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Diarrhea accompanies intestinal 
inflammation and intestinal mucosal 
microbiota dysbiosis during fatigue combined 
with a high‑fat diet
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Abstract 

Objective  It was reported fatigue or a high-fat diet triggers diarrhea, and intestinal microbiota may play central roles 
in diarrhea. Therefore, we investigated the association between the intestinal mucosal microbiota and the intestinal 
mucosal barrier from fatigue combined with a high-fat diet.

Method  This study divided the Specific pathogen-free (SPF) male mice into the normal group (MCN) and the stand-
ing united lard group (MSLD). The MSLD group stood on water environment platform box for 4 h/day for 14 days, and 
0.4 mL lard was gavaged from day 8, twice daily for 7 days.

Result  After 14 days, Mice in the MSLD group showed diarrhea symptoms. The pathological analysis showed struc-
tural damage to the small intestine in the MSLD group, with an increasing trend of interleukin-6 (IL-6) and IL-17, and 
inflammation accompanied by structural damage to the intestine. Fatigue combined with a high-fat diet consider-
ably decreased Limosilactobacillus vaginalis and Limosilactobacillus reuteri, and among them, Limosilactobacillus reuteri 
positively associated with Muc2 and negatively with IL-6.

Conclusion  The interactions between Limosilactobacillus reuteri and intestinal inflammation might be involved in the 
process of intestinal mucosal barrier impairment in fatigue combined with high-fat diet-induced diarrhea.

Keywords  Fatigue, High-fat diet, Intestinal microbiota, Mucosal barrier, Diarrhea, Inflammation

Introduction
Diarrhea is defined by the World Health Organization as 
excretion three or more times a day, with no fecal shape, 
and as a thin/watery stool [1, 2]. With the change in peo-
ple’s lifestyles and diets, the number of diarrheal diseases 

has been increasing year by year and has become a major 
health problem worldwide [3]. There is no consensus 
on the specific pathogenesis of diarrhea, which may be 
related to genetic susceptibility, epithelial barrier defects, 
immune response disorders, and environmental factors 
[4, 5]. The dietary composition was found to influence 
the incidence and progression of diarrhea [6, 7]. Protein 
and a high-fat diet were associated with diarrhea, signifi-
cantly reduced Lactobacillus and Bifidobacterium, and 
decreased mouse digestive enzyme activity and microbial 
activity [8, 9]. Lard is a common edible oil used by chi-
nese residents and decreased intestinal microbial diver-
sity in mice fed lard [10]. Decreased intestinal digestive 
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enzyme activity, decreased the number of Bifidobacte-
rium and Lactobacillus in the intestines, and disrupted 
glycolipid metabolism in mice fed lard for a long time [11, 
12]. Physical activity regulates intestinal microbiota and 
affects health. The body is unable to provide or maintain 
the energy load required for prolonged or intense exer-
cise, resulting in performance degradation and fatigue 
[13]. Excessive exercise reduces microbial diversity and 
intestinal permeability, damages the intestinal mucosal 
barrier, increases inflammation, and occurs abdominal 
pain, and diarrhea, while probiotic therapy can reduce 
the incidence and severity of gastrointestinal (GI) symp-
toms [14].

Diarrhea is closely related to intestinal microbiota 
disorder and intestinal mucosal barrier injury. Diar-
rheal mice had decreased intestinal microbiota diver-
sity, increased inflammatory factors, decreased secretive 
immunoglobulin A (sIgA), abnormal energy metabolism, 
increased harmful intestinal bacteria, and decreased ben-
eficial bacteria [15, 16]. Impairment of intestinal mucosa 
integrity increased inflammatory factors and destruc-
tion of the intestinal mucosal barrier in diarrhea patients 
[17]. The intestinal mucosal barrier consists of biologi-
cal, chemical, mechanical, and immune barriers. Among 
them, intestinal microbiota forms a biological barrier to 
the intestinal mucosa, intestinal mucosa tissue forms a 
mechanical barrier, mucus secreted by intestinal mucosa 
cells forms a chemical barrier, and intestinal mucosa lym-
phatic tissue forms an immune barrier with immune cells 
and secretions [18, 19]. Changes in intestinal mucosal 
permeability and damage to the intestinal mucosal 
mechanical barrier were found to promote intestinal 
inflammation leading to diarrhea [20].

Influenced by diet, environment, genetics, drugs, age, 
etc., human intestinal microbiota has nutritional func-
tions, participates in energy metabolism, maintains the 
integrity of intestinal mucosa, and regulates immune 
response, which are important factors in maintaining 
human health [21, 22]; Related to GI diseases, immune 
and metabolic diseases, neurological and psychiatric dis-
orders [23]. sIgA is the most secreted immunoglobulin 
in the intestine and the primary line of defense against 
pathogen adhesion and colonization in the intestinal 
mucosa. Goblet cells secrete mucus that forms the intes-
tinal mucus layer, of which Mucin 2 (Muc2) is the core 
mucin and a major component of the intestinal mucus 
barrier [24, 25]. Cytokines are small molecule proteins 
secreted by cells that control cell proliferation and dif-
ferentiation, regulate angiogenesis, and immune and 
inflammatory responses, and primarily play a role in the 
differentiation and activation of immune cells [26]. Inter-
leukin-17 (IL-17) and interleukin-6 (IL-6) are cytokines 
with many activities. IL-17 stimulates the production of 

multiple cytokines, such as IL-1β, IL-6, tumor necrosis 
factor (TNF) -α, and TGF-β, which cause and exacerbate 
inflammation and play an important role in inflamma-
tion, immunity, and autoimmunity [27]. The intestinal 
mucosal mechanical barrier is the most important part of 
the intestinal mucosal barrier. The intestinal mucosa acts 
as a mechanical barrier to protect the intestinal tissue 
while facilitating the transport of nutrients, water, and 
waste, and regulating the interaction between the intes-
tinal microbiota and the immune system [28]. The intes-
tinal microbiota has a protective effect on host intestinal 
epithelial cells and can strengthen the intestinal mechan-
ical barrier. Conversely, intestinal microbiota disruption 
leads to increased intestinal permeability and damage to 
the intestinal mechanical barrier [24, 29, 30].

Therefore, we established a diarrhea model in mice 
induced by fatigue combined with a high-fat diet to 
detect Muc2, sIgA, IL-6, and IL-17, analyze intestinal 
mucosal microbiota, and observe small intestinal pathol-
ogy. This study aims to analyze the characteristics of 
intestinal mucosal microbiota in diarrhea, investigate 
the relationship between characteristic microbiota and 
mucosal barrier index, and investigate the role of the 
mucosal barrier in diarrhea caused by fatigue combined 
with a high-fat diet.

Materials and methods
Animal
To rule out the effect of sex on intestinal microbiota 
[31], specific pathogen-free (SPF) male Kunming mice 
(20 ± 2 g, license: SCXK (Hunan) 2019–0004) were pur-
chased from Hunan Slx Jingda Experimental Animal Co 
(license: SYXK (Hunan) 2019–0009). The animals were 
bred in the laboratory animal center of the Hunan Uni-
versity of Chinese Medicine, with a temperature of 23–25 
℃, a humidity of 47–53%, a free diet, and drinking water 
during adaptive feeding.

Diet
Mice fed Co60 irradiated experimental mice growth 
and reproduction feed with a composition detailed in 
Table 1. It is supplied by the Animal Experiment Center 
of Hunan University of Chinese Medicine and produced 
by Jiangsu Medison Biomedical Co. Jinluo refined lard is 
mainly composed of energy (44%) and fat (167%) and is 
produced by XinCheng Jinluo Meat Products Co (Pro-
duction license: SC10337130200099; Production Lot No: 
GB 10146.) It is stored at room temperature and gavaged 
at 37 °C.

Animal grouping and intervention
After 3 days of adaptive feeding, the 20 male Kunming 
mice were randomly divided into the control group 
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(MCN) and the standing united lard group (MSLD). 
The MCN group was not treated with intervention for 
7 days and was given 0.4 mL of sterile water daily start-
ing on day 8. Based on the literature [32–36] and pre-
experimental results [37, 38], fatigue combined with 
a high-fat diet was used to induce diarrhea in mice. 
The MSLD group stand on a small homemade water 
environment platform box for 4  h/day for 14  days, 
and 0.4  mL lard gavaged from day 8, twice daily for 
7  days. All the animal experiments were carried out 
by the animal control and use committee approved 
by the Hunan University of Chinese Medicine (Ethi-
cal approval number: LL2022062308). Figure  1 shows 
the experimental design and the specific experimental 
procedure.

General features
The animals were observed daily in the morning, observ-
ing their body size, fecal shape, eyes, hair, and activity, 
recording their initial weight, and then weighing them 
every other day. The mice’s initial feces were recorded 
and then collected daily from 9: 00 a.m. to 9: 30 a.m., the 
number of feces in each group was recorded to observe 

the texture of the feces, and photos were taken of the 
feces.

Organ index
An experienced experimenter quickly executed mice 
using cervical dislocation at the end of the experiment. 
The spleen, thymus, and liver were immediately dissected 
and removed, and the blood was drained with filter paper 
and weighed. The calculation of the organ index was 
done by using the formula: Organ index = organ weight 
(mg)/body weight (g).

Detection of sIgA in serum
After 14  days of intervention, blood was collected by 
eyeball, stood at 4  °C for 1–2  h, centrifuged at 3000 r 
for 15 min and the upper serum was collected. Enzyme-
linked immunosorbent assays (ELISA) were performed 
according to the kit instructions, followed by an enzyme 
labeling analyzer to detect sIgA levels in serum samples 
(the kit was provided by Quanzhou Konodi Biotech Ltd.).

Detection of Muc2, sIgA, IL‑6 and IL‑17 in small intestinal 
tissue
Under sterile conditions, small intestinal tissues were 
collected after rinsing the contents of the small intestine 
with saline. According to the ELISA assay instructions, a 
certain amount of small intestine was mixed with saline 
in a ratio of 1: 9 and ground in a high-speed centrifuge 
at 4 °C for 3 min. The tissue homogenate was centrifuged 
for 15 min and the supernatant was absorbed. ELISA was 
performed according to the kit instructions, followed by 
an enzyme labeling analyzer to detect Muc2, sIgA, IL-6, 
and IL-17 in small intestine tissue (the kit was provided 
by Quanzhou Konodi Biotech Ltd.).

Histopathology of the small intestine
Under sterile conditions, small intestinal tissues were 
collected and fixed in a 4% paraformaldehyde solution at 

Table 1  Common feed (per kg of feed)

Component Content

water (g)  ≤ 100

crude protein (g)  ≥ 200

crude fiber (g)  ≥ 40

crude fat (g)  ≤ 50

crude ash (g)  ≤ 80

calcium (g) 10–18

phosphorus (g) 6–12

calcium: phosphorus 1.2: 1—1.7: 1

lysine (g)  ≥ 13.2

methionine and cysteine (g)  ≥ 7.8

Fig. 1  Experimental design and general conditions of the animals
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room temperature after rinsing the contents of the small 
intestine with saline. According to dehydration of gradi-
ent ethanol, xylene transparent paraffin was embedded in 
four um sections, routinely dewaxed, then stained with 
hematoxylin and eosin-methylene blue solution (hema-
toxylin–eosin staining, HE), and sealed with neutral gum.

Collection of intestinal mucosa samples
Intestinal mucosa samples were collected concern-
ing previous methods [39]. In sterile conditions, intes-
tinal tissue from the pyloric to the ileocecal region was 
cut lengthwise with sterile scissors, the contents of the 
intestine were flushed with sterile saline, and the intesti-
nal mucosa of each mouse was individually scraped with 
sterile lids. The mucosa was collected in an EP tube and 
stored at -80 ℃.

DNA extraction、16S rRNA gene amplicon sequencing 
and sequence analysis
All samples were sent to Shanghai Paceno Biotech Co., 
Ltd. (Shanghai, China) for processing. The total microbial 
genomic DNA of each tube of samples was extracted fol-
lowing the steps of the OMEGA Soil DNA Kit (M5635-
02) kit to extract nucleic acid instructions. The quantity 
and quality of extracted DNAs were measured using a 
NanoDrop NC2000 spectrophotometer (Thermo Fisher 
Scientific, Waltham, MA, USA) and agarose gel electro-
phoresis, respectively. Forward primer 27F (5′-AGA​GTT​
TGATCMTGG​CTC​AG-3′) and reverse primer 1492R 
(5′-ACC​TTG​TTA​CGA​CTT-3′) were used for PCR 
amplification of bacterial 16S rRNA near the full-length 
gene. The 16S rRNA gene was amplified by polymerase 
chain reaction (PCR) using Q5 high-fidelity DNA poly-
merase. PCR products were detected by 2% agarose gel 
electrophoresis and purified by a DNA gel extraction kit. 
The recovered PCR amplification products were quanti-
fied by fluorescence intensity using the dsDNA Assay 
Kit. Based on the fluorescence quantification results, 
the samples were mixed proportionally according to the 
sequencing requirements of each sample. The intestinal 
mucosal microbiota sequencing data has been uploaded 
to the NCBI database: PRJNA903506 (https://​www.​ncbi.​
nlm.​nih.​gov/).

Bioinformatics
Sequence data analyses were mainly performed using 
QIIME2 and R packages (v3.2.0). ASV-level alpha 
diversity indices, such as the Chao1 richness estima-
tor, Observed species, Shannon diversity index, and 
Simpson index were calculated using the ASV table in 
QIIME2. ASV-level ranked abundance curves were gen-
erated to compare the richness and evenness of ASVs 
among samples. Beta diversity analysis was performed 

to investigate the structural variation of microbial com-
munities across samples using Bray–Curtis metrics (Bray 
and Curtis, 1957) and visualized via principal coordinate 
analysis (PCoA) and nonmetric multidimensional scaling 
(NMDS). A Venn diagram was generated to visualize the 
shared and unique ASVs among samples or groups using 
the R package “VennDiagram”, based on the occurrence 
of ASVs across samples/groups regardless of their relative 
abundance. LEfSe (Linear discriminant analysis effect 
size) was performed to detect differentially abundant taxa 
across groups using the default parameters. Random for-
est analysis was applied to discriminate the samples from 
different groups using QIIME2 with default settings.

Statistical analysis
Statistical analysis was performed using SPSS 25.00 
software, and each group of data was expressed as 
mean ± standard deviation. If the two sets of data conform 
to normal distribution and homoscedasticity, the inde-
pendent sample t-test is used, and the non-homoscedastic-
ity T-test is used. Mann–Whitney U assays were used if the 
data did not match the normal distribution and the non-
homoscedasticity (p < 0.05 indicated statistical difference).

Result
General characteristics of mice with fatigue combined 
with a high‑fat diet
During adaptive feeding, the mice were responsive, with 
flexible eyes, glossy hair, ruddy skin mucosa, long strips 
of feces, close body weight, and several fecal move-
ments. After 14 days, The MCN group had the same sta-
tus as before (Fig. 2A and C). The MSLD group showed 
a marked decrease in activity, frequent squinting, matte 
and slightly yellow skin, pale mucosa, and soft and shape-
less feces (Fig. 2B and D). Compared to the MCN group, 
the MSLD group had an increased number of fecal and 
decreased body weight (p < 0.05, Fig. 2B, D, E, and F).

Organ indices, Muc2, and sIgA of mice with fatigue 
combined with a high‑fat diet
As shown in Table 2, compared to the MCN group, the 
spleen index was lower, and thymus and liver indices 
were higher in the MSLD group (p > 0.05). Fatigue com-
bined with a high-fat diet had little effect on organ func-
tion in mice.

Muc2 in small intestine tissue forms a chemical barrier 
to the intestinal mucosa, sIgA forms an immune barrier 
to the intestinal mucosa, and sIgA in serum reflects over-
all immune levels. As shown in Fig. 3A-C, compared to 
the MCN group, the MSLD group presented an increased 

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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trend of IL-6 and IL-17 and a decreased tendency of sIgA 
and Muc2 (p > 0.05).

Small intestine tissue morphology of mice with fatigue 
combined with a high‑fat diet
In the MCN group, the mucosa of the small intestine is 
clear, the layer is complete, the muscularis mucosae is 

Fig. 2  A General characteristics of the MCN group after 14 days. B General characteristics of the MSLD group after 14 days. C Fecal images of the 
MCN group after 14 days, D Fecal images of the MSLD group after 14 days, E Violin chart of the weight difference in the MCN and MSLD groups 
(n = 5). F Line graph of the number of fecal in half an hour for the MCN and MSLD groups (n = 5 (*p < 0.05, **p < 0.01, ***p < 0.001))

Table 2  Organ indices (Organ indices = Organ weight/Mouse 
weight, mean ± standard deviation)

Organ indices MCN MSLD

spleen(mg/g) 2.98 ± 0.45 2.86 ± 0.25

thymus(mg/g) 2.53 ± 0.77 3.24 ± 0.56

liver(mg/g) 53.7 ± 8.28 58.09 ± 5.99

Fig. 3  A Muc2 levels in intestinal tissue; B sIgA levels in intestinal tissue; B sIgA levels in serum



Page 6 of 15Liu et al. BMC Microbiology          (2023) 23:151 

intact, there is no obvious edema, inflammation, or lym-
phocyte infiltration, and it is a normal tissue structure 
(Fig.  4A). The MSLD group had a clear mucosal struc-
ture, disrupted intestinal villi continuity, thinning muscu-
laris mucosae, atrophy of the small intestine gland, and 
infiltration of lymphocytes (Fig.  4B). Compared to the 
MCN group, IL-6, and IL-17 were higher in the MSLD 
group (p > 0.05, Fig. 4C to D).

Intestinal mucosal microbiota of mice with fatigue 
combined with a high‑fat diet
Effects of fatigue combined with a high‑fat diet 
on the number and diversity of ASV in mouse intestinal 
microbiota
The increased number of ASV decreased with the 
increase in the number of sequenced data, and the curve 
flattened, suggesting that the amount of sequenced data 
was sufficient for this analysis (Fig. 5A and B). The depth 
of sequencing in this experiment is sufficient to reflect 
the microbial diversity contained in the community sam-
ple, the reasonableness of the experimental design, and 
the reliability of the data (Fig. 5C).

Combining sequences with similarities of more than 
100% into one ASV cluster, the analysis showed 105 ASV 

in the MCN group, and 459 ASV in the MSLD group 
(Fig.  5D). These results suggest that fatigue combined 
with a high-fat diet may increase the number of ASV. 
Alpha diversity analysis reflects the abundance and diver-
sity of the microbiota. The Chao1, Observed species indi-
ces measure the number of species in a community, and 
the larger the index, the more species there are. Shannon 
and Simpson’s indices are used to measure species diver-
sity, primarily the number and uniformity of species. The 
higher the Shannon index, the more diverse Alpha is; 
the higher the Simpson index, the lower the diversity of 
Alpha. The Chao1 observed species, Shannon, and Simp-
son indices were increased in the MSLD group (p > 0.05; 
Fig. 5E-H).

NMDS reflects the information of the distance matrix 
between samples. The MCN group was concentrated and 
the MSLD group was widely distributed (Fig. 5I). PCoA 
is used to study similarities or differences in the com-
position of a sample community, where two samples are 
closer together, representing a more similar composi-
tion of the two species. When PCo1 is 54.5%, and PCo2 
is 23.7%, the MCN and MSLD groups are far apart and 
have large compositional differences (Fig.  5J). Cluster 
analysis showed that the MCN and MSLD groups could 

Fig. 4  A The HE dye of small intestine tissue from the MCN group (100X). B The HE dye of small intestine tissue from the MSLD group (100X). C IL-6 
levels in intestinal tissue; D IL-17 levels in intestinal tissue
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cluster together better, with small intra-group differences 
and large inter-group differences between the two groups 
(Fig. 5K).

Effects of fatigue combined with a high‑fat diet on intestinal 
mucosal microbiota composition in mice
Figure  6A shows the relative abundance of intestinal 
mucosal microbiota at the phylum level. The MCN group 
had the largest proportion of Firmicutes, followed by 
Bacteroidetes, and Proteobacteria. However, Bacteroi-
detes and Proteobacteria increased and Firmicute and 
Firmicute/Bacteroidetes decreased in the MSLD group 
(p > 0.05). Figure  6B shows the relative abundance of 
intestinal mucosa microbiota at the genus level, Candi-
datus arthromitus was the first dominant genus which 
had 75.23% intestinal mucosal in the MCN group and 
30.94% in the MSLD group. Compared to the MCN 
group, Limosilactobacillus was significantly reduced in 
the MSLD group (p < 0.05), and Anaerotruncus was sig-
nificantly increased (p < 0.05, Fig.  6D to E). Figure  6C 

shows the relative abundance of intestinal mucosal 
microbiota at the species level, with Ligilactobacillus 
murinus (4.57%), Lactobacillus johnsonii (13.48%), and 
Limosilactobacillus reuteri (10.8%) dominating the MCN 
group. Compared to the MCN group, Lactobacillus 
murinus (30.63%) and Lactobacillus johnsonii (18.12%) 
increased in the MSLD group (p > 0.05), and Limosilacto-
bacillus reuteri and Limosilactobacillus vaginalis signifi-
cantly decreased (p < 0.05, Fig. 6F to G).

Effects of fatigue combined with a high‑fat diet on intestinal 
mucosal characteristic microbiota in mice
As shown in Fig. 7A and B, the LEfSe analysis identified 
differentially altered characteristic microbiota, with LDA 
scores greater than 4, of which 7 bacteria were identi-
fied as key differentiators. Negativicutes, Tannerellaceae, 
Oscillospiraceae, and Anaerotruncus are the characteris-
tic bacteria of the MCN group, Limosilacillus vaginalis, 
Limosilacillus reutrei, and  Limosilactobacillus are the 
characteristic bacteria of the MSLD group. Combined 

Fig. 5  A Chao1 Wiener curves of intestinal mucosal microbiota. B Shannon Wiener curves of intestinal mucosal microbiota. C Species accumulation 
curves. D Venn diagram: distribution of the number of ASV of intestinal mucosal microbiota. E Chao1 index. F Observed species index. G Shannon 
index. H Simpson index. I PCoA analysis. J NMDS analysis. K Clustering analysis
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with a randomized forest diagnostic model (Fig. 7C), the 
MCN and MSLD groups were distinguished using 20 
different species levels of bacteria. ROC curves showing 
large areas under Limosilactobacillus reuteri, Ligilac-
tobacillus murinus, Limosilactobacillus vaginalis, Mus 

musculus, Akkermansia muciniphila, Roseburia inulini-
vorans, Phocaeicola coprocola, Parabacteroides dista-
sonis, and Fusobacterium mortiferum curves(Fig.  7D 
and E). Among them, Limosilactobacillus vaginalis 
(AUC = 0.9) showed the highest AUC, suggesting that 

Fig. 6  A phylum level intestinal mucosa microbiota. B genus level intestinal mucosa microbiota. C species level intestinal mucosa microbiota. D-G 
Genus and species of intestinal mucosa dominant bacteria in the MCN and MSLD groups (*p < 0.05)
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fatigue combined with a high-fat diet resulted in char-
acteristic enrichment of Limosilactobacillus vaginalis, 
which can be identified as a key bacterium for diarrhea.

Effects of fatigue combined with a high‑fat diet on intestinal 
mucosal microbiota function in mice
To determine the metabolic and functional effects of 
fatigue combined with a high-fat diet on intestinal 
mucosal microbiota in mice, PICRUSt2 analysis based 
on the KEGG database [40–42] predicted microbiota-
related metabolic pathways. Figure  8A shows six major 
functional types (Cellular Processes, Environmental 

Information Processing, Genetic Information Process-
ing, Human Diseases, Glycan Pathways, and Metabolism) 
consisting of 29 functional pathways, with the greatest 
abundance of Metabolism pathways.

The median metabolic function of the Metabolism 
Level 3 pathway > 342.8465 was selected (27 classes). As 
shown in Fig. 8B, the main metabolic pathway of Amino 
acid metabolism, Carbohydrate metabolism, Metabolism 
of cofactors and vitamins, Metabolism of terpenoids and 
polyketides, and Lipid metabolism. As shown in Fig. 8C, 
compared to the MCN group, Lysine biosynthesis, Pen-
tose phosphate pathway, Peptidoglycan biosynthesis, 

Fig. 7  Core characteristic bacterial analysis of intestinal mucosal microbiota. A LDA diagram. B Cladogram diagram. C Random Forest diagram of 
species level. D-E ROC curve of species
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Fatty acid biosynthesis, Secondary bile acid biosynthesis, 
D-Glutamate metabolism, and Terpenoid backpack bio-
synthesis were significantly reduced in the MSLD group 
(p < 0.05) and One carbon pool by folate was significantly 
increased (p < 0.05).

Correlation analysis of sIgA, Muc2, IL‑6, IL‑17, metabolic 
pathways and characteristic microbiota
To investigate the relationship between intestinal 
mucosal microbiota, metabolic pathway, and intestinal 
mucosal barrier, we performed Spearman correlation 
analysis of sIgA, Muc2, IL-6, and IL-17 by selecting nine 
signature enrichment diagnostic differentially enriched 
bacteria at the species level and the metabolic pathways 
with abundance in the top 27. The aim is to determine 
the key role of intestinal mucosal microbiota in main-
taining the stability of the intestinal microenvironment. 
Correlation heat maps (Fig. 9A and B) show that Limosi-
lactobacillus reuteri and Limosilactobacillus vaginalis 

are significantly associated with Pentose photosynthesis 
pathway, Peptidoglycan biosynthesis, Lysine biosynthesis, 
Terpenoid backbone biosynthesis, Thiamine metabolism. 
Limosilactobacillus reuteri was significantly positively 
correlated with Muc2 levels in the small intestine and 
negatively correlated with IL-6.

Discussion
In recent years, studying the effects of diet and exercise 
on the body based on intestinal microbiota has become 
a hot topic. High-fat diets (HFD) promote inflamma-
tory markers such as IL-6, and TNF-α, and increase the 
risk of liver toxicity, leading to dysfunctional energy 
metabolism and causing metabolic disease and inflam-
mation [43–45]. Chronic physical fatigue impairs 
normal body functions, leading to endocrine disrup-
tion and decreased immunity [46]. The intestinal bar-
rier may be compromised by severe structural damage 
to mucous membranes or by changes in the barrier’s 

Fig. 8  Prediction of intestinal mucosal microbiota metabolism based on PICRUSt2. A-B Predicted abundance of KEGG function with horizontal 
coordinates of KEGG functional pathway and longitudinal coordinates of KEGG functional pathway classification. C Comparison between groups of 
metabolic functional groups (*p < 0.05, ** p < 0.01, ***p < 0.001)
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Fig. 9  Spearman correlation analysis heatmap: blue represents negative correlation, red represents positive correlation, and the closer the color is 
to blue, the stronger the negative correlation between the two parameters, and the closer the color is to red, the stronger the positive correlation 
between the two parameters. A Correlation heatmap of intestinal mucosa microbiota and metabolic pathways. B Correlation heatmap of intestinal 
mucosa microbiota with sIgA, Muc2, IL-6, and IL-17
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regulatory composition. Associated cytokines such 
as IL-6 and IL-17 are involved in intestinal mucosal 
inflammation, while damage to the intestinal barrier 
is associated with inflammation of the small intestinal 
mucosa [47, 48]. Muc2 and sIgA are essential for the 
intestinal mucosal mucus barrier and immune barrier. 
Mice with Muc2 deficiency develop colonic inflamma-
tion and mucosal hyperplasia [49]. In contrast, sIgA 
expression is reduced and intestinal barrier function 
is impaired [50]. In this study, we found that fatigue 
combined with a high-fat diet led to led to an increased 
number of feces, shapeless feces, losing weight, and 
diarrhea symptoms in mice. Further analysis confirmed 
that fatigue combined with a high-fat diet causes 
inflammation of the small intestine and disrupts the 
intestinal mucosal barrier. Thus, fatigue combined with 
a high-fat diet leads to diarrhea in mice, which may be 
associated with increased inflammatory factors and 
decreased immune factors.

Numerous studies have shown that the intestinal 
microbiota mediates the relationship between diet and 
health, and influences the onset and progression of dis-
ease. HFD alters microbial diversity, leading to intestinal 
microecological disorders that promote local inflamma-
tion and increase intestinal wall permeability [51]. The 
abundance of Firmicute, Bacteroidetes, and Actinobacte-
ria was associated with host obesity and increased Firmi-
cute/Bacteroidetes ratios and changes in bacterial species 
were associated with obesity progression [52]. The results 
of this study showed that fatigue combined with a high-
fat diet increased the abundance and diversity of intes-
tinal mucosal microbiota and decreased Firmicute/
Bacteroidetes, which explains why mice given gavage 
with high-fat lard did not gain weight.

Anaerotruncus promotes inflammation and tumo-
rigenesis, undermines the integrity of the epithelial 
barrier, has pro-inflammatory properties, and has been 
identified as a potential biomarker for colorectal can-
cer recurrence and patient prognosis [53]. Lactobacil-
lus regulates microbiota, attenuates pro-inflammatory 
cytokines, prevents inflammation, restores barrier func-
tion, modulates intestinal microbiota as well as meta-
bolic and immune parameters in obese mice under HFD, 
and acts as a probiotic strain for the treatment of obesity 
[54, 55]. Limosilactobacillus reuteri reduces inflamma-
tory response, repairs epithelial tissue structure, pro-
tects barrier function, and prevents colitis [56]. HFD 
increases harmful bacteria (Anaerotruncus), reduces the 
abundance of dominant bacteria and beneficial bacteria 
such as Lactobacillus johnsonii and Lactobacillus reu-
teri, promotes inflammation, and damages the intestinal 
barrier [57–59]. In this study, fatigue combined with a 

high-fat diet intervention significantly increased Anaer-
otruncus, while significantly decreasing Limosilacil-
lus, Limosilacillus vaginalis, and Limosilacillus reutrei, 
which may promote inflammation, destroy the intesti-
nal mucosal barrier, and lead to diarrhea in mice. Thus, 
fatigue combined with a high-fat diet intervenes in mice 
with reduced harmful and beneficial bacteria, which may 
be an important cause of diarrhea. Based on LEfSe anal-
ysis, random forest diagnosis, and correlation analysis 
showed that Limosilactobacillus reuteri was a different 
bacterium in the MSLD group, which has a large AUC 
value and was significantly positively correlated with 
Muc2 levels in the small intestine and negatively cor-
related with IL-6. Limosilactobacillus vaginalis, whose 
abundance is associated with Muc2 and IL-6 levels, 
can be used as a characteristic bacterium for diarrhea 
diagnosis.

Intestinal homeostasis is determined by complex 
interactions between the intestinal microbiota, epithe-
lial barrier, and host immune system. Intestinal micro-
biota participates in synthesizing and metabolizing 
proteins, carbohydrates, lipids, vitamins, and minerals, 
balancing salt and water intake, increasing energy in 
intestinal epithelial cells, and breaking down lipids and 
cholesterol [60]. By predicting the metagenomic func-
tion of the microbiota, we found significant changes in 
the Metabolism pathway in mice following overexer-
tion combined with lard dietary intervention. Micro-
nutrient deficiency increases the incidence of bowel 
diseases [61]. Folic acid deficiency can lead to severe 
carbon metabolism abnormalities and lead to chronic 
disease and developmental disorders [62]. Lysine is one 
of the essential amino acids in the human body. It can 
synthesize proteins, regulate fat metabolism, promote 
the release of endocrine hormones, and strengthen 
immunity [63]. Lysine is an important precursor to the 
synthesis of glutamate, the most important excitable 
neurotransmitter in the mammalian central nervous 
system. Excessive lysine is metabolized as a source of 
energy, and a lack of lysine in the diet will impair animal 
immunity and increase animal susceptibility to infec-
tious diseases [64]. According to Spearman correlation 
analysis, Limosilactobacillus reuteri, and Limosilactoba-
cillus vaginalis were significantly positively associated 
with the Pentose photosynthesis pathway, Peptidoglycan 
biosynthesis, Lysine biosynthesis, Terpenoid backbone 
biosynthesis, and Thiamine metabolism. Therefore, we 
deduce that metabolic function may be associated with 
changes in characteristic bacterial interactions follow-
ing fatigue combined with a high-fat diet, suggesting 
that microbiota influences metabolic function leading 
to diarrhea in mice.
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Conclusion
The interactions between Limosilactobacillus reuteri and 
intestinal inflammation might be involved in the process 
of intestinal mucosal barrier impairment in fatigue com-
bined with high-fat diet-induced diarrhea.
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