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Abstract

Background Phages play a pivotal role in the evolution of microbial populations. The interactions between phages
and their hosts are complex and may vary in response to host physiology and environmental conditions. Here, we
have selected the genomes of some representative Bacillus prophages and lysosomes from the NCBI database for
evolutionary analysis. We explored their evolutionary relationships and analyzed the protein information encoded by
hundreds of Bacillus phages.

Results We obtained the following conclusions: First, Bacillus phages carried some known functional gene fragments
and a large number of unknown functional gene fragments, which might have an important impact on Bacillus
populations, such as the formation of spores and biofilms and the transmission of virulence factors. Secondly, the
Bacillus phage genome showed diversity, with a clear genome boundary between Bacillus prophages and Bacillus
lytic phages. Furthermore, genetic mutations, sequence losses, duplications, and host-switching have occurred during
the evolution of the Bacillus phage, resulting in low genome similarity between the Bacillus phages. Finally, the lysis
module played an important influence on the process of Bacillus phage cross-species infestation.

Conclusions This study systematically described their protein function, diversity, and genome evolution, and the
results of this study provide a basis for evolutionary diversity, horizontal gene transfer and co-evolution with the host
in Bacillus phages.

Keyword Bacillus, Phages, Genome, Functions, Diversity, Evolution

Background

The genus Bacillus is a kind of bacillary bacteria that
exists widely in nature [1], and the dormant spores pro-
duced by Bacillus can survive in harsh circumstances
(e.g., high temperature, desiccation, UV and y-radiation)
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or even extraterrestrial conditions [2, 3]. Many Bacil-
lus species produce bioactive molecules, including lipo-
peptides [4], polyketide compounds [5], bacteriocins
[6], and siderophores [7] which are beneficial for plant
health. Because of the production of these bioactive mol-
ecules, many Bacillus species are known to promote root
growth, suppress pathogens, kill pests, and have cytotoxic
effects on liver and colon cancer cells [8—10]. In addition,
some Bacillus species also have the potential to generate
biofuels (hydrogen) [11], biopolymers (polyhydroxyal-
kanoate) [12], and bioactive molecules (acyl-homoserine
lactonases) [13, 14]. Therefore, Bacillus is important not
only in traditional territories like agriculture, medical
treatment, and pharmaceutical manufacturing but also
contributes to some emerging territories such as sustain-
able and clean energy in the future.
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Bacteriophages (phages) are present in all environ-
ments in which bacteria survive, with genetic diversity,
and play an important role in the evolution of bacterial
host cells [15, 16]. The main mediator of phage evolu-
tion is horizontal gene transfer (HGT) between different
ancestors, which accounts for the diversity and unique-
ness of phages [17]. Lytic phages act as bacterial killers
lysing host cells, influencing the ecology and evolution of
bacterial populations by affecting the number of bacterial
populations in different environments, selecting resistant
types with potentially altered phenotypes, and changing
the competitive hierarchy of bacterial communities [18—
22]. The whole genome sequences of bacteria revealed an
abundance of lysogenic phage sequences in the genomes
of many bacterial species [23]. Interestingly, some phage
genes originated in bacterial cells, and these phage-intro-
duced genes (called auxiliary metabolic genes) in host
cells can modulate host cell metabolism during infection
[24-26]. Therefore, phages have served as vectors of hor-
izontal gene transfer and drivers of bacterial evolution.

Although Bacillus has been widely used for various
purposes, little is known about Bacillus phages. Fewer
studies have been conducted on the different func-
tional fragments carried by Bacillus phages, the link-
age between the genomes of different Bacillus phages,
and whether additions or deletions of gene fragments
occurred during the evolution of Bacillus phages and
whether additions or deletions had an effect on Bacillus
phages. Therefore, in this work, we took some represent-
ative Bacillus prophages and lytic phages as the subjects,
characterized the genomes of phages to explore their
evolutionary relationships, and analyzed the informa-
tion of proteins encoded by Bacillus phages. Our results
showed the following, (1) Bacillus phages carried differ-
ent functional fragments that might have different effects
on the host Bacillus species. (2) A clear genomic bound-
ary existed between Bacillus prophages and lytic phages.
(3) Bacillus phages underwent the evolutionary process
of gene mutations, sequence losses, duplications and
host switching, resulting in low similarity between Bacil-
lus phage genomes. (4) The lysis module plays an impor-
tant role in the evolution of Bacillus phage. Our work
reveals the biological functions, genomic features and
evolutionary relationships of phages, laying the founda-
tion for a better understanding of key questions in micro-
bial ecology, evolution and potential biotechnological
applications.

Results

Bioinformatic Analysis of Proteins Encoded by Bacillus
phages

In this article, nucleotide sequences of 619 prophages
(Table S1) predicted by 178 Bacillus genomes and 236
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lytic phages were used to compare the sequences and
genome size, annotate protein function, and further sta-
tistical analysis (Fig. 1). The length of Bacillus prophage
sequences ranged from 4 - 142 kb, averaging about
24 kb, and the length of Bacillus lytic phage genomes
ranged from 19 — 590 kb, averaging about 99 kb (Fig. 1C).
The genomes size of Bacillus lytic phage was nearly four
times larger than the sequences of Bacillus prophage.
The results of the functional classification of proteins
encoded by all Bacillus phages were as follows: For Bacil-
lus prophages, a total of 8457 proteins were predicted
and identified as 894 kinds of proteins were homolo-
gous with proteins in the COG database. As shown in
Fig. 1A, lots of Bacillus prophage proteins were associ-
ated with the life cycle of phages, such as phage capsid
protein, tail proteins, related structural proteins, phage
genome integration-related proteins, DNA replica-
tion and repair related proteins, phage infection-related
proteins, lytic and lysogenic regulation proteins, etc.
In addition, abundant predicted transcriptional regula-
tors were also included. For Bacillus lytic phages, 5889
proteins were predicted and identified as 335 kinds of
proteins were homologous with protein in the COG data-
base. Functional analysis of Bacillus lytic phage proteins
revealed that most were phage structural proteins, phage
infection-related, DNA synthesis, and replication-related
proteins (Fig. 1B). Bacillus prophage and Bacillus lytic
phages still had many genes encoding unknown func-
tional proteins in their genomes. Notably, proteins of
interest were identified in these Bacillus phage genomes,
such as proteins related to spore formation, proteins
associated with cell wall biosynthesis, proteins related to
cell wall-associated hydrolases (invasion-associated pro-
teins), and proteins about exopolysaccharide biosynthesis
(Table S2). These proteins also might, directly or indi-
rectly, take part in phage-host interactions. In addition,
some Bacillus phages were also found to carry virulence
factors, including Hemolytic enterotoxin [27], Phospho-
lipase C [28], Metalloprotease [29], Chitinase [30], etc.,
which might lead to transmission of virulence factors
through horizontal gene transfer (Table S2).

The Similarity Analysis Bacillus Phage Genomes

Sequences of 36 predicted prophages and 20 lytic phages
were used for the evolutionary analysis of Bacillus phage
(Tables S3 and S4). Figures 2, 3 and 4 were heat maps
consisting of the whole genome of Bacillus phage. From
the figure, we observed that most phage genomes had a
low similarity, while some phage genomes were clustered
together with high similarity for lysogenic and lytic phages
(Figs. 2 and 3). Some phages with similar genomes whose
hosts belong to the same Bacillus species are frame D,
frame E, frame F, frame G, frame H, and frame I in Fig. 2,
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Fig. 1 The information of Bacillus phage sequences and genomes including functional classification of proteins encoded by Bacillus phage and the
size of Bacillus phage sequences and genomes. A The proteins related to phage lifecycles were encoded by 619 predicted prophages sequences.
Only proteins with more than 50 homologs of the same function were shown. B The proteins related to phage lifecycles were encoded by 236 Iytic
phages genomes. Only proteins with more than 50 homologs of the same function were shown. C The Box-plot of Bacillus phage sequence and
genome size, including the 619 prophage sequences and the 236 lytic phage genomes

as well as frame B and frame C in Fig. 3. Another part of
phages with similar genomes whose hosts belong to two
different species of Bacillus, B. cereus and B. thuringien-
sis, respectively, are frame B in Fig. 2 and frame A in Fig. 3.
Both B. cereus and B. thuringiensis belong to the B. cereus
bacterial group. Their genetic similarity is extremely high
except for the plasmid gene, which should be considered
the same species [31]. In addition, frame A in Fig. 3 was
worthy of our attention. It is composed of five virulent
phages, namely B. subtilis lytic phage Grass, B. cereus lytic
phage BCU4, B. thuringiensis lytic phage Evoli, B. cereus
lytic phage B5S and B. thuringiensis lytic phage Spock. The
genome similarity decreased from B. thuringiensis lytic
phage Spock to B. subtilis lytic phage Grass. This may be

a Bacillus phage genome evolutionary process, from sin-
gular to diverse and from one species to more species. Fig-
ure 4, which consisted of the whole genomes of prophages
and lytic phages, showed that the genomes of almost no
prophages were similar to those of lytic phages. In sum-
mary, from the perspective of phage genome similarity, the
genomes of Bacillus phages are diverse, and the infestation
range of Bacillus phages is limited to Bacillus that are of
the same species. Phages that infected different Bacillus
species showed little genomic similarity, and even phages
that infected the same Bacillus species showed consider-
able genomic differences. Furthermore, a boundary existed
between Bacillus prophages and lytic phages. Significant
differences were found not only in genome size but also
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Fig. 2 Heat map of 36 Bacillus prophage complete genome sequences. Prophages with similar genomes in the same frame, and each frame was
marked with an alphabet

in genome similarity. The genomes size of Bacillus lytic Interestingly, B. anthracis lytic phages Carmel SA, B.
phage was nearly four times larger than the sequences of  anthracis lytic phages Cherry, B. anthracis lytic phages
Bacillus prophage, with little similarity between Bacillus ~ Fah, B. cereus ATCC 14579 prophage 2 and B. cereus
prophage sequences and lytic phage genomes. ATCC 4342 prophage 1 appear to be somewhat related
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Fig. 3 Heat map of 20 Bacillus lytic phage complete genome sequences. Lytic phages with similar genomes in the same frame, and each frame
was marked with an alphabet

(marked with red frame) (Fig. 4). Of these five Bacillus
phages, the genomic similarity of the three lytic phages was
over 74.6%, and they showed about 25% genomic similarity

to B. cereus ATCC 4342 prophage 1. Also, the genomic
similarity between B. cereus ATCC 4342 prophage 1 and B.
cereus ATCC 14579 prophage 2 was about 25%.
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Fig. 4 Heat map of 36 Bacillus prophage and 20 Bacillus lytic phage complete genome sequences. Phages with similar genomes in the same frame,
and each frame was marked with an alphabet
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Comparative Analysis of Similar Bacillus Phages Genome

A group of prophages (Fig. 2, frame H) and a group of
lytic phages (Fig. 3, frame A) were selected for compara-
tive genomic analysis to explore the evolution and laws
of phages. In comparison to the genomes of the Bacil-
lus prophages, shown in Fig. 5, four prophages have 25
shared homologous proteins. Nine proteins had clear
functions, including capsid portal protein, tail tube pro-
tein, tail assembly chaperone protein, base plate assembly
protein, terminase large subunit, terminase small subu-
nit, N-acetylmuramoyl-L-alanine amidase, and Lin1275
protein (putative tail-component). All other proteins
were putative or hypothetical proteins. And five lytic
phage genomes have 69 shared homologous proteins.
Twelve proteins had clear functions, including phage pro-
tein, phage major capsid protein, terminase large subunit,
thymidylate synthase, phage DNA primase, DNA trans-
locase FtsK and ribonucleotide reductase (Fig. 6). The
genomes mauve alignment showed that the genes encod-
ing these proteins were homologous. In the Bacillus
prophage sequences, both homologous (lavender region)
and non-homologous (green parts) fragments existed
as whole large segments; this phenomenon might result
from genetic recombination (Fig. 5). Compared to the
prophage, homologous and non-conservative regions in
the lytic phage genome were more random (Fig. 6). Nota-
bly, conservative segments were located in the middle of
the genomes, and the non-conservative segments were
mainly located at both ends of the sequence in the Bacil-
lus prophage sequences (Fig. 5). The results showed that
different Bacillus phages evolve in different regularity
during evolution. The Bacillus prophage mainly evolved
by recombining the genome, and the recombination
occurred at both ends of the genome. The Bacillus lytic
phages evolved through genetic mutations randomly dur-
ing evolution. Interestingly, the conservative regions of
all four prophage sequences had a non-homologous gene
segment (marked with light red arrows), they were both
the genes that encoded the phage tail protein (Fig. 5).
The previous study showed that during co-evolution with
host bacteria, some Bacillus phages developed the abil-
ity to infect resistant strains [32]. Mutational evolution of
phage tail proteins is probably one of the strategies.

The five interesting Bacillus phages in Fig. 4 were
also selected for genomic covariance analysis using
Mauve, and the results are shown in Fig. 7. Compared
to the high similarity between these three lytic phage
genomes, these five Bacillus genomic sequences had
few homologous sequences, but some traces of homol-
ogy were still present. As in Fig. 7, several discontinu-
ous mauve homologous fragments were present in the
area marked by the mauve arrow. In addition to the
above homologous fragments, a homologous sequence
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(Areal) was found between the genome of ATCC 4342
prophage 1, Carmel SA, Cherry, and Fah. Two homolo-
gous sequences (Areall and Area III) were also observed
between the genome of ATCC 4342 prophage 1 and
ATCC 14579 prophage 2. In contrast, no additional
homologous sequences occurred between the genome
of ATCC 14579 prophage 2, Carmel SA, Cherry, and
Fah. Taken together, the five phages may have evolved
from the one phage. The phage genome was likely sim-
ilar to the three lytic phages, and due to some factors,
the genome first becomes the ATCC 4342 prophage 1
genome and subsequently changes from the ATCC 4342
prophage 1 genome to the ATCC 14579 prophage 2
genome. So far, the ATCC 14579 prophage 2 genome has
evolved completely differently from its ancestor.

The areas corresponding to the blue arrows were gene
fragments encoding the holin family (XpaF1 and holin)
and endolysin proteins (N-acetylmuramoyl-L-alanine
amidase), which we referred to as the lysis module. Both
were located behind the genes encoding the phage minor
structural protein in their respective genomes. The lysis
modules showed low similarity between the three lytic
phage genomes, although the preceding and following
sequences of the lysis module were all highly homolo-
gous. As described above, we searched for genome frag-
ments similar to the three lytic phage genomes from
NCBI and the results were shown in Table S5. Then, we
searched for the lysis module where the gene fragments
encoding the Holin family and endolysin proteins were
adjacent form from these genome fragments, and down-
loaded all the lysis module protein sequences. These pro-
tein sequences were used for comparative analysis, and
the results are shown in Fig. 8, the protein sequences
marked with the same number and name are concat-
enated. These sequences were divided into two clusters,
which indicated that these lysis modules were classified
into two types. Further analysis of the sequences of the
two types of proteins revealed that their similarity was
only about 15%. Here, we named them type I and type
II, represented by Carmel SA and Cherry, respectively.
Interestingly, all homologous prophages from other spe-
cies of Bacillus had the type I lysis module (Table S5).
Subsequently, homologous sequences of both types of
lysis modules were searched in NCBI, and the results
are shown in Tables S6 and S7. In addition to those lytic
phages and Bacillus in Table S5, the type I lysis module
was also found in the genomes of some B. thuringiensis,
B. cereus, and other Bacillus species. In contrast, the type
II lysis module was only found in the genomes of some B.
anthracis. This result coincided with the result in Table
S5. In summary, we conclude that the two types of lysis
modules of B. anthracis phages are related to the species
of the hosts they infect.
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Fig. 5 The genomes mauve alignment of 4 similar Bacillus prophage sequences. MAUVE alignments showing the conserved structure between
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Fig. 6 The genomes mauve alignment of 5 similar Bacillus lytic phage genomes. Whole genome MAUVE alignments showing the conserved
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Fig. 7 The genomes mauve alignment of 5 similar Bacillus phage genomes including 3 lytic phage genomes and 2 Bacillus prophage sequences.
The genomes mauve alignment of 5 similar Bacillus lytic phage genomes. Whole genome MAUVE alignments showing the conserved structure

between the similar Bacillus phage genomes. Locally Collinear Blocks (LCB) are indicated by corresponding colored region. The lavender color

represents the conserved regions of all genomes. Annotations are reported by the arrow below the LCBs



Zhang et al. BMC Microbiology

CEuaU e WN e

10
11
12
13
14
15
16
17
18
19

21
22

[ER R R

10
11
12
13
14
15
16
17
18
19

21
22

CEuO U WN

10
11
12
13
14
15
16

18
19

21
22

CEUO U WN

10
11
12
13
14
15
16
17
18
19

21
22

[ERC R T e

10
11
12
13
14
15
16
17
18
19

21
22

Negev_SA

Tavor_SA

Carmel SA

F16Ba
FDAARGOS_797_prophage_1
D17_prophage_1

zla

Jsa
vB_BanS_Booya
McSteamy
L_7601_prophage_1
BGSC_42Al_prophage_1
NB_176_prophage_1
220_130_prophage_1
2002013094_prophage_1
A3783_prophage_1

Fah

Cherry
Gamma_isolate 53
Gamma_isolate_dHerelle
WBeta

AP631

Negev_SA

Tavor_Sa

Carmel SA

F16Ba
FDAARGOS_797_prophage_1
D17_prophage 1

zla

Jsa
vB_BanS_Booya
McSteamy
L_7601_prophage_1
BGSC_4AAl_prophage_1
NB_176_prophage_1
22Q_130_prophage_1
2002013094_prophage_1
A3783_prophage_1

Fah

Cherr:

Gamma_isolate_53
Gamma_isolate_dHerelle
WBeta

AP631

Negev_SA
Tavor_SA

Carmel_SA

Fl6Ba
FDAARGOS_797_prophage_1
D17_prophage_1

zla

Jsa

vB_BanS_Booya
McSteamy

L 7601 _prophage_ 1
BGSC_4AAl_prophage_1
NB_176_prophage_1
22Q_130_prophage_1
2002013094_prophage_1
A3783_prophage_1

Fah

Cherry
Gamma_isolate 53
Gamma_isolate_dHerelle
WBeta

AP631

Negev_SA
Tavor_SA

carmel SA

F16Ba
FDAARGOS_797_prophage_1
D17_prophage_1

zla

Jsa
vB_BanS_Booya
McSteamy

L_7601 prophage_ 1
BGSC_4AA1_prophage_1
NB_176_prophage_1
220_130_prophage_1
2002013094 _prophage_1
A3783_prophage_1

Fah

Cherry
Gamma_isolate_53
Gamma_isolate_dHerelle
WBeta

AP631

Negev_SA
Tavor_SA

carmel SA

F16Ba
FDAARGOS_797_prophage_1
D17_prophage_1

zla

Jsa
vB_BanS_Booya
McSteamy

L 7601 _prophage 1
BGSC_42Al_prophage_1
NB_176_prophage_1
22Q_130_prophage_1
2002013094_prophage_1
A3783_prophage_1

Fah

Cherry
Gamma_isolate_53
Gamma_isolate_dHerelle
WBeta

AP631

cov
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
88.5%
100.0%
100.0%
100.0%
67.3%
67.3%
67.3%
67.3%
67.3%
67.3%
67.3%
67.3%

cov
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
88.5%
100.0%
100.0%
100.0%
67.3%
67.3%
67.3%
67.3%
67.3%
67.3%
67.3%
67.3%

cov
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
88.5%
100.0%
100.0%
100.0%
67.3%
67.3%
67.3%
67.3%
67.3%
67.3%
67.3%
67.3%

cov
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
88.5%
100.0%
100.0%
100.0%
67.3%
67.3%
67.3%
67.3%
67.3%
67.3%
67.3%
67.3%

cov
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
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100.0%
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67.3%
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14.8%
14.8%
14.8%

id
100.0%
99.2%
97.7%
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91.1%
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92.5%
90.0%
89.6%
85.7%
94.0%
90.7%
90.7%
90.7%
14.8%
14.8%
14.8%
14.8%
14.8%
14.8%
14.8%
14.8%

pid
100.0%
99.2%
97.7%
93.1%
91.1%
91.1%
92.5%
90.0%
89.6%
85.7%
94.0%
90.7%
90.7%
90.7%
14.8%
14.8%
14.8%
14.8%
14.8%
14.8%
14.8%
14.8%

pid
100.0%
99.2%
97.7%
93.1%
91.1%
91.1%
92.5%
90.0%
89.6%
85.7%
94.0%
90.7%
90.7%
90.7%
14.8%
14.8%
14.8%
14.8%
14.8%
14.8%
14.8%
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A few additional areas of difference (marked by green
and blue arrows) deserved our attention. First were the
gene sequences corresponding to the green arrows,
which were present in the genome of only one or two of
the three lytic phages. For example, the gene sequence
encoding a putative transcriptional repressor (ACLAME
12) was only present in the genomes of Carmel SA and
Fah, while it was missing from the genome of Cherry.
In addition, the genomes of these three cell-type phages
had an un-stable region at the same corresponding posi-
tion. Several non-homologous genes encoding different
proteins were present in the region (Fig. 7). Such as beta-
galactosidase, dimeric dUTPase, Fosfomycin resistance
protein FosB, LambdaBa02 membrane protein, and some
unknown function proteins. Several functionally anno-
tated gene sequences were used to search for homolo-
gous sequences in NCBI, and the results are shown in
Table S8. These genes-encode proteins involved in lac-
tose metabolism, antibiotic resistance, regulatory factors,
membrane proteins, and homologous sequences of these
genes were found in different Bacillus bacteria. This phe-
nomenon is likely caused by the horizontal gene transfer
at the phage level.

Discussion

In this paper, through bioinformatic analysis of the Bacil-
lus phage genomes, we found that in addition to the
essential proteins required for phage survival, Bacillus
phage encoded a number of related proteins involved
in host growth or metabolic activities. These included a
number of transcription factors, sporulation, and cell wall
synthesis-related proteins (Table S2). These proteins were
probably directly or indirectly involved in phage-host
interactions. As well as the large number of unknown
functional proteins encoded by Bacillus phages would
become an essential booster to drive the co-evolution of
Bacillus phages with their hosts. In addition, we found
that some Bacillus phages carry virulence factors (Table
S2). These virulence factors may be transferred between
different Bacillus strains by means of horizontal gene
transfer by phages that act as mobile elements, allow-
ing non-virulent bacteria to become pathogenic. Previ-
ous studies that have demonstrated that the pathogens
B. anthracis, B. cereus, and B. thuringiensis were com-
monly infected by arbitrium-carrying mobile elements,
which often carried toxins essential for pathogenicity
[33]. Therefore, we should pay more attention to the fact
that Bacillus phages might transfer pathogenic gene frag-
ments to make the non-toxic bacteria pathogenic.

As a kind of simple biological entity on the planet,
phages own relatively small genomes. Still, they show
impressive genomic diversity and complex evolutionary
relationships, which is also true for Bacillus phages. In
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this study, some representative Bacillus phage genomes
were used to construct the heat maps, and the results
indicated that Bacillus phages showed remarkable
diversity at the nucleotide sequence level (Figs. 2 and
3). Furthermore, a boundary existed between Bacillus
prophages and lytic phages in the genome. Significant
differences were found in genome similarity, size, and
evolutionary mechanisms (Figs. 1C, 5, and 6). From an
evolutionary perspective, phages evolved in response
to survival pressures in favor of infecting or co-evolv-
ing with their hosts [17]. For example, mutations in
genes encode phage tail proteins (Fig. 5) facilitate
phage infection of hosts and may also enable cross-spe-
cies infection [32]. Our study also identified a group of
five Bacillus phages which probably evolved from one
phage (Fig. 7). In the complicated evolutionary pro-
cess, these phage genomes were likely to be driven by
different mechanisms. For instance, genetic mutations,
sequence losses, transfer, and host switching have
resulted in genetic diversity and low genome similarity
between phages.

In addition, two different types of lysis modules,
type I and type II were found in the five phages. Fur-
ther analysis revealed some connection between the
types of the two phage lysis modules and the host range
of the phages, and the phage possessing the lysis mod-
ule of type I could infect other species of Bacillus more
often than the phage possessing type II (Table S5, Fig. 8,
Tables S6 and S7). The lysis modules include gene frag-
ments encoding the holin family (XpaF1 and holin) and
endolysin proteins (N-acetylmuramoyl-L-alanine ami-
dase). It was found that the lysis module plays a role
in the recognition of host bacterial substrates [34, 35].
During the evolutionary process, the primal B. anthra-
cis phage lysis module gene was mutated into the pre-
sent type I lysis module, which let the phage get an
ability to recognize more other species of Bacillus and
then infect them. This phenomenon has extended the
host range of Bacillus phages, thus promoting the evo-
lution and diversity of Bacillus phages.

Conclusions

The research on Bacillus phages is important since Bacil-
lus is widely used in agricultural and industrial produc-
tions. However, the phylogeny of Bacillus phages remains
a knowledge gap in Bacillus studies. In summary, we
analyzed the complete genomes of Bacillus prophages
and lytic phages and systematically described their pro-
tein function, diversity, and genome evolution. This study
contributes to understanding the Bacillus phage genomic
characteristics, Bacillus phage-host interactions, and the
evolutionary relationships of Bacillus phages.
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Materials and methods

Collection of Bacillus phage genomes

In NCBI, strains of 178 Bacillus species have been
sequenced by others, as we selected and downloaded
the whole genome sequences of 178 strains from all the
Bacillus species (one strain per species) for prophage
prediction using PHASTER software (Table S1). Mean-
while, 236 strains of Bacillus lytic phage genomes
sequences were downloaded from NCBI (Table S9). The
predicted Bacillus prophage sequences and the Bacillus
lytic phage genomes obtained from NCBI were used to
annotate and analyze functional genes. All the genome
sequence data were from NCBI before 30th December
2022 (https://www.ncbi.nlm.nih.gov/nuccore).

The more familiar Bacillus species that have been
under study are Bacillus anthracis, Bacillus cereus, Bacil-
lus thuringiensis, Bacillus subtilis, and Bacillus pumilus.
Most of the Bacillus lytic phages with the whole genome
published in the NCBI database were isolated from them.
Therefore, the five Bacillus phages mentioned above were
chosen as representatives of the Bacillus phages for anal-
ysis. The genome sequences of 20 Bacillus lytic phages
and 36 Bacillus prophages were selected for the evo-
lutionary analysis of the Bacillus phage, and their hosts
were all the five Bacillus mentioned above. The Bacillus
prophage nucleotide sequences were obtained by predic-
tion using PHASTER. Ten Bacillus genomes (two per
species, three B. pumilus) were downloaded from NCBI
to predict Bacillus prophage nucleotide sequences (Table
S3). From these prophage sequences, intact or fragment
sizes of more than 20 kb were selected, a total of 36 Bacil-
lus prophage sequences (Table S3). The Bacillus lytic
phage genomes were obtained from NCBI (four per spe-
cies) total of 20 (Table S4).

Prediction of Bacillus prophage nucleotide sequences

All Bacillus prophage nucleotide sequences were pre-
dicted using PHASTER (http://phaster.ca/). PHASTER
is a tool for identifying prophage sequences, includ-
ing phage sequence identification, protein identifica-
tion, and evaluating the completeness of the putative
prophage. Based on the completeness of the predicted
phage sequences, the prophages were classified into
intact prophage, questionable prophage, and incomplete
prophage.

Annotations and analysis of the Bacillus phage genome

The proteins encoded by the prophage and lytic phage
sequences were predicted by GeneMark web software
(http://opal.biology.gatech.edu/GeneMark) [36]. The
functional annotation and the COG (Cluster of Orthol-
ogous Groups of proteins) classification of the proteins
was performed using WebMGA (http://weizhong-lab.
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ucsd.edu/webMGA/). WebMGA is a customizable web
server for fast metagenomic analysis. The bar chart was
drawn by graphpad prism 9.5.1, and the Box plot was
drawn by the OmicShare tools, an online platform for
data analysis (https://www.omicshare.com/tools).

The evolutionary analysis of the Bacillus phage

The heat maps were made with all the phage sequences
in VIRIDIC web (http://rhea.icbm.uni-oldenburg.de/
VIRIDIC/). VIRIDIC was developed in R 3.5 program-
ming language and was a new tool for calculating virus
intergenomic similarities. It uses the traditional algo-
rithm, which is also used by the Bacterial and Archaeal
Viruses Subcommittee and the International Commit-
tee on Taxonomy of Viruses (ICTV) [37]. Evolutionary
analysis of phage genomes was performed using the Rast
(https://rast.nmpdr.org), Mauve 2.3.1and Easyfig 2.2.5.
Firstly, the fasta format nucleic acid sequence files were
annotated into GBK format files by Rast. Then the files in
GBK format were then imported into Easyfig for protein
visualization and Mauve for homology analysis. Next,
the protein visualization result figure of Easyfig (pro-
tein arrows) and the analysis result figure of Mauve were
integrated in one figure. Finally, the analysis was per-
formed based on the homology results of Mauve. Rast is
an automated annotation website for complete, or near-
complete, archaeal and bacterial genomes [38].Mauve
is a system for efficiently constructing multiple genome
alignments in the presence of large-scale evolutionary
events such as rearrangement and inversion [39]. Easyfig
is an application for creating linear comparison figures
of multiple genomic loci. BLAST comparisons between
multiple genomic regions can be generated, ranging from
single genes to whole prokaryote chromosomes. Protein
sequence alignment of the lysis module was performed
by MAFFT (https://mafft.cbrc.jp/alignment/server/) and
MView (https://www.ebi.ac.uk/Tools/msa/mview/). First,
the protein sequences of the lysis module were down-
loaded from NCBI. Then compared them in MAFFT and
used MView to make the figure. MAFFT is an online ser-
vice for multiple sequence alignmen. MView is a tool for
converting the results of a sequence database search into
colored multiple alignments of hits stacked against the

query.
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