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Abstract 

Background  Intestinal flora has been proposed to mediate the occurrence of postmenopausal osteoporosis (PMO). 
However, the mechanism by which microbes and their metabolites interactively promote PMO remains unknown.

Methods  This study aimed to investigate changes in the intestinal flora and associated metabolites, and their 
role in PMO. 16S rRNA gene sequencing and metabolomics were performed to obtain postmenopausal women 
with osteopenia (lower bone mass, LBM), postmenopausal women with osteoporosis (OST), and healthy women 
as the control group.

Results  We identified taxa-specific and metabolite differences in the intestinal flora of the participants of this study. 
The pathogenic bacteria Klebsiella (0.59% and 0.71%, respectively) and Escherichia-Shigella (2.72% and 4.30%, respec-
tively) were enriched in the LBM and OST groups (p < 0.05). Some short-chain fatty acid (SCFAs) producing bacteria, 
Lactobacillus, Akkermansia, Prevotella, Alistipes, and Butyricicoccus, were reduced in patients with LBM and OST com-
pared to the control. Moreover, fecal metabolomic analyses suggested that the metabolites of indole-3-acetic acid 
and 7-ketodeoxycholic acid were altered in the LBM and OST groups compared to the control (p < 0.05). Enrichment 
analysis suggested that valine, leucine, and isoleucine biosynthesis; aromatic amino acid biosynthesis; and phenylala-
nine metabolism were significantly associated with the identified microbiota biomarkers and OST. Moreover, metabo-
lite marker signatures distinguished patients in the OST from those in the control group with an area under the curve 
(AUC) of 0.978 and 1.00 in the negative and positive ion modes, respectively. Finally, we also found that the fecal 
level of interleukin-10 (IL-10) in the OST group was significantly lower than that in the control group and LBM group 
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(p < 0.05), while tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were significantly higher in the OST group 
than that in the control group (p < 0.05).

Conclusions  This study provides robust evidence connecting the intestinal flora and fecal metabolomics with PMO. 
Integrated metabolite and microbiota analyses demonstrated that in addition to dysregulated bacteria, indole-3-ace-
tic acid, 7-ketodeoxycholic acid, and other metabolites can be used for the distinguish of LBM and PMO.

Keywords  Postmenopausal osteoporosis, Bone mineral density, Gut microbiota, Fecal metabolites, Biomarker

Introduction
Postmenopausal osteoporosis (PMO) was reported that 
increases the risk of fractures in postmenopausal women 
[1]. The most common complication associated with PMO 
is fragility fracture, which often occurs in non-traumatic or 
mildly traumatic conditions of the hip, femur, or spine, lead-
ing to pain, deformity, dysfunction [2]. Approximately 10% 
of the global human and more than 30% of PMO over the 
age of 50 suffer from osteoporosis [3]. Moreover, the first-
year and second-year mortality rates for hip fractures are 
17% and 12–20%, respectively [4]. Therefore, osteoporosis 
is a significant global public health, medical, and economic 
burden; however, the awareness of osteoporosis is low. 
Meanwhile, more studies are needed to allow the develop-
ment of preventive strategies for osteoporosis in China.

Osteoporosis is diagnosed by bone imaging exami-
nation, ultrasound, biopsy, and metabolism biochemi-
cal index measurements [5]. However, it is difficult 
to perform large-scale screening and monitoring of 
osteoporosis. Early diagnosis and interventions to pre-
vent PMO progression can also greatly reduce future 
healthcare costs, as most economic costs associated 
with PMO are incurred in advanced stages [6]. To date, 
several factors, including environmental factors, diet, 
lifestyle, hygiene, antibiotics, and probiotics, have been 
reported to contribute to the improvement of PMO 
[7]. However, at present, the available methods for the 
early prediction of PMO are limited and use only a few 
clinical parameters that may not reflect the heteroge-
neity and complexity of the disease. Thus, more con-
venient and non-invasive alternatives are required.

Alterations in the gut microbiota can drive the devel-
opment of osteoporosis by regulating the immune 
system [8]. Various types of gut microbiota-targeted 
treatments can prevent the development of osteopenia 
and improve osteoporosis outcomes in humans [9]. For 
example, Li et  al. reported that Lactobacillus rhamno-
sus GG can attenuate bone inflammation, inhibit bone 
loss, and reduce gut epithelial permeability in mice [10]. 
Bifidobacterium longum, Lactobacillus paracasei, and 
a mixture of Lactobacillus paracasei and Lactobacillus 
plantarum can decrease femoral bone loss and increase 
bone mineral density in rats [11]. A few studies have 
examined the role of intestinal flora in the occurrence of 

PMO; however, existing datas are inconsistent. He et al. 
reported that Klebsiella, Morganella, Escherichia/Shi-
gella, Enterobacter, Citrobacter, Pseudomonas, Succini-
vibrio, and Desulfovibrio were enriched in women with 
PMO in Xiamen, China [12]. Ling et  al. have observed 
that Actinobacillus, Blautia, Oscillospira, Bacteroides, 
and Phascolarctobacterium were positively associated 
with PMO in Guangzhou, China [13]. Mrinmoy et  al. 
have suggested that Actinomycetes, Eggerthella, Clostrid-
ium X1Va, and Lactobacilli were more abundant in 
patients with PMO in Ireland [14]. To sum up, because 
of the differences in eating habits and climate conditions 
in each region, there was significant differences in the 
composition and structure of gut microbiota from dif-
ferent regions. Therefore, more studies should be con-
ducted on the gut microbiota of patients with PMO from 
different regions to explain regional differences.

In addition, microbiota-associated metabolic pathways 
realted to the pathogenesis of osteoporosis. These meta-
bolic pathways include enrichment pathways of lipopol-
ysaccharide biosynthesis [15]; membrane transport, 
metabolism of tyrosine and tryptophan, valine, leucine, and 
isoleucine [13]; and metabolism of N-acetylmannosamine, 
deoxyadenosine, and adenosine [16]. However, the specific 
microbes and metabolites, as well as the mechanisms by 
which they interactively promote PMO, are still unclear. 
Thus, it is necessary to evaluate the mechanistic implica-
tions of the intestinal flora and their metabolites in PMO.

In the present study, we integrated the gut metabo-
lomic and intestinal flora profiles of patients with post-
menopausal osteopenia and osteoporosis in Xianyang, 
China, and compared them with those of healthy women. 
This study provides a valuable resource for understanding 
postmenopausal osteopenia and osteoporosis-specific 
microbiota/microbiome features and interactions and 
offers new insights into understanding postmenopausal 
osteopenia and osteoporosis.

Results
Analysis of clinical characteristics
Included 26 individuals were analyzed, the patients 
were evenly divided into healthy (control, n = 6), osteo-
penia (lower bone mass, LBM, n = 10), and osteoporo-
sis (OST, n = 10) groups according to the bone mineral 
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density (BMD) index. The hip BMD, hip bone marrow 
concentrate (BMC), and T-score were significantly 
lower in the OST group than in the control group 
(p < 0.05). Hip BMD in the LBM group was lower than 
that in the control group (p < 0.05). Hip BMD, BMC, 
and T-score were higher in the LBM group than in the 
OST group (p < 0.05); however, there was no significant 
difference in the hip area among these three groups 
(p > 0.05). Moreover, the lumbar BMD, BMC, area, and 
T-score were significantly lower in the OST and LBM 
groups than in the control group (p < 0.05). However, 
lumbar BMD, BMC, area, and T-score were higher in 

the LBM group than in the OST group (p < 0.05), and 
there was no significant difference in the lumbar area 
between the LBM and control groups (p > 0.05, Fig. 1). 
Furthermore, no significant differences were observed 
in age, weight, BMI, or menopausal period among the 
three groups (Table  1). In addition, the results in this 
study suggested that the level of the anti-inflammatory 
factor interleukin-10 (IL-10) was significantly lower in 
the OST and LBM group than in the control groups 
(Fig. 2C) (p < 0.05). Moreover, the level of the inflamma-
tory factor tumor necrosis factor-α (TNF-α) and inter-
leukin-6 (IL-6) were significantly higher in the OST 

Fig. 1  Clinical information of the participants. A Hip BMD. B Hip BMC. C Hip area. D Hip T-score. E Lumbar BMD. F Lumbar BMC. G Lumbar area. H 
Lumbar T-score. *p < 0.05, **p < 0.01, *** p < 0.001, **** p < 0.0001, ns represent no significant difference between each two groups

Table 1  Clinical information of the participants

Participants, n = 26 Control (n = 6) LBM (n = 10) OST (n = 10) p-value

Basic characteristics

Age (years) 65 ± 2.9 66.9 ± 5.88 68.2 ± 5.9 0.5246

Weight (kg) 57.33 ± 5.75 62.4 ± 7.49 52.8 ± 13.93 0.1343

BMI (kg/m2) 21.37 ± 3.61 24.29 ± 2.54 22.09 ± 4.72 0.2660

Menopausal period (years) 50.33 ± 1.63 49.1 ± 4.65 49.4 ± 4.7 0.8481
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group than in the LBM and control group (Fig. 2A, B) 
(p < 0.05).

Characteristics of sample sequence and alpha and beta 
diversities of the gut microbiota
A total of 5,236,251 high-quality reads were obtained 
from 26 samples, with a mean of 201,394.27 ± 27,004.13 
sequences per specimen. The sobs index of curves for 
each sample were near saturation ((Fig.  3A), indicating 
that the sequencing data were sufficiently robust, with 
considerably few new undetected species. Moreover, the 
bacterial community richness indicated by the Chao1, 
ACE, and Sobs indexes were significantly lower in the 
OST group than in the control and LBM groups, and 
was significantly higher in the control group than in the 
LBM group, whereas the indexes were not significantly 
different between the LBM and OST groups (Fig. 3B, E, 
F). Similarly, the community diversity estimated using 
the Shannon index was not significantly different among 
the three groups (Fig. 3C). Additionally, nonmetric mul-
tidimensional scaling (NMDS) analysis for beta diversity 
had a differed of the bacterial, nevertheless, after anosim 
analysis, there were no significant difference among the 
control, LBM, and OST groups (p > 0.05)( Fig. 3D).

Taxonomic composition of bacterial community
We assessed the gut microbiome structure of the control, 
LBM, and OST groups using 16S rRNA gene sequenc-
ing, which generated a total of 15 phyla, 102 families, 262 
genera, and 575 species across all samples. As shown in 
Fig.  4A, 79, 77, and 71 families were obtained from the 
control, LBM, and OST groups, respectively, among 
which 52 families were common in all samples. The OST 
samples had the lowest number of unique families (seven 
families). In addition, as shown in Fig. 4B, 199, 188, and 
174 genera were detected in samples from the control, 
LBM, and OST groups, respectively, among which only 
122 were common to all 26 samples. The control, LBM, 

and OST samples had 33, 36, and 16 unique genera, 
respectively.

At the phylum level (Fig. 4C), five major phyla, namely, 
Firmicutes, Actinobacteria, Bacteroidetes, Proteobacte-
ria, and Verrucomicrobiota in all three sample groups. 
In most samples, Firmicutes and Actinobacteria were 
the two dominant phyla, with a total relative abundance 
accounting for 86.62%, 88.85%, and 90.00%, respec-
tively. Moreover, Actinobacteria and Proteobacteria 
were enriched in the LBM (26.98% and 5.61%, respec-
tively) and OST (30.39% and 5.40%, respectively) groups 
compared to the control group (25.01% and 0.004%, 
respectively), whereas Bacteroidetes and Verrucomi-
crobiota were depleted in the LBM (5.17% and 0.16%, 
respectively) and OST (4.13% and 0.30%, respectively) 
groups compared to the control group (7.36% and 5.15%, 
respectively).

At the family level (Fig.  4D), three major families. 
including Lachnospiraceae, Bifidobacteriaceae, and 
Ruminococcaceae, were identified in all samples. The 
relative abundances of Lachnospiraceae, Bifidobacte-
riaceae, and Ruminococcaceae in OST samples (30.75%, 
27.70%, and 15.61%, respectively) were higher than 
those in LBM (27.80%, 23.18%, and 13.10%, respec-
tively) and control samples (20.00%, 20.00%, and 
13.72%, respectively). Moreover, the relative abundance 
of Enterobacteriaceae in the OST (5.02%) and LBM 
(5.39%) samples was higher than that in the control 
(0.21%) samples. However, control samples harbored 
other dominant families, including Veillonellaceae, 
Coriobacteriaceae, Lactobacillaceae, Oscillospiraceae, 
Peptostreptococcaceae, Eubacteriumcoprotanoligenes-
group, and Akkermansiaceae. Notably, other bacterial 
families, including Selenomonadaceae, Enterococcaceae, 
and Erysipelatoclostridiaceae, were also observed in 
LBM and OST samples but were not observed or were 
scarce in the control samples.

Fig. 2  Changes in systemic inflammation status. Fecal levels of (A) TNF-α, (B) IL-6 and (C) IL-10. *p < 0.05, **p < 0.01, *** p < 0.001, **** p < 0.0001
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At the genus level (Figs.  4E and 5), Bifidobacterium, 
Blautia, Subdoligranulum, Ruminococcus_torques_
group, Roseburia, Eubacterium hallii group, and Ery-
sipelotrichaceae_UCG-003 were the most abundant in 
the OST and LBM groups. The relative abundance of 
Escherichia-Shigella was higher in the LBM and OST 
groups (2.72% and 4.30%, respectively) but was not 
observed or was scarce in the control (p < 0.05). Several 
bacterial species, including Lactobacillus, Megasphaera, 
Ruminococcus, Romboutsia, Akkermansia, Ruminococ-
caceae_UCG-02, Dialister, Prevotella, and Alistipes, were 
enriched in the control group compared to the LBM and 
OST groups (p < 0.05). Moreover, Megamonas, Anaero-
stipes, and Enterococcus were abundant in the LBM group 
whereas Erysipelotrichaceae_UCG-003 and Scardovia 
were enriched in the OST group. Furthermore, the rela-
tive abundances of Butyricicoccus and Odoribacter were 
higher in the control group than in the LBM and OST 

groups whereas those of Parasutterella, Holdemanella, 
and Klebsiella were higher in the LBM and OST groups 
(p < 0.05).

Fecal metabolite profiles
To assess whether the fecal metabolite profiles were associ-
ated with osteoporosis, we performed metabolic profiling 
of all stool samples. A total of 97 metabolites were quanti-
fied from stool samples using liquid chromatography-mass 
spectrometry (LC–MS). Partial least squares discriminant 
analysis (PLS-DA) (Fig. 6A-D) showed that there were dif-
ferences in the gut metabolite profiles between the LBM 
and control group, OST and control group, after the five-
fold cross validation, results shown that Q2 is all greater 
than 0.4, indicating the model is effective and a gut metab-
olite shift in the patients with osteoporosis.

The results revealed 15 significantly altered metabo-
lites between the LBM and control groups; metformin, 

Fig. 3  Alpha-diversity and similarity of bacterial community among the group of LBM, OST and N. A Sobs curve for each sample, and number 
of species in phylum, family, genus, species and ASV. B Chao index of ASV level. C Shannon index of ASV level. D Nonmetric multidimensional 
scaling analysis (NMDS) at the ASV level. E ACE index of ASV level. F Sobs index of ASV level. LBM: Lower bone mass, OST: osteoporosis, N: Normal 
group
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ornithine, stearic acid, amide C18, ursolic acid, 7-keto-
deoxycholic acid, deanol, calcitriol, levalbuterol, hes-
peridin, and hypoxanthine were enriched in the LBM 
group, whereas dihydropteroate acid, diethyl phosphate, 
ofloxacin, and stearamide were depleted in the LBM 
group compared to the control group (Table 2). Moreo-
ver, 63 significantly altered metabolites were identified 
between the OST and control groups; metabolism of 
amino acids (L-proline, L-threonine, L-serine, L-phe-
nylalanine, proline, and isoleucine) and organic acids 
(crotonic acid and stearic acid) was enriched in the OST 
group whereas that of (E)-ferulic acid, DL-tryptophan, 
L-( +)-leucine, L-tyrosine, L-theanine, creatine, and 
L-isoleucine was downregulated in the OST group com-
pared to the control group (Table  3). Interestingly, the 
levels of 7-ketodeoxycholic acid (7-KDCA) and indole-
3-acetic acid (IAA) were altered in the OST group 
compared to the control group, suggesting they have a 
potential impact on the development of osteoporosis.

To further understanding the functions of these sig-
nificantly changed metabolites, we conducted enrich-
ment and pathway analyses (Fig.  6E–F). Several 
metabolite sets and pathways were enriched in the LBM 
group, including sulfur metabolism, purine metabo-
lism, folate biosynthesis, porphyrin and chlorophyll 
metabolism, glycine, serine and threonine metabo-
lism, tryptophan metabolism, and tyrosine metabolism, 
compared to the control group. The top four enriched 
sets and pathways in the control group compared with 
the OST group were aminoacyl-tRNA biosynthesis, 
valine, leucine, and isoleucine biosynthesis, arginine 
and proline metabolism, arginine biosynthesis, histi-
dine metabolism, and tryptophan biosynthesis, indi-
cating that they were significantly downregulated in 
the OST group. These results suggest that metabolic 
pathways but not individual metabolites are altered in 
osteoporosis.

Fig. 4  Composition of gut microbiota among the group of LBM, OST and N. A Venn diagrams of different groups in the bacterial biodiversity 
at the family level. B Venn diagrams of different groups in the bacterial biodiversity at the genus level. C Relative abundance of the bacteria 
community at the phylum level. D Relative abundance of the bacteria community at the family level. E Relative abundance of the bacteria 
community at the genus level. LBM: Lower bone mass, OST: osteoporosis, N: Normal group



Page 7 of 16Liang et al. BMC Microbiology          (2023) 23:199 	

Difference of metabolites between the group 
of osteopenia and osteoporosis
We further investigated potential difference metabo-
lites between osteopenia and osteoporosis groups. We 
built a model for classifying the two groups based on the 
identified significantly altered metabolites. Our model 
selected six metabolites to classify and distinguish 
patients in the LBM from those in the control group in 
negative ion mode, with an area under the curve (AUC) 
of 0.777 (Fig. 7A, B) and found that the metabolites xan-
thine and sulfamerazine were significantly lower in the 
LBM group than in the control group (p < 0.05, Fig. 7C, 
D). The same six metabolites were identified in the LBM 
in positive ion mode with an AUC of 0.929 (Fig.  7E, 
F); however, the metabolites of 7-ketodeoxycholic acid 
and indole-3-acetic acid in the LBM group were signifi-
cantly higher than those in the control group (p < 0.05) 
(Fig. 7G, H). To discriminate the OST from the control 
group, six metabolite markers were identified in the 
negative ion mode with an AUC of 0.978 (Fig. 7I, J), and 
aminolevulinic acid and phosphoarginine in were sig-
nificantly lower in the OST group than in the control 

group (p < 0.05; Fig. 7K, L). Moreover, the distinction of 
the OST group from the control group in positive ion 
mode had an AUC of 1.0 (Fig. 7M, N), and the levels of 
L-phenylalanine and L-proline were higher in the OST 
group than in the control group (p < 0.05; Fig. 7O, P).

Relationship among the different bacteria, different 
metabolites, and clinical profiles
We investigated the significant associations among different 
bacteria, metabolites, and clinical profiles and found that 
LBM and OST groups enriched with Klebsiella were posi-
tively correlated with L_Valine, L_Proline, Crotonicacid, 
Phloionolicacid, Glutara, styrene, isoliquiritigenin, and L_ 
phenylalanine. Eubacteriumhalliigroup was positively asso-
ciated with phloionolic and crotonic acids. Romboutsia was 
positively associated with chrysin, leucine, cholic acid, tryp-
tophan, valine, and dihydropteroic acid levels. Prevotella 
was positively correlated with aminolevulinic acid, chrysin, 
and phosphoarginine levels but negatively associated with 
amoxicillin and pipecolic acid levels. LBM and OST groups 
with decreased Christensenellaceae_R-7_group were nega-
tively correlated with the levels of hesperidin, levalbutero, 

Fig. 5  Difference analysis of microbial composition among the group of LBM, OST and N. AAkkermansia. BAlistipes. CLactobacillus. DBifidobacterium. 
EButyricicoccus. FRomboutsia. GOdoribacter. HParasutterella. IEscherichia-Shigella. JHoldemanella. KKlebsiella. LScardovia. LBM: Lower bone mass, OST: 
osteoporosis, N: Normal group



Page 8 of 16Liang et al. BMC Microbiology          (2023) 23:199 

butyrobetaine, calcitrio, 7ɑ-ketodeoxycholicacid, stearic 
acid, deanol, ursolic acid, and hypoxanthine. In addition, 
we found that the decrease in Parabacteroides in the LBM 
and OST groups was negatively correlated with the levels 
of threonine, enalapril, styrene, and DL_Serine, but was 
positively correlated with phosphoarginine (Fig.  8A). In 
addition, the LBM and OST groups enriched with Kleb-
siella and Escherichia-Shigella were negatively correlated 
with hip BMD, BMC, and T scores. Conversely, LBM and 
OST groups with a decreased abundance of Lactobacil-
lus, Akkermansia, Prevotella, Alistipes, and Butyricicoccus, 
were positively correlated with hip BMD, hip BMC, hip 
area, hip T-score, lumbar BMD, lumbar BMC, lumbar area, 
and lumbar T-score (Fig. 8B).

Discussion
Previous studies have revealed that intestinal flora and 
their metabolites play an essential in PMO [17]. The 
intestinal flora affects the development and function of 

Fig. 6  Metabolomic data profiles and pathway enrichment analysis. A Partial least squares-discriminant analysis (PLS-DA) for LBM and N groups 
in negetive model. B Partial least squares-discriminant analysis (PLS-DA) for LBM and N groups in positive model. C Partial least squares-discriminant 
analysis (PLS-DA) for OST and N groups in negetive model. D Partial least squares-discriminant analysis (PLS-DA) for OST and N groups in positive 
model. E Enrichment analysis altered metabolites between LBM and N. F Enrichment analysis altered metabolites between OST and N. LBM: Lower 
bone mass, OST: osteoporosis, N: Normal group

Table 2  Important features identified by volcano plot in LBM & 
N

Compounds FC log2(FC) pval trends

1 Dihydropteroic acid 0.41853 -1.2566 0.037848 down

2 Metformin 17.485 4.1281 0.0057087 up

3 Diethyl phosphate 0.41796 -1.2586 0.014181 down

4 Ornithine 3.2711 1.7098 0.017052 up

5 Stearic acid 8.4884 3.0855 0.018507 up

6 Ofloxacin 0.4266 -1.229 0.024241 down

7 Stearamide 0.48632 -1.04 0.02806 down

8 Amide C18 5.5551 2.4738 0.035269 up

9 Ursolic acid 5.1981 2.378 0.037459 up

10 7-ketodeoxycholic acid 5.668 2.5028 0.038545 up

11 Deanol 5.801 2.5363 0.041853 up

12 Calcitriol 5.051 2.3366 0.043178 up

13 Levalbuterol 4.6834 2.2276 0.046517 up

14 Hesperidin 4.7183 2.2383 0.048639 up

15 Hypoxanthine 5.2503 2.3924 0.048701 up
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Table 3  Important features identified by volcano plot in N & OST

Compounds FC log2(FC) p value trends

1 Phosphoarginine 12.551 3.6498 8.7424e-06 up

2 Xanthine 8.5894 3.1026 0.00010962 up

3 Aminolevulinic acid 12.474 3.6409 0.001194 up

4 o-Succinylbenzoate 0.30746 -1.7015 0.0019324 down

5 4-Nitrophenol 7.6822 2.9415 0.0025816 up

6 Dihydropteroic acid 4.4263 2.1461 0.0051274 up

7 2-Methoxyestrone 3-sulfate 3.2382 1.6952 0.0093508 up

8 2-(6’-methylthio)hexylmalic acid 0.46843 -1.0941 0.011958 down

9 Zalcitabine 0.41295 -1.276 0.013035 down

10 3,4-Dihydroxyphenylglycol O-sulfate 9.3213 3.2205 0.013586 up

11 Norepinephrine sulfate 0.22231 -2.1693 0.029922 down

12 fructosylglycine 2.7231 1.4453 0.031641 up

13 tetrathionic acid 2.1023 1.0719 0.033801 up

14 (E)-Ferulic acid 2.0952 1.0671 0.048625 up

15 L-Proline 0.001889 -9.0482 7.2329e-12 down

16 Irbesartan 0.00075929 -10.363 3.7902e-11 down

17 Phloionolic acid 0.0028703 -8.4446 1.3835e-10 down

18 Enalapril 0.0081559 -6.9379 8.6221e-10 down

19 L-Threonine 0.0060897 -7.3594 2.771e-09 down

20 DL-Serine 0.0042373 -7.8826 5.8641e-09 down

21 Amoxicillin 0.011054 -6.4993 4.104e-08 down

22 urobilinogen 19.09 4.2548 9.771e-08 up

23 Pipecolic acid 0.012253 -6.3508 2.6359e-07 down

24 N-Acetylhistamine 0.020567 -5.6035 8.5136e-07 down

25 Crotonic acid 0.030598 -5.0304 5.1701e-06 down

26 Aminolevulinic acid 7.5296 2.9126 8.6311e-06 up

27 Isoliquiritigenin 0.072636 -3.7832 9.9385e-06 down

28 Cinnamic acid 14.089 3.8165 1.3218e-05 up

29 DL-Tryptophan 16.092 4.0082 1.734e-05 up

30 (-)-codeine 7.5433 2.9152 1.7647e-05 up

31 Ofoxacin 17.909 4.1626 3.4116e-05 up

32 2,3,4,5-tetrahydrodipicolinic acid 39.965 5.3207 4.278e-05 up

33 D-Alanyl-D-alanine 4.6462 2.2161 6.0808e-05 up

34 Thymine 14.686 3.8764 6.0812e-05 up

35 g-Butyrobetaine 5.2098 2.3812 6.7153e-05 up

36 Daidzein 12.957 3.6957 6.8347e-05 up

37 Stearic acid 0.1786 -2.4852 7.4136e-05 down

38 L-Phenylalanine 0.1954 -2.3555 9.463e-05 down

39 Cholest-4-en-3-one 15.548 3.9586 0.00023261 up

40 L-( +)-Leucine 38.539 5.2683 0.00023661 up

41 L-Tyrosine 2.9931 1.5817 0.00023666 up

42 Styrene 0.047016 -4.4107 0.00030534 down

43 L-Theanine 56.025 5.808 0.00053619 up

44 Acetylcholine 2.6748 1.4194 0.00054292 up

45 cholic acid 5.7303 2.5186 0.00061697 up

46 glutaral 0.11453 -3.1262 0.0007078 down

47 Indole-3-acetic acid 2.6714 1.4176 0.00097212 up

48 3-(3,4-dihydroxypheny]) propanoic acid 2.6031 1.3803 0.0013811 up

49 Chrysin 161.83 7.3383 0.001399 up
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the host immune system by releasing metabolites and 
immune cells (including T and B cells), stimulating the 
immune system at the intestinal mucosal barrier, releas-
ing proinflammatory or anti-inflammatory mediators 
and cytokines, and regulating bone metabolism through 
blood circulation [18]. In this study, we analyzed and 
compared the intestinal flora and metabolites of patients 
with PMO, patients with postmenopausal osteopenia, 
and healthy individuals. It was obeserved that key intesti-
nal flora and metabolites are disrupted during the devel-
opment of PMO. Moreover, integrated microbiome and 
metabolomic analyses showed that interactions between 
osteoporosis-associated bacteria and metabolites were 
altered during the progress of PMO. Importantly, we 
demonstrated the intestinal flora and metabolites for the 
non-invasive diagnosis of PMO.

The richness and diversity of the gut microbiota are 
significantly altered in patients with osteoporosis [19]. 
He et  al. have suggested that patients with PMO had 
lower bacterial richness and diversity than healthy con-
trols [12]. Consistent with this study, our findings sug-
gested decreased bacterial community richness in the 
PMO group. Moreover, Ling et  al. have shown that the 
gut microbiome of patients with osteoporosis had an 
increased abundance of Actinobacillus, Blautia, Oscil-
lospira, Bacteroides, and Phascolarctobacterium, and 
decreased abundance of Veillonellaceae, Collinsella, 
and Ruminococcaceae [13]. In our study, we identified 
a few PMO-related bacterial biomarkers. We observed 
that the abundance of pathogenic bacteria Escherichia-
Shigella [20, 21] and Klebsiella [22], which are signifi-
cantly correlated with systemic inflammatory cytokines, 
was significantly more increased in the PMO than in the 
control group. Moreover, Ling et al. have suggested that 

Blautia is abundant in patients with osteoporosis group 
[13], which is consistent with our findings. McGinty 
et  al. reported that Bifidobacterium spp. could elevate 
bone density through increasing the absorption of min-
erals[23]. However, the abundance of Bifidobacterium 
was enriched in the osteoporosis group in our study. 
This conflicting result may be attributed to geographi-
cal differences. It has been reported that human living 
in different altitudes and climates may be responsible for 
the different microbiota compositions [24]. Xianyang, 
Shaanxi Province, in northwest China, has a continental 
monsoon climate, with distinct cold, hot, dry, and wet 
seasons. Meanwhile, as is well known, the diet of Shaanxi 
people is mainly based on pasta, which may have caused 
the unique intestinal microbiota of Shaanxi people, thus, 
this regional factor may also be the reason for obtaining 
inconsistent results.

In addition, Lactobacillus [25], Romboutsia [26], Akker-
mansia [27], Butyricicoccus [28], Ruminococcaceae_
UCG-02, and Alistipes [29], which are bacteria involved 
in the production of short chain fatty acid, were depleted 
in the LBM and OST groups. Therefore, the enrichment 
of Escherichia-Shigella and Klebsiella and the decrease in 
Lactobacillus, Romboutsia, Akkermansia, Butyricicoccus, 
Ruminococcaceae_UCG-02, and Alistipes may predict the 
development of PMO. Collectively, these results provide 
insight into the association of intestinal flora with PMO 
in humans.

The metabolic profile may help identify biomark-
ers to predict diseases including osteoporosis [13]. In 
this study, several amino acids, including L-proline, 
L-threonine, L-serine, L-phenylalanine, and isoleucine, 
were abundant in the OST group compared to the con-
trol group, whereas DL-tryptophan, L-( +)-leucine, and 

Table 3  (continued)

Compounds FC log2(FC) p value trends

50 Tiglic acid 2.6267 1.3932 0.0014194 up

51 Creatine 144.07 7.1706 0.0015611 up

52 L-Isoleucine 2.9603 1.5657 0.0016086 up

53 Deanol 0.30279 -1.7236 0.0016419 down

54 7-ketodeoxycholic acid 0.30624 -1.7073 0.0017631 down

55 Proline 0.028507 -5.1325 0.0018182 down

56 Amide C18 0.32731 -1.6113 0.0026659 down

57 Hypoxanthine 0.34182 -1.5487 0.0028131 down

58 Isoleucine 4.2212 2.0777 0.0028639 down

59 Ursolic acid 0.35954 -1.4758 0.0031063 down

60 Berberine 101.27 6.662 0.0034375 up

61 Diethyl phosphate 0.22342 -2.1622 0.0036987 down

62 Glycochenodeoxycholic acid 2.5592 1.3557 0.0039483 up

63 N(1)-acetylspermidine 0.087937 -3.5074 0.0041961 down
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L-tyrosine were depleted in the OST group. Ling et  al. 
have suggested that amino acid metabolism could be a 
target for intervention in osteoporosis [13], supporting 
our findings in this study. Interestingly, IAA (downregu-
lated) and 7-KDCA (upregulated) were simultaneously 
altered in the LBM and OST groups compared with the 
control group. IAA, has been reported to be produced 
by the flora from tryptophan metabolism and can alle-
viate inflammation related to alcoholic liver disease [30] 
and obesity [31] by directly or indirectly regulating the 

balance between proinflammatory and anti-inflamma-
tory cytokines (TGF-β, TNF-α, IL-10, and IL-22). Addi-
tionally, 7-KDCA is a bile acid of microbial origin, which 
is associated with advanced stages of fibrosis and non-
alcoholic fatty liver disease [32]. Tom et al. [33] reported 
that patients with chronic liver disease are more likely 
to develop osteoporosis owing to abnormal vitamin D 
metabolism, calcium malabsorption, and other factors. 
Therefore, our results suggest that the simultaneous 
reduction in IAA and increase in 7-KDCA can directly 

Fig. 7  Metabolite markers for pairwise discriminations of OST, LBM and N groups. A Receiver operating characteristic (ROC) analysis for the 6 
metabolite markers discriminating LBM from N in negetive model. B Area under the curve (AUC) applying the 6 LBM vs N metabolite markers 
to discriminate LBM from N in negetive model. C AUC value of metabolite of Xanthine discriminating LBM from N in negetive model. D AUC 
value of metabolite of Sulfamerazine discriminating LBM from N in negetive model. E ROC analysis for the 6 metabolite markers discriminating 
LBM from N in positive model. F AUC applying the 6 LBM vs N metabolite markers to discriminate LBM from N in positive model. G AUC 
value of metabolite of 7-ketodeoxycholic acid discriminating LBM from N in positive model. H AUC value of metabolite of indole-3-acetic 
acid discriminating LBM from N in positive model. I ROC analysis for the 6 metabolite markers discriminating OST from N in negetive model. J 
AUC applying the 6 OST vs N metabolite markers to discriminate OST from N in negetive model. K AUC value of metabolite of Aminolevulinic 
discriminating OST from N in negetive model. L AUC value of metabolite of Phosphoarginine discriminating OST from N in negetive model. 
M ROC analysis for the 6 metabolite markers discriminating OST from N in positive model. N AUC applying the 6 OST vs N metabolite markers 
to discriminate OST from N in positive model. O)AUC value of metabolite of L-Phenylalanine discriminating OST from N in positive model. P AUC 
value of metabolite of L-proline discriminating OST from N in positive model. LBM: Lower bone mass, OST: osteoporosis, N: Normal group



Page 12 of 16Liang et al. BMC Microbiology          (2023) 23:199 

or indirectly, promote the development of PMO, sug-
gesting that they are potential biomarkers for PMO.

In this study, the pathway enrichment analysis showed 
that the biosynthesis of aminoacylt-RNA, valine, leucine, 
and isoleucine, and aromatic amino acid (phenylalanine, 
tyrosine, and tryptophan), as well as phenylalanine metab-
olism, were downregulated in the PMO group compared 
to the healthy control. However, a previous study has 
suggested that the upregulation of aminoacyl-tRNA bio-
synthesis pathway is associated with prostate cancer cell 
development [34]; therefore, this needs to be further stud-
ied. Dietary proteins have also been reported to increase 
calcium absorption [19]. Branched-chain amino acids, 
including valine, leucine, and isoleucine, were down-
regulated in the PMO, which is consistent with the study 
by Ling et  al., reporting that patients with osteoporosis 
had decreased concentrations of serum valine and leu-
cine [13]. Additionally, Isley et al. reported that aromatic 
amino acid (AAA) intake induces an increase in serum 
IGF-1 levels, which promotes bone production [19]. In our 
study, we observed that AAAs, including tyrosine, pheny-
lalanine, and tryptophan, were downregulated in the PMO 
group. In summary, our results suggest that patients with 

osteoporosis should consume more proteins, especially 
food rich in branched-chain and aromatic amino acids.

We further explored the relationships between clinical 
factors, metabolites, and gut microbiota. Notably, Kleb-
siella and Escherichia-Shigella were negatively correlated 
with hip BMD, hip BMC, and hip T scores. Klebsiella 
has been reported to cause bone and joint infections 
that are associated with serious morbidity and mortal-
ity [19]. Escherichia-Shigella was reported to produce 
propionate ester and other metabolites, thereby induc-
ing the expression of chromatin Acid hydroxylase (Tph) 
1 in intestinal chromaffin cells, which increases periph-
eral 5-HT levels in germ-free mice, promotes osteoclast 
generation, reduces osteoblast proliferation, and inhibits 
bone growth [19, 35, 36]. Therefore, targeting Klebsiella 
and Escherichia-Shigella in the intestines might delay 
the progression of osteoporosis. In addition, we found 
that short-chain fatty acid (SCFA)-producing bacteria, 
including Lactobacillus [37], Akkermansia [27], Prevo-
tella [38], Alistipes [39], and Butyricicoccus [28], were 
positively correlated with hip BMD, hip BMC, hip area, 
hip T-score, lumbar BMD, lumbar BMC, lumbar area, 
and lumbar T-score. We also found that Romboutsia [26], 
an SCFA producer, was positively associated with the 

Fig. 8  Correlational analyses. A Heatmap of the Spearman’s correlation coefficients between gut metabolites and microbiota. B Heatmap 
of the Spearman’s correlation coefficients between clinical parameters and microbiota. *p < 0.05, **p < 0.01, *** p < 0.001
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levels of chrysin, leucine, cholic acid, DL_ tryptophan, L_ 
valine, and dihydropteroic acid. All above these results 
suggest a significant interaction between clinical factors, 
metabolites, and gut microbiota, which might affect the 
progess of osteoporosis.

This study had some limitations. In this study, all 
patients were recruited from Xianyang, Shaanxi Province, 
a small modern city in the mainland area of northwest 
China. Because the gut microbiota and its metabolites 
are significantly influenced by geographical, climatic, 
and dietary habit factors, our findings need validation 
in other regions. Other limitations are the limited sam-
ple size, the cross-sectional design of the study, and the 
lack of a comprehensive mechanistic analysis and valida-
tion cohorts, it is necessary to expand the sample size in 
the follow-up studies. In the future, the potential identi-
fied fecal metabolites and key strains that were associated 
with PMP need to be validated in vitro or in vivo studies 
using metagenomic sequencing.

Conclusion
In summary, this study described the disordered profiles 
of intestinal bacteria and fecal metabolomes in meno-
pausal patients with osteopenia or osteoporosis. We 
identified key strains and metabolite differences in the 
intestinal flora of the participants of this study. We found 

that the pathogenic bacteria Klebsiella and Escherichia-
Shigella were enriched in patients with LBM and PMO. 
Some SCFAs producers, including Lactobacillus, Akker-
mansia, Prevotella, Alistipes, and Butyricicoccus, were 
reduced in patients with LBM and PMO. Moreover, the 
metabolites of IAA and 7-KDCA were altered in patients 
with LBM and PMO. The pathways of aminoacyl-tRNA 
biosynthesis, valine, leucine, and isoleucine biosynthe-
sis, aromatic amino acid (phenylalanine, tyrosine, and 
tryptophan) biosynthesis, and phenylalanine metabolism 
were downregulated in patients with PMO. Additionally, 
the relationship between these parameters and the bone 
parameters that can effect osteoporosis is discussed. 
These findings provide deeper understanding the rela-
tionship between gut microbiota, metabolites, and PMO.

Materials and methods
Patients and specimen collection
All participants were from Shaanxi Province and were 
admitted to the Affiliated Hospital of Shaanxi University 
of Traditional Chinese Medicine (Xianyang, China) from 
October 2021 to December 2021. This trial was regis-
tered in the Chinese Clinical Trial Registry (SZFYIEC-PJ-
KY-202130). A total of 26 women were recruited for the 
study based on the inclusion and exclusion criteria (listed 
below): 10 postmenopausal patients with lower bone mass 

Fig. 9  Overview of the prospective study design. A graphical representation summarizing the study design, data collection, and the methodologies 
of data generation and analysis
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(LBM: T-score between -1 and -2.5), 10 postmenopau-
sal patients with OST, with T-score less than -2.5, and 6 
healthy patients as the control group (Fig. 9). The inclusion 
criteria and exclusion criteria for the patients were Table 4.

Enzyme‑linked immunosorbent assay
Sample pretreatment: 50-100 g fecal was collected, and 
added with the same volume of PBS. The supernatant 
was centrifuged at 2000 g and stored at -70. The TNF-α, 
IL-6 and IL-10 were determined by ELISA kits.

DNA extraction and 16S rRNA gene Sequencing
Total DNA from the fecal samples was extracted using 
the QIAamp® DNA Stool Mini kit (QIAGEN, Hilden, 
Germany), according to the manufacturer’s protocol. 
The DNA quality control and library construction 
according to the manufacturer’s instructions. Paired-
end sequencing was carried out using the Illumina 
MiSeq (PE300) sequencing platform. The detailed 
information is described in our previous study [12].

Sequencing data analysis
After de-multiplexing, the obtained sequences were 
merged in FLASH (v1.2.11) [40] and quality-filtered using 
fastp (v0.19.6) [41]. The high-quality sequences were then 
denoised using the DADA2 [42] plugin in the Qiime2 
(v2020.2) pipeline [43]. DADA2–denoised sequences are 
amplicon sequence variants (ASVs). Finally, sequencing 
data were analyzed using the free online Majorbio Cloud 
Platform (www.​major​bio.​com). 

Untargeted metabolomics
Fecal metabolites were extracted from fecal samples as described 
previously, and metabolites were analyzed using UHPLC sys-
tem (1290; Agilent Technologies, Santa Clara, CA, USA). The 
detailed information is described in our previous study [12].

Metabolite data analysis
The mass spectrum data were processed using Com-
pounds Discovered 3.1 software (Thermo Fisher 
Scientific) for noise reduction, peak alignment, and iden-
tification. Differential metabolites were identified using 
the SIMCA-P v14.1 software (Umetrics AB, Umea, Swe-
den). PLS-DA analysis method was used to distinguished 
the metabolites composition of patients with LBM and 
OST from healthy controls.

Statistical analysis
Some data are shown as mean ± standard devia-
tion (SD), and some data are shown as mean with 
quartile. Statistical significance with one-way 
analysis of variance (ANOVA) followed by Dun-
can’s multiple comparison test was set at p < 0.05. 
Microbiological analysis was performed using the 
free online Majorbio Cloud Platform (www.​major​
bio.​com). The metabolite analysis was performed 
using the free online platform MetaboAnalyst5.0 
(www.​metab​oanal​yst.​ca/).

Abbreviations
PMO	� Postmenopausal osteoporosis
LBM	� Lower bone mass
OST	� Postmenopausal women with osteoporosis
SCFAs	� Short-chain fatty acid
AUC​	� Area under the curve
IL-10	� Interleukin-10
TNF-α	� Tumor necrosis factor-α
IL-6	� Interleukin-6
BMD	� Bone mineral density
BMC	� Bone marrow concentrate
NMDS	� Nonmetric multidimensional scaling
LC–MS	� Liquid chromatography-mass spectrometry
7-KDCA	� 7-Ketodeoxycholic acid
IAA	� Indole-3-acetic acid
AAA​	� Aromatic amino acid
SD	� Standard deviation
ANOVA	� One-way analysis of variance
SRA	� Sequence Read Archive

Table 4  The inclusion criteria and exclusion criteria for the patients

Inclusion criteria
    (1) had completed bone mineral density examination and clinical data

    (2) naturally postmenopausal women

    (3) had no previous systemic diseases

Exclusion criteria
    (1) secondary osteoporosis

    (2) incomplete case data or patients and their families who were unable to complete the questionnaire

    (3) under the age of 50 years

    (4) use of antibiotics, probiotics, probiotics, or co-organisms within two months before collection of stool samples

    (5) patients suffering from severe malnutrition, infections, drug or alcohol abuse

    (6) patients with digestive system diseases

    (7) patients with complicated with serious systemic diseases, tumors, or other serious primary diseases

    (8) patients with previous lumbar and hip surgery history

https://www.majorbio.com
https://www.majorbio.com
https://www.majorbio.com
https://www.metaboanalyst.ca/
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