamines [18], 
and vitamin derivatives [19]. Dysbiosis can result in an 
overgrowth of potentially harmful microbes that produce 
proinflammatory metabolites, such as lipopolysaccha-
rides and TMAO [20]. Increased levels of these metabo-
lites contribute to systemic inflammation, impaired gut 
barrier function, and immune dysregulation [21]. In fact, 
gut dysbiosis and altered metabolic pathways are associ-
ated with increased mortality after organ transplantation 
[12]. Ameliorating gut dysbiosis using dietary interven-
tions, prebiotics, probiotics, and fecal microbiota trans-
plantation offers potential prevention and treatment of 
metabolic disorders.

Interactions between immunosuppressive treatments 
and gut microbiome are bidirectional. Tacrolimus is a 
widely used immunosuppressive drug prescribed pre-
dominantly for prophylaxis of organ rejection post-trans-
plant [22]. The gut microbiota contributes to complex 
metabolic interactions by its impact on drug metabo-
lism, affecting the efficacy, toxicity, and bioavailability 
[23], contributing to high interindividual variability in 
drug metabolism and responses [24–27]. For example, 

Faecalibacterium prausnitzii directly metabolizes tacroli-
mus into less potent metabolites in vitro [28, 29]. The gut 
microbiota can reactivate the inactive form of a potent 
immunosuppressive agent mycophenolate mofetil and 
influence its pharmacokinetics [30, 31]. Immunosuppres-
sants also significantly altered the gut microbiome [9, 32]. 
High doses of tacrolimus significantly altered the compo-
sition and structure of the gut microbiome [33].

Immunosuppressive drugs are always combined clini-
cally with antibiotic regimens, heightening the com-
plexity of interactions with the microbiota [34, 35]. The 
antibiotics are typically administered to transplant recipi-
ents to prevent or treat infection. However, antibiotics 
disrupt the gut microbiota, leading to reduced microbial 
diversity and an increased risk of infection from oppor-
tunistic pathogens [36, 37]. Given the consequences of 
modifying the gut microbiota on inflammation, immu-
nity, and metabolism, sophisticated analyses that seek to 
identify the major variables, their interactions, and their 
effects are required to advance our understanding of the 
role of gut microbiota and their metabolic activities in 
immunosuppressed environments.

The goal of this study is to delineate early changes in 
metabolite profiles caused by immunosuppressive treat-
ment, and its intricate interactions with the gut micro-
biome. We employed metagenomic, metabolomic and 
immunological approaches to compare the effects of 
tacrolimus and antibiotics on the gut lumen and circu-
lation in a murine model. This model employs low-dose 
daily tacrolimus administration that effectively mirrors 
both clinical dosing and clinical events reminiscent of 
human pathology, surpassing models based on acute, 
binary measures of rejection [38, 39]. Distinct meta-
bolic phenotype, or “metabotype” that constitute one or 
a set of compounds that reflect treatment effects [40], 
were elicited by tacrolimus. Distinct metabotypes after 
two days and seven days of treatment demonstrated 
significant and incremental effects imposed by continu-
ous immunosuppressant treatment. Gut microbial com-
munity and composition was also persistently altered at 
these two time points. Though integrative analyses, our 
study underscored the prompt influence of immunosup-
pressive drugs on host metabolism in both gut and cir-
culation, occurring ahead of detectable significant shifts 
in gut microbiota composition and structure. These 
rapid and sensitive metabolic signatures can be used as 
antecedent biomarkers to indicate the onset and pro-
gression of metabolic changes, highlighting their value 
as diagnostic and potential auxiliary therapeutic targets 
for managing metabolic disorders from prolonged use of 
immunosuppressants.



Page 3 of 21Ma et al. BMC Microbiology          (2023) 23:394 

Results
Short-term tacrolimus-induced modest versus antibiotics-
induced strong changes in the gut microbiome
We first investigated the short-term responses (experi-
mental design in Fig.  1A) to tacrolimus and antibiotics 
on the gut microbiome and metabolism. C57BL/6 mice 
were treated with antibiotics for 6 days only, tacrolimus 
for 2 days only, the combination of antibiotics followed 
by tacrolimus, or untreated no drug control. Whole com-
munity metagenomic sequencing of colon intralumi-
nal fecal contents yielded 39.4 ± 8.0 (mean ± s.d.) million 
reads per sample after quality assessment (Supplemental 
Table  1A). Intraluminal fecal content from the jejunum 
showed that the majority (> 98%) of the reads were from 
the host (Supplemental Table 1B). Thus, the intraluminal 
content of the colon was used in subsequent analyses. 
Taxonomic composition using the comprehensive mouse 

gut metagenome catalog (CMGM) [43] showed 222 taxo-
nomic groups at species level (Supplemental Table 1  C) 
in 64 genera (Supplemental Table 1D). Functional charac-
terization using HUMAnN2 (Human Microbiome Proj-
ect Unified Metabolic Analysis Network) (v0.11.2) [41] 
to determine the prevalence and abundance of metabolic 
functional units is presented in Supplemental Table 1E.

The effects of antibiotics and tacrolimus on gut micro-
biota were distinct. Antibiotic treatment alone or in 
combination with tacrolimus significantly reduced gut 
microbiota diversity (Fig. 1B) and altered the taxonomic 
composition and structure (Fig. 1C) as well as the func-
tional makeup (Fig.  1D). Compared to tacrolimus alone 
or the untreated control, the antibiotic effect was much 
stronger with phylogenetic collateral sensitivity, as taxa 
from the same phylogenetic groups were simultane-
ously affected (Supplemental Fig. 1A). The most striking 

Fig. 1 Short-term drug effect on gut microbiome. A) Experimental design. C57BL/6 mice were treated with antibiotics for 6 days only from day 7 to 1, 
tacrolimus 2 days only, the combination of antibiotics from day 7 to 1 followed by tacrolimus on day 1 and 2, or untreated no drug control. B) Chao1 
diversity index (within-community diversity) of the four experimental groups. Canonical Correspondence Analysis (CCA) to demonstrate de novo cluster-
ing of gut microbiome C) taxonomic groups and D) microbial functional pathways characterized using HUMAnN2 (v0.11.2) [41] and Uniref90 database 
[42] based on Bray-Curtis distance. E) Cumulative relative abundance of bacteria groups in families for the four experimental groups, using ward linkage 
clustering based on Euclidian distance. Abbreviations: Abx: antibiotics; Ctl: no treatment control; Tac: tacrolimus; Abx + Tac: antibiotics with tacrolimus 
treatment
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changes were in observed in Firmicutes (aka. Bacillota) 
with members from the families of Lachnospiraceae 
(Firmicutes), Oscillospiraceae (Firmicutes), Rumino-
cocceae (Firmicutes), and Muribaculaceae (aka. S24-7, 
Bacteroidota) being depleted (Supplemental Fig.  1B–E). 
Antibiotics overpowered the effects of tacrolimus on 
the gut microbiome when used in combination (Fig. 1E). 
The most differentially abundant group was Enterobac-
teriaceae (Enterobacter and Klebsiella pneumoniae) for 
tacrolimus plus antibiotics, while the antibiotics-only 
treatment group had a few low abundant groups in Fir-
micutes and Burkholderiales (Clostridium and Paeniclos-
tridium sordellii) (Supplemental Fig.  3). Otherwise, the 
antibiotics treated groups with and without tacrolimus 
were highly similar.

Unlike antibiotics, tacrolimus alone induced only mod-
est changes in gut microbiota, presenting high similari-
ties to the control in community diversity, taxonomic 
composition and structure, and functional makeup 
(Fig.  1B–E). The most affected taxa were in low abun-
dance and sporadically distributed in different taxonomic 
groups without relation to the phylogenetic range (Sup-
plemental Fig.  3). Akkermansia muciniphila (Verruco-
microbiae) was more abundant in the tacrolimus group, 
whereas a few low abundant Clostridia taxa were more 
abundant in the control group (Supplemental Fig.  2). 
Overall, antibiotic treatment, with and without tacroli-
mus, strongly affected the gut microbiome, and this wide 
spectrum impact was related to the phylogenetic range. 
The 2-day tacrolimus treatment had modest effects on 
the gut microbiome, which was not related to the micro-
bial phylogenetic range.

Short-term tacrolimus treatment induced profound 
changes in metabolic activities in both gut lumen and 
serum
To investigate gut metabolism, we profiled the metabo-
lome of paired intraluminal stool and serum samples 
using capillary electrophoresis-mass spectrometry (CE/
MS) (Fig.  1A). After quality assessment, 247 luminal 
metabolites were included, out of which 233 were anno-
tated by at least one reference from PubChem [44], Kyoto 
Encyclopedia of Genes and Genomes [KEGG, [45]], or 
the Human Metabolome Database [HMDB, [46]] (Sup-
plemental Table  2  A). KEGG BRITE hierarchy remains 
the benchmark for function classification, enabling the 
allocation of a metabolite to its respective KEGG com-
pound, functional module, involved pathways, and 
functional class. According to the KEGG BRITE hier-
archical classification system, 84 luminal metabolites 
were assigned in this system. The most prevalent class 
of luminal metabolites was amino acid metabolism, 
comprising 40.5% (34/84) of all annotated metabolites 
(Supplemental Table 2  C). These metabolites belong to 

pathways in arginine and proline metabolism, arginine 
biosynthesis, cysteine and methionine metabolism, his-
tidine metabolism, tryptophan metabolism, and glycine, 
serine and threonine metabolism. Together with other 
amino acid metabolites (i.e., β-alanine metabolism, gluta-
thione metabolism), the amino acid metabolism-related 
metabolites comprised 48.7% of the total luminal metab-
olome (Supplemental Table 2D). Other prevalent classes 
included carbohydrate metabolism (14.3%, 12/84), nucle-
otide metabolism (10.7%, 9/84), lipid metabolism (9.5%, 
8/84), metabolism of cofactors and vitamins (8.3%, 7/84), 
and the biosynthesis of other secondary metabolites 
(3.6%, 3/84). Individual metabolites were characterized 
in 111 functional modules such as polyamine biosyn-
thesis (arginine = > agmatine = > putrescine = > spermi-
dine) to indicate key metabolic processes (Supplemental 
Table 2E).

The serum metabolome was estimated to be approxi-
mately 80% similar to the paired luminal metabolome 
based on KEGG functional modules. A total of 262 serum 
metabolites were included after quality assessment, of 
which 233 were annotated (Supplemental Table  2B). 89 
serum metabolites were assigned to the KEGG BRITE 
hierarchical classification system. The most prevalent 
class was amino acids metabolism (42.7%, 38/89), an 
even higher proportion than the luminal metabolome. 
Lipid metabolism (12.4%, 11/89) and xenobiotics biodeg-
radation and metabolism (3.4%, 3/89) were also higher 
in the serum. Conversely, carbohydrate (12.4%, 11/89) 
and nucleotide metabolism (7.9%, 7/89) were higher in 
the lumen. Metabolic pathways were also similar in the 
lumen and serum. The main pathways for which the 
lumen metabolome had more coverage included protein 
digestion and absorption, biosynthesis of cofactors, tau-
rine and hypotaurine metabolism, glutathione metabo-
lism, neuroactive ligand-receptor interaction, cysteine 
and methionine metabolism, purine metabolism, and the 
cAMP signaling pathway. Conversely, the serum metabo-
lome had higher coverage of lysine degradation, phenyl-
alanine metabolism, tryptophan metabolism, fatty acid 
biosynthesis, tyrosine metabolism, and glycine, serine, 
and threonine metabolism. Approximately 80% of the 
serum functional modules shared key metabolic pro-
cesses with the lumen (Supplemental Table  2E–G). The 
rest were either present in serum or gut. For instance, 
ornithine biosynthesis (glutamate = > ornithine) was pres-
ent in lumen but not in serum.

Tacrolimus elicited distinct and strong metabolic 
changes within 2 days of treatment. Sparse Partial Least-
Squares Discriminant Analysis (sPLS-DA) was employed 
to analyze the large dimensional datasets that had more 
variables (metabolites) than samples (p > > n) to pro-
duce robust and easy-to-interpret models [47]. Distinct 
metabolic profiles after 2-day tacrolimus treatment were 
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observed in both lumen (Fig.  2A) and serum (Fig.  2B), 
indicating the significant impact of tacrolimus on the 
metabolism of both the circulation and gut lumen. The 
key metabolites that contributed to the distinction 
among treatment groups are shown in Supplemental 
Fig.  4. These compounds offer a comprehensive insight 
into the treatment-induced metabolic shifts. An over-
view of the most differentially abundant compounds 
among the treatment groups is shown in hierarchical 
clustering heatmaps in Supplemental Fig.  5. Tacrolimus 
elicited stronger metabolic changes than antibiotics in 
terms of the number of metabolites and pathways that 
were affected. Comparison with antibiotics revealed 10 
times more significantly induced luminal metabolites and 
4 times more serum metabolites elicited by tacrolimus 
(Fig. 2C and D). Comparison with the no treatment con-
trol revealed > 5 times more significantly increased lumi-
nal metabolites and 4 times more serum metabolites in 
tacrolimus than in antibiotics (Supplemental Table  3  A, 

3B). Pathway enrichment analysis also revealed that more 
pathways were significantly affected by tacrolimus in 
both the lumen and serum, which was evaluated from the 
dimensions of pathway topology (i.e., more hits observed 
in the pathway or more influential “hub” hits) and path-
way significance (i.e., more compounds with statistical 
significance) (Supplemental Table 3  C, 3D). Compared 
to the no treatment control, tacrolimus significantly 
induced luminal pathways in vitamin B6 metabolism, 
arginine and proline metabolism, histidine metabolism, 
glyoxylate and dicarboxylate metabolism, and nicotinate 
and nicotinamide metabolism. Compared to antibiot-
ics, tacrolimus additionally induced luminal pathways in 
butanoate metabolism, alanine, aspartate and glutamate 
metabolism, cysteine and methionine metabolism, pan-
tothenate and CoA biosynthesis, β-alanine metabolism, 
arginine biosynthesis, and starch and sucrose metabo-
lism. Compared to the no treatment control, tacrolimus 
significantly increased serum metabolic pathways in 

Fig. 2 Short-term drug effect on metabolome. Clustering of A) luminal metabolites and B) serum metabolites using sparse Partial Least Squares Discrimi-
nant Analysis (sPLS-DA) to demonstrate metabolic phenotypes due to drug treatments. Volcano plot combines results from fold change (FC) analysis to 
show significantly increased metabolites after 2-day tacrolimus treatment in C) lumen or D) serum. A metabolite is shown if FC is > 2 and p value is < 0.05 
based on 2-sample t-test. Original metabolite measurement without normalization was used in FC analysis
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alanine, aspartate and glutamate metabolism, glyoxylate 
and dicarboxylate metabolism, tryptophan indole path-
way, primary BA, taurine and hypotaurine, TCA, and 
alanine, aspartate and glutamate metabolism. Additional 
serum pathways induced by tacrolimus compared to anti-
biotics included nicotinate and nicotinamide, tryptophan 
metabolism of serotonin and L-kynurenine, D-glutamine 
and D-glutamate, and thiamine metabolism. Overall, 
tacrolimus exerted a stronger effect on both luminal and 
circulating metabolism of a selected pool of essential 
amino acid and carbohydrate metabolism pathways.

Unlike tacrolimus, antibiotics induced only modest 
changes in the metabolome. The most elevated luminal 
compounds were primary BAs (Supplemental Fig.  6A). 
Serum levels of a few compounds were elevated, includ-
ing the antibiotic itself (i.e., metronidazole) (Supplemen-
tal Fig.  6B). Serum pathways of alanine, aspartate, and 
glutamate metabolism, arginine and proline metabolism, 
arginine biosynthesis, and valine, leucine and isoleucine 
biosynthesis were increased in antibiotics. However, most 
of these pathways decreased in the lumen after antibiotic 
treatment. The combined treatment of tacrolimus and 
antibiotics did not amplify the number of affected lumi-
nal metabolic pathways in comparison to the influence 
of antibiotics alone (Supplemental Table 3 C). However, 
it did manifest changes in serum metabolic pathways, 
notably in the metabolism of taurine, hypotaurine, pri-
mary bile acid biosynthesis, and histidine (Supplemental 
Table 3D). When comparing the effects of the combina-
tion of tacrolimus and antibiotics with tacrolimus alone, 

there were evident alterations in the gut lumen path-
ways related to butanoate metabolism, and the metabo-
lism of alanine, aspartate, and glutamate. Furthermore, 
the combined treatment impacted pathways concerning 
the metabolism of lysine, valine, leucine, isoleucine, and 
glutathione. These observations underscore the distinct 
metabolic shifts induced by antibiotics and tacrolimus, 
emphasizing their unique and combined effects on host 
metabolism.

Tacrolimus exerted additional effects on gut microbiome 
and metabolism after prolonged administration
Seven-day tacrolimus treatment was investigated to char-
acterize the impact of prolonged tacrolimus use (experi-
mental design in Fig. 3A, Supplemental Table 4 A). The 
gut microbiota of the 2- and 7-day untreated controls 
were clustered together, distinct from the 2- and 7-day 
treatment groups, as shown in the heatmap (Fig.  3B). 
Using principal component analysis based on taxonomic 
composition and structure (Fig. 3C), we observed a dis-
tinct separation between the mice group that received 7 
days of tacrolimus treatment and its control compared 
to the group that received only 2 days of treatment with 
its control. Therefore, the more pronounced separation 
seen in the 7-day treatment group suggests that the pro-
longed exposure to tacrolimus has a more robust effect, 
when all groups are analyzed on a uniform scale. Seven-
day tacrolimus treatment was more effective in terms of 
the number of differentially abundant taxa (Supplemen-
tal Fig. 7A) and significantly reduced diversity of the gut 

Fig. 3 Gut microbiome and luminal metabolome after tacrolimus treatment for 2 or 7 days. A) Experimental design. Colors indicate different treatment 
groups. B) Heatmap of the top 25 most abundant intestinal bacterial taxa. Ward linkage clustering used to cluster samples based on the Jensen-Shannon 
distance calculated in vegan package in R [48]. C) PLS-DA to demonstrate clusters by treatment groups. Circles indicate 95% confidence region of each 
group. D) Chao1 diversity index of experimental groups. Wilcoxon test to estimate the significance value. * denotes significance value < 0.05. E) Volcano 
plot combines results from FC analysis to show significantly increased metabolites after 7-day tacrolimus treatment comparing to its respective no treat-
ment control. A metabolite is shown if FC is > 2 and p value is < 0.05 based on 2-sample t-tests. Original metabolite measurement without normalization 
in FC analysis
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microbiota (Fig.  3D). Compared with the 2-day tacroli-
mus treatment, the most significantly altered taxonomic 
groups after 7-day treatment were distributed in a wider 
phylogenetic range, including Clostridiales, Verrucomin-
crobiota, and Saccharimonadales (Supplemental Fig. 7B). 
Overall, these results indicate that tacrolimus reduced 
commensals and overall diversity and this effect was 
more pronounced with longer administration.

Metabolome analyses of intraluminal stool revealed 
213 metabolites after 2- and 7-day treatments (Supple-
mental Table  4B, 4  C), comprising 88.8% of the 2-day 
metabolome and 70.3% of the 7-day metabolome. The 
remaining 11.2% and 29.7% were detected only in the 
2- and 7-day treatments, respectively. A distinct set of 
significantly increased metabolites was observed after 7 
days of tacrolimus treatment compared to no drug con-
trol, including sets of amino acids (Phe, Leu, Trp, Tyr, 
Gln, Met, Arg, Asn) and dipeptides (His-Glu, Tyr-Glu) 
(Fig.  3E). Multiple metabolites that were significantly 
reduced after seven days but increased in the 2-day 
treatment group included isovalerylalanine, putrescine, 
λ-Glu-Asp (L-Glutamyl-L-aspartic acid), trimethylamine 
(TMA), succinic acid, histamine (histidine pathway), and 
threonic acid. Taking together, these results show that the 
effects of tacrolimus on the gut microbiota and metabo-
lome are not immediate and accrue over time.

Modularity of gut microbiota and metabolome indicates 
network effects due to drug treatment
Microbes and metabolites do not operate in isolation 
but interact with each other to maintain homeostasis, 
commonly referred as network effect [49]. The group of 
microbes or metabolites that operate together, indicated 
as in statistically significant positive or negative correc-
tions. These correlations reflect the tendency of these 
entities to increase or decrease in concert and may sug-
gest a shared role in particular biological processes or 
responses. The concept of modularity was thus used 
to reflect the degree of node connectivity to which a 
network can be divided into subgroups or modules to 
understand the organization and functional relationships 
within a complex system [50]. Highly connected compo-
nents often have similar functions or are part of the same 
biological process in response to different stimuli. High 
modularity was observed in the gut microbiota and the 
luminal and serum metabolome in our datasets. The gut 
microbiota was de novo clustered into three distinct clus-
ters (Fig. 4A): cluster 1 was enriched in antibiotics only; 
cluster 2 was elevated in antibiotics only or with tacro-
limus that contained taxa such as Prevotella, Bacteroi-
des, Muribaculum, and Bifidobacterium, which included 
a large number of taxa enriched in either tacrolimus or 
no drug control, such as Roseburia, Oscillibactera, CAG-
81, Acetatifactor, Lawsonibacter, and Schaedlerella. Taxa 

within clusters 2 and 3 exhibited distinct inter-relation-
ships. Specifically, taxa in cluster 2, including MGG36460, 
Muribaculum, and Bifidobacterium, were inversely corre-
lated with Marseille-P3106 and CAG-81 from cluster 3, 
as visualized in the correlation network in Supplemental 
Fig.  8A. Moreover, Bacteroides from cluster 2 showed 
a negative correlation with UBA3282 and ASF356 of 
cluster 3. In contrast, the remaining taxa within cluster 
3 displayed positive correlations amongst themselves. 
These results suggest concerted changes among subsets 
of the gut microbial community in response to different 
treatments.

Luminal metabolites also formed networks that con-
tained compounds that were either positively or nega-
tively correlated, suggesting concerted responses to 
different treatments. Four amino acid and derivative 
networks were observed and were positively correlated 
within-network, as shown in Supplemental Fig.  8B: 
(i) Arg, Trp, Val, Ile, Phe, Tyr, Leu, Lys, Tyr-Glu, His-
Glu, N6-acetyllysine, and N6, N6, N6-trimethyllysine 
(Fig. 4B). The majority of these amino acids also exhibit 
significantly elevated levels in the day-7 tacrolimus treat-
ment group compared to control, as shown in Fig.  3E. 
These results collectively suggest a coordinated modula-
tion of a set of amino acids in response to immunosup-
pressant; (ii) His, Thr, and Pro; (iii) γ-glutamyl dipeptides 
γ-Glu-Gln, γ-Glu-Trp, γ-Glu-Met and γ-Glu-Ala; and iv) 
Ser-Glu, Glu-Glu, Ile-Pro-Pro, and Val-Pro-Pro, which 
were negatively correlated with amino acid derivatives 
of carnitine, creatine, and betaine. In addition to amino 
acids, other networks were found to be functionally 
related to carbohydrates and nucleosides and nucleotides 
metabolism (data not shown).

Serum metabolites are also highly modular. Multiple 
correlation networks were observed (Supplemental 
Fig.  8C): (i) purine metabolism; (ii) pentose phosphate 
pathway; (iii) amino acid metabolism that includes Arg, 
Lys, Pro, Met, Thr, Ala, and Ser and Nω-methyarginine, 
citrulline, and ornithine (Fig.  4C), many of which were 
enriched in antibiotics and tacrolimus combined treat-
ment group (Supplemental Fig.  4B); and (iv) amino 
acid derivatives (isovalerylalanine, 1  N-acetylleucine, 
1  H-Imidazole-4-propionic acid, 3-phenylpropionic 
acid, N-acetylphenylalanine) that were negatively cor-
related with glycerophospholipid ethanolamine phos-
phate. Overall, this result indicates coordinated changes 
in metabolic pathways among functionally related com-
ponents between the gut and systemic metabolites across 
all mice groups post-treatment. The shifts seen in meta-
bolic pathways of the gut and systemic circulation are 
not uniform across groups. Instead, they exhibit distinct 
patterns depending on the type of treatment, which sug-
gests different drug treatments invoke distinct biologi-
cal processes that shape the gut ecosystem and influence 
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Fig. 4 Correlations between luminal and circulating metabolome. A) Hierarchical clustering heatmap of gut microbiota using genera. Sub-correlation 
network of B) luminal metabolome and C) serum metabolome. See Supplemental Fig. 8 for the rest of the network. Debiased Sparse Partial Correlation 
(DSPC) network was used [51]. Nodes denote taxonomic groups or metabolites; edges represent association measures. Default cutoff value was used 
for degree filter and betweenness. Correlation significance value < 0.01 used. Sparse partial least squares (or Projection to Latent Space, PLS) [52, 53] to 
integrate pairwise datasets of D) gut microbiome and luminal metabolome, E) gut microbiome and serum metabolome, and F) luminal metabolome and 
serum metabolome from paired samples of the same mouse. Samples represented in the latent space from multiple coordinates to demonstrate the level 
of agreement between the two paired data sets. Arrows connecting paired samples of the same mouse from the indicated two datasets. Cluster Image 
Map of the Pearson correlation coefficients between two matched datasets [54] of G) gut microbiota and serum metabolome and H) lumen metabo-
lome and serum metabolome. Hierarchical clustering applied on the rows and columns of the similarity matrix simultaneously. The color represents the 
values of the similarity matrix when performing two dataset integration. Ward linkage to cluster both samples and metabolites based on their Euclidean 
distance. Color bar indicates the scaled z-score of each feature
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systemic metabolism. Our results offer a granular look 
into the interactions and responses elicited by differ-
ent treatments, to understand the influence of the gut 
microbiome on systemic metabolism in the immune sup-
pressed environment.

Highly correlated gut and systemic metabolism
Sparse partial least squares (or projection to Latent 
Space, PLS) was employed to represent paired gut micro-
biota and luminal metabolome of the same mouse in the 
same latent space to demonstrate their level of agreement 
[52, 53]. The metabolic phenotype in the tacrolimus or 
antibiotic groups produced more “homogeneous” sample 
projections, as depicted by the short average arrow length 
between the paired gut microbiota and luminal metabo-
lome (Fig. 4D), luminal and serum metabolome (Fig. 4E), 
gut microbiome, and serum metabolome (Fig. 4F).

The network modules of the gut microbiota and 
metabolome were correlated. Microbiota cluster 2 was 
positively correlated with luminal metabolites belong-
ing to the carbohydrate metabolism pathway (glucaric 
acid, gluconic acid, 6,8-thioctic acid, quinic acid, gluco-
nolactone, and creatinine) (Supplemental Fig.  8D), as 
well as with serum amino acids (Val, Tyr, Ala, Leu, Ser, 
Phe, Lys, Met, Asn, Pro, Thr and Arg) (Fig.  4G), many 
of which were enriched in antibiotics only or antibiotics 
with tacrolimus (Supplemental Fig. 5B). Microbiota clus-
ter 3 was positively correlated with luminal metabolites 
of S-adenosylmethionine (SAM), GABA, glyceric acid, 
glycine, symmetric dimethylarginine (SDMA), asym-
metric dimethylarginine (ADMA), spermidine, N1-ace-
tylspermidine, citrulline, and O-acetylcarnitine (Fig. 4G). 
These metabolites are essential compounds in intercon-
nected pathways of arginine metabolism, polyamine 
metabolism, nitric oxide regulation, and urea cycle. 
Microbiota cluster 3 was also positively correlated with 
the serum metabolites of serotonin (5-HT), 5-hydroxyin-
doleacetic acid (5-HIAA), lactate acid, glycerol 3-phos-
phate, Nω-methylarginine, butyrobetaine, and choline 
(Fig. 4H), which were within the same network (Supple-
mental Fig.  8C). Furthermore, the luminal amino acid 
network correlated with serum metabolites involved 
in glucose homeostasis, nitric oxide regulation, and BA 
metabolism (Fig. 4F). These results indicate that the cor-
relations between gut and systemic metabolism occur 
through interconnected pathways, particularly amino 
acid metabolism.

Altered amino acid metabolism in an immune suppressed 
environment
Since tacrolimus elicited distinct metabolic pheno-
types, we sought to define the metabolic phenotype, or 
“metabotype”, which reflects one or a set of compounds 
that inform about the treatment effect [40]. Metabolites 

from the functional pathways most induced by tacroli-
mus were investigated. In particular, we used the ratio of 
two metabolites that were either directly linked or shared 
a common precursor in a pathway. The ratio is less sub-
ject to individual variations and is more reflective of the 
dynamic changes in metabolic fluxes or shifts compared 
to the absolute concentration of a single metabolite [55].

Amino acid metabolic pathways, including histidine, 
tryptophan and arginine metabolism, were the most 
prominent among the compounds most significantly 
affected by tacrolimus (Figs.  5, 6 and 7). There was 
increased conversion of histidine to histamine and then 
to 1-methyl-4-imidazoleacetic acid, instead of conver-
sion to 4-(β-acetylaminoethyl)imidazole (Fig. 5A and B), 
suggesting that the metabolism of histidine in the lumen 
is upregulated by tacrolimus. Three tryptophan metabo-
lism pathways were observed in the serum, including 
the kynurenine, indole pyruvate, and serotonin path-
ways (Fig. 5C). The indole and serotonin pathways were 
significantly elevated by tacrolimus and/or reduced by 
antibiotics (Fig.  5D). The ratio of substrates involved in 
the indole pyruvate pathway, in which tryptophan is con-
verted to indole-3-propionic acid (IPA) or ILA, was high-
est in the tacrolimus group (Fig.  5E). Serotonin (5-HT, 
5-hydroxytryptamine) were also elevated by tacrolimus 
and/or reduced by antibiotics. Since the indole pathway 
requires microbial metabolism [56], while serotonin is 
primarily produced in the enterochromaffin cells of the 
gastrointestinal tract and released into the bloodstream 
[57], our results indicated that tryptophan metabolism 
in response to tacrolimus included synergistic reac-
tions by the gut microbiome and intestinal epithelia that 
together directed the enzymatic reactions in tryptophan 
metabolism.

We further investigated the hydroxylated form of 
amino acids; hydroxylation is a post-translational modi-
fication that significantly influences protein structure and 
function, subsequently influencing immune responses 
[58, 59]. There were 20 hydroxylated serum metabolites 
and 9 fecal hydroxylated metabolites. The serum hydrox-
ylated metabolites were defined by treatment (Supple-
mental Fig.  9A), indicating distinct modifications under 
treatment conditions. Tacrolimus increased 2-hydroxy-
glutaric acid (Supplemental Fig.  9B), an “oncometabo-
lite”, and its accumulation promotes the formation and 
progression of cancer [60]. In the antibiotic-only group, 
p-hydroxyphenylpyruvic acid and 2-hydroxybutryic acid 
were elevated (Supplemental Fig.  9B). Antibiotics with 
tacrolimus distinctively increased the levels of hydroxy-
proline and decreased the levels of 3-(4-hydroxyphenyl)
propionic acid, 5-HIAA (5-hydroxyindoleacetic acid), 
5,6-dihydroxyindole, 5-hydroxypentanoic acid, and 
3-hydroxybutyric acid. Metabolites such as 2-hydroxy-
glutaric acid, hydroxyproline, and 5-HIAA are known 
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immune regulators, and others such as 2-hydroxybutryic 
acid and 3-(4-hydroxyphenyl)propionic acid are known 
metabolites derived from gut microbiota, indicating the 
potential impact of treatments on disrupted microbiota, 
metabolite production, and immune responses.

Tacrolimus induces augmented polyamine metabolism
Tacrolimus induced distinct changes in arginine 
metabolism in both the lumen and serum (Fig.  6A). In 
serum, there was increased putrescine accompanied 
by an increased arginine to putrescine conversion ratio 

(Fig.  6B). The level of 4-acetamidobutanoate was sig-
nificantly decreased, accompanied by a significantly 
increased ratio of spermidine to 4-acetamidobutano-
ate, indicating the directed metabolism by tacrolimus 
from arginine to putrescine, followed by spermidine 
and N1-acetylspermidine in the circulation (Fig.  6D). 
The luminal arginine metabolic pathway was also active 
(Fig. 6E). This was supported by the increased putrescine 
to arginine ratio (Fig. 6F), indicating directed metabolism 
by tacrolimus from arginine to putrescine, and then to 
N1-acetylspermidine and N8-acetylspermidine in the gut 

Fig. 5 Histidine and tryptophan metabolism after 2-day drug treatment. A) Pathway of histidine metabolism to histamine with the metabolite products 
of 1-methyl-4-imidazoleacetic acid and 4-(β-acetylaminoethyl)imidazole. Illustration adapted from KEGG histidine metabolism pathway (map00340) [45]. 
B) Metabolite conversion ratio of 4-(β-acetylaminoethyl)imidazole to 1-methyl-4-imidazoleacetic acid, and of 1-methyl-4-imidazoleacetic acid to histidine 
in the four 2-day treatment groups of tacrolimus, antibiotics, tacrolimus and antibiotics together, and no treatment control. C) Tryptophan metabolism, 
including the kynurenine pathway, indole pyruvate pathway, and serotonin pathways. Illustration adapted from KEGG histidine metabolism pathway 
(map00380) [45]. D) Biplot of PCA of tryptophan metabolism pathway. Loading vectors and principal components labeled. E) IPA concentration and 
metabolite conversion ratio of 5-HIAA (5-hydroxyindoleacetic acid) to indole-3-propionic acid (IPA), IPA to 3-indoxylsulfuric acid (I3SA), tryptophan to IPA 
in the four 2-day treatment groups of tacrolimus, antibiotics, tacrolimus and antibiotics together, and no treatment control. Y axis represents the ratios 
normalized level between the indicated metabolites. The ROC curve used to calculate area under curve (AUC) as a metric quantifying the overall ability of 
the metabolite to correctly classify the experimental conditions. Closest to top-left core of ROC (red dot) as the optimal cutoff value, shown in bargraph 
(red line). P value was calculated using 2-sample t-tests between tacrolimus and control groups and displayed atop the boxplots. Black points represent-
ing mice, horizontal line representing mean, yellow dots presenting median, the top and bottom of the box are the lower and upper quartile

 



Page 11 of 21Ma et al. BMC Microbiology          (2023) 23:394 

Fig. 7 Primary bile acids conjugation changes after 2-day drug treatment. A) Pathway of bile acid conjugation in live, serum and gut lumen. Illustration 
adapted from KEGG primary bile acid biosynthesis pathway (map00120) [45]. B) Metabolite TCA and GCA concentration in serum and conversion ratio of 
taurine to TCA and of GCA to glycine. The ROC curve used to calculate area under curve (AUC) as a metric quantifying the overall ability of the metabolite 
to correctly classify the experimental conditions. Closest to top-left core of ROC (red dot) as the optimal cutoff value, shown in bargraph (red line). P value 
was calculated using 2-sample t-tests between tacrolimus and control groups and displayed atop the boxplots. Black points representing mice, horizontal 
line representing mean, yellow dots presenting median, the top and bottom of the box are the lower and upper quartile. Abbreviations: CA: cholic acid; 
GCA: glycocholic acid; TCA: taurocholic acid

 

Fig. 6 Arginine and polyamine metabolism after 2-day drug treatment. Pathway of arginine metabolism toward polyamine biosynthesis and metabolism 
in A) serum and E) gut lumen, and C) pathway of arginine metabolized to nitric oxide synthesis. Illustration adapted from KEGG histidine metabolism 
pathway (map00330) [45]. Metabolite conversion ratio plot in B) spermidine to 4-acetamidobutanoid acid in serum, putrescine to arginine in both D) 
lumen and F) serum in the four 2-day treatment groups of tacrolimus, antibiotics, tacrolimus and antibiotics together, and no treatment control. Y axis 
represents the ratios normalized level between the indicated metabolites. The ROC curve used to calculate area under curve (AUC) as a metric quantifying 
the overall ability of the metabolite to correctly classify the experimental conditions. Closest to top-left core of ROC (red dot) as the optimal cutoff value, 
shown in bargraph (red line). P value was calculated using 2-sample t-tests between tacrolimus and control groups and displayed atop the boxplots. Black 
points representing mice, horizontal line representing mean, yellow dots presenting median, the top and bottom of the box are the lower and upper 
quartile. Abbreviations: ADMA: asymmetric dimethylarginine; SDMA: symmetric dimethylarginine; SAM: S-adenosylmethionine
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lumen. Together, these results suggest that tacrolimus 
drives active arginine metabolism that is directed towards 
polyamine metabolism in both lumen and circulation.

Arginase I and nitric oxide (NO) synthase (NOS) 
compete for arginine to produce either polyamines or 
NO [61]. Potent NOS inhibitors including asymmetric 
dimethylarginine (ADMA) and its enantiomer symmet-
ric dimethylarginine (SDMA) [62–65], are significantly 
higher in tacrolimus group compared to the group 
treated with antibiotics (Fig. 6C). This suggests a poten-
tial inhibition of NOS by tacrolimus, and/or a diminished 
NOS inhibition in the presence of antibiotic adminis-
tration. S-adenosylmethionine (SAM) is involved in the 
methylation of arginine to form ADMA [66], and SAM 
levels were increased by tacrolimus (Fig.  6A), support-
ing the notion that increased SAM levels lead to the for-
mation of more ADMA, which in turn inhibited NOS 
activity. Together, these results demonstrate the diverted 
metabolism from arginine towards increased polyamine 
biosynthesis by tacrolimus, reflecting an increased 
requirement for cellular growth and proliferation in an 
immunosuppressed environment.

Altered BA conjugation in gut lumen and circulation
BA and their conjugation processes are intricately associ-
ated with the mechanisms of immunosuppression. These 
connections are based on their multifaceted roles in 
mediating immune responses, influencing gut microbi-
ome composition and function, and potentially affecting 
the metabolism of the immunosuppressant drugs [67]. 
BA conjugation is an essential process that occurs in the 
liver, where primary BAs, such as cholic acid (CA), are 
combined with amino acids, such as glycine or taurine, to 
form conjugated BAs of glycocholic acid (GCA) or tauro-
cholic acid (TCA) (Fig. 7A). BAs are normally reabsorbed 
in the intestine and recycled back into the liver through 
enterohepatic circulation. The metabolic phenotypes of 
the primary BAs under different drug treatments were 
distinct (Fig.  7B). Elevated serum GCA and TCA levels 
were observed, accompanied by elevated GCA to gly-
cine and TCA to taurine ratios by tacrolimus (Fig.  7B). 
Increased luminal CA to GCA and CA to TCA ratios by 
tacrolimus were also observed (data not shown), suggest-
ing increased deconjugation of BAs in the lumen, a pro-
cess known to be driven primarily by gut microbiota via 
bile salt hydrolase (BSH) enzymatic activities [68]. Anti-
biotic treatment caused significantly higher luminal GCA 
and TCA levels (Supplemental Fig. 9), indicating reduced 
deconjugation in the gut lumen. As shown above, antibi-
otics affected entire taxonomic groups of Firmicutes and 
Bacteroidota (Fig.  1E, Supplemental Fig.  1A), including 
the majority of identified BSH-containing bacteria such 
as Blautia, Eubacterium, Clostridium, Lactobacillus, and 
Roseburia [69, 70]. Together, these results indicate that 

antibiotic and tacrolimus treatments both disrupt BA 
homeostasis, but likely through different mechanisms.

Microbiome-dependent metabolic activities
In addition to previous knowledge on microbe-derived 
metabolites [59], we performed in silico modeling to 
characterize microbial involvement in metabolic pro-
cesses. To relate actual metabolite measurements to 
paired microbiome metabolic potentials (CMP), we cal-
culated the set of metabolic reactions that each micro-
bial taxon is predicted to be capable of performing using 
MIMOSA2 (Model-based Integration of Metabolite 
Observations and Species Abundances) [71]. The top 
metabolites correlated with the abundance of CMP of the 
whole microbial community are shown in Supplemental 
Fig. 11. The gut microbiome metabolic pathways of argi-
nine and proline metabolism (arginine, hydroxyproline), 
histidine metabolism (histamine), BAs metabolism (cho-
lic acid, glycine, taurine), alanine, aspartate and glutamate 
metabolism (fumaric acid), pyruvate metabolism (pyru-
vate), and purine metabolism (thymidine) are among the 
ones most correlated with paired serum metabolite con-
centrations (Supplemental Fig. 11A). The lumen metabo-
lite correlation result was highly similar to that of serum, 
with additional relations to interconnected pathways 
such as the β-alanine metabolism (pantothenic acid) and 
polyamines (spermidine) (Supplemental Fig. 11B). Inter-
estingly, many of these metabolic pathways were also sig-
nificantly altered by tacrolimus or antibiotics treatment. 
The individual bacterial species that contain the genetic 
potentials correlating with metabolite measurements are 
listed in Supplemental Table 5. For example, species con-
taining the BA hydrolase gene (choloylglycine hydrolase, 
cbh) include Acutalibacter muris, Bacteroides thetaio-
taomicron, Enterobacter cloacae, Clostridium celerecres-
cens, Lactobacillus johnsonii, Akkermansia muciniphila, 
suggesting their potential involvement. This analysis was 
limited to genes with annotated KEGG BRITE metabolic 
reactions, which comprised 44.7% and 43.3% of all serum 
and fecal metabolites, respectively. Some important 
metabolites, such as tryptophan indole pathway com-
pound IPA, which were significant in our metabolome 
analyses, could not be included. Based on in silico model-
ing and previous knowledge of microbe-derived metabo-
lites [59], the major metabolic pathways attributed to the 
tacrolimus metabotype are likely microbiome-dependent.

Antibiotics and tacrolimus, alone and synergistically, 
rapidly modulate lymph node (LN) and intestinal immune 
compartments
To comprehensively understand the drug-induced 
immunosuppressive environment, a triangulation of 
metabolome, microbiome, and immune characteris-
tics is important. We further assessed immune system 
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structure by flow cytometry of important leukocyte sub-
sets in mesenteric LN (mLN) and peripheral LN (pLN), 
and by immunohistochemistry for these same sub-
sets in LNs and intestine, and for stromal laminins 
in LNs. Flow cytometry showed no significant differ-
ences in the overall cellularity of CD4 + T cells, CD8 + T 
cells, Foxp3 + Tregs, and B220 + B cells in the mLN or 
pLN in any of the groups after two days of treatment 
(Supplemental Fig.  12). Immunohistochemistry (IHC) 
showed that F4/80 + macrophages (MΦ) were signifi-
cantly increased in the mLN around the high endothe-
lial venules (HEV) by tacrolimus compared to the other 
groups (Fig.  8A). CD11c + dendritic cells (DCs) were 
increased around the HEV and within the cortical ridge 
(CR) for all treatment groups, especially in the combined 
treatment group (Fig.  8B). In the pLN, Foxp3 + Tregs 
decreased in the CR and around the HEV in the tacro-
limus treatment groups, both with and without antibiot-
ics, but not with antibiotics alone (Fig. 8B). CD11c + DCs 
decreased in the pLN CR and around HEV in all treat-
ment groups, but most significantly in the tacrolimus 
treatment group (Fig. 8B). In the pLN CR, laminin a4:a5 
ratios were highly increased by tacrolimus-only treat-
ment and slightly increased by antibiotics-only treat-
ment (Fig.  8B). In the intestine, Foxp3 + Tregs were also 
slightly increased by tacrolimus compared with antibi-
otics and antibiotics with tacrolimus (Fig.  8C, Supple-
mental Fig.  12c). Similarly, F4/80 + MF in the intestine 
was increased by tacrolimus alone compared to antibiot-
ics, both with and without tacrolimus (Fig. 8C). Assess-
ment of intestinal barrier integrity using FITC-dextran 
revealed a marked increase in gut permeability follow-
ing antibiotic treatment compared to tacrolimus alone or 
combined treatments (Fig. 8D). This suggests that antibi-
otic-induced alterations to the gut microbiota might dis-
rupt the mucosal barrier, potentially increasing the risk of 
bacterial translocation and subsequent systemic inflam-
matory responses. Interestingly, while tacrolimus, when 
administered alone, did not significantly impact barrier 
function, its co-administration with antibiotics appeared 
to ameliorate the detrimental effects on the barrier 
caused by antibiotics. Alternatively, the immunosuppres-
sive properties of tacrolimus may play a role in mitigat-
ing local inflammatory responses that can contribute to 
barrier disruption. Overall, our study underscores the 
importance of considering the combined effects of treat-
ments on gut barrier function, especially when targeting 
conditions where both antibiotics and immunosuppres-
sants are commonly prescribed. Further, tacrolimus dis-
played rapid anti-inflammatory properties within two 
days of treatment, and this effect was distinct from that 
of the other groups.

Discussion
Immunosuppressive drugs, while critical in organ trans-
plantation, are imprecise treatments that can cause unin-
tended changes in microbial and host metabolism [4, 5]. 
While metabolic complications are generally accrued 
over time and thus progressive, this study focused on the 
early metabolic changes after drug treatment, aspects 
that have been largely uncharacterized. Our results 
showed significantly altered metabolism in both circula-
tion and gut lumen within 2 days of tacrolimus treatment, 
widely affecting multiple metabolic classes, including 
a group of interconnected amino acid metabolisms, BA 
conjugation, glucose homeostasis, and energy produc-
tion. Following a 7-day treatment course, the metabolic 
landscape was again altered to a different state, reflect-
ing more pronounced shifts in the gut microbiome and 
extensive perturbation in amino acid metabolites. These 
alterations, exhibiting strong inter-correlations, under-
score the incremental drug effects on the microbiome 
and metabolic processes. These results have significant 
implications in that diverted metabolism in mammalian 
hosts controls the alloimmune response and bioavail-
ability of amino acids [72]. Crucial mechanisms demon-
strated in this study involve increased local catabolism 
and production of amino acid-derived metabolites via 
synergistic reactions by the microbiome, intestinal epi-
thelia, and host organs connected through circulation. 
Our study highlights the early dynamics of metabolic 
changes. These bioactive molecules, representing the 
specific metabotype, provide potential targets for early 
diagnostics and therapeutics for metabolic disorders due 
to immunosuppressant drug use.

Tacrolimus displayed rapid anti-inflammatory prop-
erties within two days of treatment, as shown by the 
increased pLN laminin a4:a5 ratios. Antibiotics are 
broadly pro-inflammatory, signified by a decrease in 
intestinal Tregs and increased gut permeability. These 
findings reinforce the notion that antibiotics and immu-
nosuppressants, alone and together, exert rapid and dis-
tinct pro- and anti-inflammatory perturbations of the LN 
and gut immune structures. Together, our results empha-
size the profound and rapid impact of immunosuppres-
sants on various facets of the immune system and critical 
physiological processes including the unintended altera-
tion in metabolism and the balance of gut microbiome. 
It remains unclear whether the drug impact on immunity 
caused changes in metabolic activities and the microbi-
ome, or if there were multiple interactions so that immu-
nity, metabolism, and microbiome all influenced each 
other simultaneously.

The dosage and selection of immune suppressants and 
the antibiotic cocktail used in this study must be consid-
ered in data interpretation, as they are simplified com-
pared to actual clinical use. Tacrolimus is not the sole 
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immunosuppressive medication administered post organ 
transplantation. Typically, it is used in conjunction with 
an antimetabolite, mycophenolate mofetil, as well as glu-
cocorticoids. Multiple anti-bacterial, -viral, and -fungal 
antibiotics are used at the time of transplantation and 

for many months post-transplantation. Our use of tacro-
limus was to mimic clinical observations, without the 
over immunosuppression that occurs in mice receiving 
clinical triple immunosuppression protocols and superior 
to murine models based on acute, binary measures of 

Fig. 8 Changes in the distribution of lymphocytes and myeloid cells and LN structure due to abx and tacrolimus. Mice given abx (6 days) with or with-
out 2 days of tacrolimus. Representative qualitative heatmaps of IHC marker changes relative to untreated control (red = increased; blue = decreased; 
white = unchanged) (a) mLN, (b) pLN, and (c) intestine. Graphs of individual IHC values for each marker and tissue type listed in Supplementary Fig. 12. 
(d) In vivo gut permeability assay performed using FITC-Dextran. Mice were gavaged with FITC-Dextran and serum samples were collected post 4 h of 
administration. 3 mice/ group, at least 2 mLN, pLN, and sections of intestine at duodenal-jejunal junction/mouse, 3 sections/staining panel. Ordinary 
one-way ANOVA with Tukey’s multiple comparisons test. Representative of 2 repeated experiments. * p < 0.05; ** p < 0.01, *** p < 0.001, **** p < 0.0001. 
Abbreviations: LN: lymph node; mLN: mesenteric LN; pLN: peripheral LN; IHC: immunohistochemistry
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rejection [38, 39]. The moderate tacrolimus doses reflect 
clinical management with formation of chronic graft 
lesions and alloreactivity, mirroring ineffective immune 
suppression that plagues human recipients, within an 
experimentally tractable duration. Since there is the 
widely variable use of multiple antibiotics in clinical set-
tings, we employed a previously characterized regimen 
in mice in which multiple broad-spectrum oral antibiot-
ics were used to deplete the endogenous gut microbiota 
[73]. This antibiotic cocktail, though different from what 
is used clinically, was effective in removing the “barri-
cade” effect of gut microbiota in murine models, allow-
ing the subsequently introduction of treatments such as 
immune suppressants or FMT of whole stool or selected 
strains to study their effects. By using antibiotics prior to 
immunosuppression, we aimed to “normalize” the gut 
microbiome baseline in which the effects of the immu-
nosuppressive agent could be distinctly studied without 
the potential compounding effects of ongoing antibiotic 
administration. We previously used this model to dem-
onstrate pro-inflammatory and anti-inflammatory effects 
of microbiota FMT [38]. To increase the model relevance, 
we included an experimental group that sequentially 
combined both antibiotics and tacrolimus treatment. 
Future experiments are warrant where both treatments 
will be administered concurrently to better replicate the 
clinical context and validate our findings. Nonetheless, it 
will be important to incorporate additional parameters 
and refine our existing murine model to further elevate 
its clinical relevance.

This study strongly supports further in-depth charac-
terization of the distinct metabotype and microbiome 
metabolic profile, an aggregation of selected metabolic 
and microbial features that reflect functional alterations 
[74] due to an immunosuppressed environment. Though 
dysbiosis has long been known to significantly contrib-
ute to metabolic disorders [75], the underlying meta-
bolic shift in response to immunosuppression remains 
unclear. Our study provides evidence for the indispens-
able role of the gut microbiome in systemically affecting 
host metabolism. Altered primary BA conjugation and 
deconjugation strongly supported the involvement of gut 
microbiota after tacrolimus treatment to regulate the gut-
liver BA cycle. Changes in the hepatic metabolism of BAs 
also affect the gut microbiota, which in turn regulates 
immune function and gut inflammation [76]. Changes in 
the availability of nutrients by the drug and/or changes 
in the gut microbiome that affect host digestion and 
absorption may also lead to an altered need for certain 
amino acids. Future mechanistic investigations will be 
crucial to unravel the multifaceted impacts of tacroli-
mus. This includes characterizing its direct impact on the 
gut microbiota and subsequent production of bioactive 
molecules, as well as discerning whether tacrolimus first 

influences host metabolome, which in turn modulates 
microbial activities. Such depth of knowledge will pave 
the way for devising novel therapeutic strategies target-
ing these interactions, optimizing patient outcomes and 
potentially mitigating adverse effects associated with pro-
longed immunosuppression.

We designed this study to understand the disruption 
to the metabolome repertoire of bioactive molecules that 
reflect the interactions among gut microbiota, immu-
nosuppressant drugs, and immune responses under 
immune suppressant drug treatment. There are multiple 
limitations to this study. The sample size was small thus 
limiting the statistical power analyses. This study nev-
ertheless indicated significant and intricate metabolic 
changes in an immune suppressed environment. We 
intentionally focused on the early metabolic changes, 
characterizing them at 2 and 7 days. This emphasis on 
early changes is important to identify immediate shifts 
in metabolic activities, which might have profound 
implications even before overt clinical symptoms mani-
fest. A comprehensive investigation, both well-powered 
with temporal monitoring, will be essential to delineate 
metabolic signatures that correspond to short-, interme-
diate- and long-term effects of the drug. We noted that 
we used only one immunosuppressant. While validated 
in our murine model for both relevance and feasibility, 
further comparison and/or combining with other immu-
nosuppressive drugs will provide additional knowledge 
about metabolic changes. A mechanistic understanding 
of the metabolic changes in an immunosuppressed envi-
ronment has the potential to redefine the management 
of transplantation patients concerning the long-term 
adverse effects of immunosuppression to achieve opti-
mized health outcomes.

Methods and materials
Study approval
All procedures involving mice were performed in accor-
dance with the guidelines and regulations set by the 
Office of Animal Welfare Assurance of the University 
of Maryland School of Medicine under the approved 
IACUC protocol nos. 1,518,004 and 0121001.

Mice experiments
Female C57BL/6 mice between 8 and 14 weeks of age 
were purchased from The Jackson Laboratory (Bar Har-
bor, ME, USA) and maintained at the University of Mary-
land School of Medicine Veterinary Resources breeding 
colony. We only used female mice for the current set of 
experiments where we worked with smaller n-values, to 
ensure a high degree of homogeneity within our study 
groups. All procedures involving mice were performed 
in accordance with the guidelines and regulations set by 
the Office of Animal Welfare Assurance of the University 



Page 16 of 21Ma et al. BMC Microbiology          (2023) 23:394 

of Maryland School of Medicine. Mice were fed antibi-
otics (kanamycin, gentamicin, colistin, metronidazole, 
and vancomycin) ad libitum in drinking water on days 7 
to -1. Antibiotics were USP grade or pharmaceutical sec-
ondary standard (all from MilliporeSigma): kanamycin 
sulfate (0.4  mg/ml), gentamicin sulfate (0.035  mg/ml), 
colistin sulfate (850 U/ml), metronidazole (0.215 mg/ml), 
and vancomycin hydrochloride (0.045  mg/ml) were dis-
solved in vivarium drinking water. Mice received daily 
immunosuppression of tacrolimus (3  mg/kg/d subcu-
taneously) on days 0, 1 [77, 78]. Tacrolimus (USP grade, 
MilliporeSigma) was reconstituted in DMSO (USP grade, 
MilliporeSigma) at 20  mg/ml and diluted with absolute 
ethanol (USP grade, Decon Labs, King of Prussia, PA) 
to 1.5  mg/ml. DMSO/ethanol stock was diluted 1:5 in 
sterile phosphate buffered saline (PBS) for subcutane-
ous injection and injected at 10  µl/g (3  mg/kg/day) [77, 
78]. All mice were cohoused and handled together dur-
ing arrival in the animal facility and for antibiotic and 
immunosuppressant administration so that the various 
treatment groups were all exposed to each other. On day 
2, the mice were euthanized by CO2 narcosis. Intralume-
nal stool samples were collected for metagenomic and 
metabolomic analyses. At the time of euthanasia, we uti-
lized cardiac puncture for blood collection. We acknowl-
edge the potential effects of first-pass hepatic metabolism 
on general circulation. Over extended periods, however, 
there should be a normalization of systemic metabolites 
throughout the body, unless there are acute changes in 
the intestine that we did not observe within the experi-
mental timeframe. Portal blood provides a more direct 
measure of metabolites absorbed from the intestine 
before they undergo hepatic metabolism. However, in 
mice, portal blood can only be reliably obtained at the 
time of euthanasia, and the obtainable volumes are 
exceedingly low, making its routine collection challeng-
ing. Mesenteric and peripheral (axillary, inguinal, and 
brachial) LNs, as well as the small intestine, were har-
vested for immunohistochemistry. The mLN, pLN, and 
spleen samples were collected for flow cytometry analy-
ses. Mouse experiments were performed according to 
ARRIVE guidelines (https://arriveguidelines.org).

Flow cytometry
LNs were disaggregated and passed through 70-µm nylon 
mesh screens (Thermo Fisher Scientific, Waltham, MA) 
to produce single-cell suspensions. Cell suspensions 
were stained for 30  min at 4  °C with antibodies against 
surface molecules (Supplemental Table 6) and washed 
2 times with FACS buffer [PBS with 0.5% w/v bovine 
serum albumin]. Cells were permeabilized using Foxp3/
Transcription Factor Staining Buffer Set (eBioscience, 
San Diego, CA) according to manufacturer’s protocol, 
washed with FACS buffer, and subsequently stained at 

4 °C with antibodies for intracellular molecules. Samples 
were analyzed with an LSR Fortessa Cell Analyzer (BD 
Biosciences), and data were analyzed using FlowJo soft-
ware version 10.6 (BD Biosciences). Single color controls 
(cells stained with single surface marker antibody) and 
unstained controls were used for flow channel compensa-
tion. Representative gating strategy provided in Supple-
mental Figure S13.

Immunohistochemistry
Mesenteric and peripheral LN and segments of the intes-
tine between the duodenum and jejunum were separately 
excised and immediately submerged in OCT compound 
(Sakura Finetek, Torrance, CA, USA) or fixed using para-
formaldehyde. Cryosections (5 μm) were cut in triplicate 
using a Microm HM 550 cryostat (ThermoFisher Scien-
tific) and fixed in cold 1:1 acetone:methanol for 5  min, 
washed in PBS, or left unfixed for fluorescent micros-
copy. Sections were rehydrated in PBS and blocked with 
2.5% donkey serum and 2.5% goat serum in PBS. The 
sections were then stained at room temperature with 
primary antibodies (diluted 1:20 − 1:200 in PBS), blocked 
with 10% secondary antibody host serum, incubated 
with secondary antibodies (diluted 1:50 − 1:400 in PBS) 
for 30  min, fixed with 4% paraformaldehyde in PBS for 
5 min, quenched with 1% glycerol in PBS for 5 min, and 
mounted with Prolong Gold Antifade Mountant with 
or without DAPI (Thermo Fisher Scientific). Images 
were acquired using a Nikon Accu-Scope EXC-500 
(Nikon, Tokyo, Japan) and analyzed using Volocity soft-
ware (PerkinElmer, Waltham, MA). The antibodies used 
are listed in Supplemental Table 6. Three mice/group, 
3–4 mesenteric LN or peripheral LN or pieces of intes-
tine, 3–6 sections/tissue sample, and 10–15 fields/tissue 
sample were analyzed. The mean fluorescence intensity 
(MFI) was calculated within demarcated high endothe-
lial venules (HEV) and cortical ridge (CR) regions of the 
mLN and pLN as well as of whole intestinal images. The 
percent area was calculated by dividing the sum area of 
demarcated regions with marker fluorescence greater 
than a given threshold by the total area analyzed. Treat-
ment groups were compared using quantification of 
MFI multiplied by percent area to express both the area 
and intensity of cell and stromal fiber markers. Quali-
tative heat maps were generated (GraphPad prism) to 
express changes in IHC marker expression level relative 
to control using 1 to represent “increased,” 0 to represent 
“unchanged,” and − 1 to represent “decreased.”

In vivo intestinal permeability assay
Intestinal permeability was assessed as described previ-
ously [79]. Briefly, mice were gavaged with FITC-dextran 
(Catalog# 46,944, MW:4000; Sigma, St. Louis, MO, USA) 
at a dose of 60 mg/100 g body weight at a concentration 

https://arriveguidelines.org
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of 120 mg/mL. Four hours later, after euthanasia, blood 
was collected via cardiac puncture and allowed to clot at 
room temperature for 2 h in the dark. Tubes containing 
blood were centrifuged at 10,000 x g for 10 min at 4 °C, 
and the supernatant serum was collected. FITC-dextran 
serum concentration (µg/ml) was measured in duplicate 
using a black, flat-bottom, 96-well plate (Greiner Bio-one, 
Frickenhausen, Germany) on a FlexStation 3 Microplate 
Reader (Molecular Devices, San Jose, CA) at an excita-
tion wavelength of 490  nm and emission wavelength of 
530 nm.

Statistics
Datasets were analyzed using GraphPad Prism 9.3.1 (San 
Diego, CA, USA) with statistical significance defined as 
P < 0.05. For comparisons of fluorescent markers (includ-
ing laminin α4:α5 ratios), serum markers, and inflamma-
tion scores, Tukey’s multiple comparison tests of one-way 
ANOVA were used to test for significance.

Stool specimen collection, DNA extraction, and 
metagenomic sequencing
The jejunum and colon tissues of the mice were dissected 
according to their gastrointestinal anatomical features. 
Intraluminal stool contents were collected from dissected 
tissues and stored immediately in DNA/RNA Shields 
(Zymo Research, Irvine, CA, USA) at -80  °C to stabilize 
and protect the integrity of nucleic acids and minimize 
the need for immediate processing or freezing of speci-
mens. DNA extraction was described previously [39, 80]. 
In brief, 0.15–0.25 g of fecal samples were extracted using 
the Quick-DNA Fecal/Soil Microbe kit (Zymo Research, 
Irvine, CA, USA). Negative extraction controls were 
included to ensure that no exogenous DNA contami-
nated the samples. Metagenomic sequencing libraries 
were constructed using the Nextera XT Flex Kit (Illu-
mina), according to the manufacturer’s recommenda-
tions. Libraries were then pooled together in equimolar 
proportions and sequenced on a single Illumina NovaSeq 
6000 S2 flow cell at Maryland Genomics at the University 
of Maryland School of Medicine.

Gut microbiome analyses
Metagenomic sequence reads were removed using 
BMTagger v3.101 [81] mapping to Genome Refer-
ence Consortium Mouse Build 39 of strain C57BL/6J 
(GRCm39) [82]. Sequence read pairs were removed when 
one or both the read pairs matched the genome reference. 
The Illumina adapter was trimmed and quality assess-
ment was performed using default parameters in fastp 
(v.0.21.0) [83]. The taxonomic composition of the micro-
biomes was established using Kraken2 (v.2020.12) [84] 
and Braken (v. 2.5.0) [85] using the comprehensive mouse 
gut metagenome catalog (CMGM) [43] to calculate the 

metagenomic taxonomic composition. Phyloseq R pack-
age (v1.38.0) [86] was used to generate the barplot and 
diversity index. In the context of our study, the mice gut 
microbiome datasets contain a broad spectrum of taxa 
without any dominant high-abundance species. As such, 
the Chao1 diversity index, an abundance-based indicator 
of species richness (total number of species in a sample) 
that is sensitive to low abundance taxonomic groups (sin-
gletons and doubletons) [87], was employed. This meth-
odological choice ensures accurate representation and 
understanding of the microbial community diversity in 
our samples. Linear discriminant analysis (LDA) effect 
size (LEfSe) analysis [88] was used to identify fecal phy-
lotypes that could explain the differences. The α value 
for the non-parametric factorial Kruskal-Wallis (KW) 
sum-rank test was set at 0.05 and the threshold for the 
logarithmic LDA model [89] score for discriminative fea-
tures was set at 2.0. An all-against-all BLAST search was 
performed in the multiclass analysis. Microbial biomark-
ers were calculated using the limma voom function [90] 
in R package microbiomeMarker v1.3.3 [91]. Phylogram 
representing the taxonomic hierarchical structure of the 
identified phylotype biomarkers via pairwise compari-
sons between groups, graph generated using R package 
yingtools2 [92]. The metagenomic dataset was mapped to 
the protein database UniRef90 [42] to ensure the compre-
hensive coverage in functional annotation, and was then 
summarized using HUMAnN2 (Human Microbiome 
Project Unified Metabolic Analysis Network) (v0.11.2) 
[41] to efficiently and accurately determine the pres-
ence, absence, and abundance of metabolic pathways in a 
microbial community. Canonical Correspondence Anal-
ysis (CCA) was used for ordination analysis using the 
vegan package [48, 93] based on the Bray-Curtis distance. 
CA1 and CA2 were selected as the major components 
based on their eigenvalues.

Metabolite extraction and metabolome analyses
Metabolome of intraluminal stool (luminal/local) and 
serum (circulating/systemic) were measured using cap-
illary electrophoresis-mass spectrometry (CE/MS) to 
obtain a comprehensive quantitative survey of metabo-
lites (Human Metabolome Technologies, Boston, MA, 
USA). ~10–30  mg of stool was weighed at the time of 
collection using a company-provided vial and archived at 
-80  °C at the IGS until shipped to the HMT on dry ice. 
QC procedures included standards, sample blanks and 
internal controls that were evenly spaced among the sam-
ples analyzed. Compound identification was performed 
using a CE/MS library of > 1,600 annotated molecules.

Selecting a proper data pretreatment method is essen-
tial in metabolomic data analyses to reduce the influence 
of measurement noise [94]. The normalization proce-
dures were performed using the combination of sample 
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normalization for general-purpose adjustment for sys-
tematic differences among samples, log base 10 transfor-
mation was applied to individual values themselves, and 
data scaling adjusted each variable/feature by a scaling 
factor computed based on the range of each variable as 
the dispersion of the variable. Metabolites were exhaus-
tively annotated using known metabolic databases or 
the a priori knowledge-based approach, achieved using 
PubChem [44], KEGG [45], and HMDB [46] anno-
tation frameworks that leverage cataloged chemical 
compounds, known metabolic characterization, and 
functional hierarchy (i.e., reaction, modules, pathways). 
The sparse PLS-DA (sPLS-DA) algorithm implemented 
using mixOmics (vers. 6.18.1) was employed to analyze 
the large dimensional datasets that have more variables 
(metabolites) than samples (p > > n) to produce robust 
and easy-to-interpret models [47]. The “sparseness” of 
the model was adjusted by the number of components 
in the model and the number of variables within each 
component based on the classification error rate with 
respect to the number of selected variables. Tuning was 
performed one component at a time, and the optimal 
number of variables to select was calculated. The volcano 
plot combines results from FC analysis to show signifi-
cantly increased metabolites after 7-day tacrolimus treat-
ment. A metabolite is shown if FC is > 2 and the p-value 
is < 0.05 based on 2-sample t-tests. Original metabolite 
measurements without normalization were used in the 
FC analysis. To evaluate the discriminative capacity of a 
target metabolite in distinguishing between experimen-
tal groups, ROC curves were constructed. These curves 
plotted the sensitivity against 1-specificity across vari-
ous threshold settings, thereby offering a comprehensive 
overview of the metabolite’s classification performance 
over the complete range of possible decision boundaries. 
The Area Under the Curve (AUC) derived from the ROC 
curve serves as a metric quantifying the overall ability of 
the metabolite to correctly classify the experimental con-
ditions. The optimal threshold was identified as the point 
on the ROC curve nearest to the top-left corner (denoted 
by a red dot), as this position represents the trade-off 
value between sensitivity and specificity. For the corre-
sponding box plots depicting the distribution of meta-
bolic measurements across experimental groups, the 
p-values, calculated using 2-sample t-tests, are displayed 
atop the boxplots. Correlation network of metabolome 
was performed using Debiased Sparse Partial Correlation 
(DSPC) network [51] implemented in MetaboAnalyst 5.0 
[95, 96]. Nodes denote taxonomic groups or metabolites; 
edges represent association measures. Default cutoff 
value was used for degree filter and betweenness. Cor-
relation significance value < 0.01 used. Sparse partial least 
squares (or projection to Latent Space, PLS) was used to 
integrate paired datasets of the same mouse in the same 

latent space to demonstrate their level of agreement [52, 
53]. The metabolic phenotype in the tacrolimus or antibi-
otic groups produced more “homogeneous” sample pro-
jections, as depicted by the short average arrow length 
between the paired datasets. In microbiome analyses, the 
HMP Unified Metabolic Analysis Network and Uniref90 
database were used to stratify functional profiles accord-
ing to contributing species. These microbial features 
were annotated using the KEGG Enzyme Nomenclature 
(EC number system) [97] to characterize the microbi-
ome metabolic potentials (CMP), or the set of metabolic 
reactions that each microbial taxon is predicted to be 
capable of performing. Metabolite set enrichment anal-
ysis (MSEA) was performed for the metabolites anno-
tated in a specific functional pathway [98]. MIMOSA2 
(Model-based Integration of Metabolite Observations 
and Species Abundances) was used to relate variation in 
the microbiome metabolic potentials to paired metabo-
lite measurement [71]. The significance of the correla-
tion between the total community-level CMP and actual 
metabolite measurements across all samples was calcu-
lated using a rank-based estimation. A significant correla-
tion indicated that the metabolic potential of a microbial 
community is significantly predictive of metabolic levels. 
The same analyses were also performed to correlate the 
CMP of individual microbial taxa with metabolite mea-
surements across all samples.
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