## RESEARCH



# *Campylobacter* prevalence from food, animals, human and environmental samples in Iran: a systematic review and meta-analysis

Elham Ansarifar<sup>1</sup>, Seyed Mohamad Riahi<sup>2</sup>, Taurai Tasara<sup>3</sup>, Parisa Sadighara<sup>4</sup> and Tayebeh Zeinali<sup>1\*</sup>

## Abstract

**Background** *Campylobacter* regarded as a major cause of foodborne gastroenteritis in humans. The present study aimed to determine the prevalence of *campylobacter* in food, animal and human samples of Iran.

**Results** Quantitative synthesis was performed from 119 articles. White meat had the highest pooled prevalence of *Campylobacter* spp. (43.9%). Pooled prevalence of 7.9% and 5.5% for *Campylobacter*, respectively, were determined for red meat and eggs from Iran. *Campylobacter* was seen in 14.9% of environmental samples and 8.4% of human samples. In most of the samples *C. jejuni* had higher frequency than *C. coli*. Most of the isolated *Campylobacter* harbored several of the known virulence related genes of this pathogen.

**Conclusion** Chicken was identified as the *Campylobacter* reservoir. As such preventive strategies in all stages of poultry production until consumption are necessary to control foodborne human infection with Campylobacter in Iran.

Keywords Campylobacter, Gastroenteritis, Meat, Feces, Milk

## Background

*Campylobacter* species are gram-negative bacteria with different morphologies (from spiral to curved, or rod-shaped) [1]. They have single polar flagellum, bipolar flagella, or no flagellum, depending on the species. It has been reported that at least 12 species of *Campylobacter* cause human disease, the most common of which are *Campylobacter jejuni* and *Campylobacter coli* [2].

\*Correspondence:

<sup>1</sup> Department of Public Health, School of Health, Social Determinants

Many countries around the world recognize C. jejuni (~90%) and C. coli (~10%) as the major causative agents of human campylobacteriosis whose symptoms include diarrhea that occasionally is bloody, abdominal pain, and fever [3]. Rarely, serious long-term complications occur such as peripheral neuropathies, reactive arthritis, and Miller Fisher syndrome. Infection caused by C. jejuni is the most common reason of neurological sequelae [3]. Campylobacter is a zoonotic pathogen and its most common source is poultry [4]. In addition, contaminated water and food products, such as unpasteurized milk and contaminated fresh produce, are also known as other sources of *Campylobacter* infections [5]. *Campylobacter* infection can also occur from direct contact with infected animals, which usually carry the bacteria asymptomatically [4, 6].

According to recent data, there has been a rise in the global incidence of campylobacteriosis in most countries, although there is incomplete data from Asia, and the Middle East [7]. There is no comprehensive data on



© The Author(s) 2023. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/A.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/licenses/by/A.0/. The Creative Commons Public Domain Dedicated in a credit line to the data.



Tayebeh Zeinali

ta.zeinaly@gmail.com

of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran

<sup>&</sup>lt;sup>2</sup> Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran

<sup>&</sup>lt;sup>3</sup> Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland

<sup>&</sup>lt;sup>4</sup> Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

Page 2 of 20

the prevalence of *Campylobacter* at the national level. This systematic review was conducted to provide comprehensive evidence on the prevalence of *Campylobacter* in human, animal, and food in Iran by using a systematic review and meta-analysis based method. Results of this study will serve as data that can be used for the prevention and control of *Campylobacter* infections in the country as well as guide to identify the research gaps.

## Results

Overall a total of 536 articles were identified through PubMed, Scopus, and Web of Science, and 72 additional articles were identified through Google scholar, SID, and hand-based searching for the prevalence of *Campylobacter* species. Figure 1 illustrates the method applied for selecting eligible studies. 582 articles remained after removing duplicates. Based on the eligibility criteria, 457 articles were excluded. A further 5 full-text articles were excluded due to the following reasons Review (1), Case report (1), Abstract (1), confused text/incomprehensible data and duplicate data (1), Non-available full-text (1). Finally, 119 articles were included in the quantitative synthesis. Table 1 presents the detailed characteristics of every included study.

## Prevalence/proportion of *Campylobacter* spp. in meat/ animal products and environment of Iran

An overview showing the pooled *Campylobacter* spp. prevalence data generated from Iranian meat (92 studies), environment (6 studies), fecal (79 studies) and animal product sample (44 studies) categories generated using the random effects model is provided in Fig. 2. The highest prevalence of *Campylobacter* spp. has been observed in white meat (43.9%) from 55 studies among the meat and animal products that was reported in different studies from 0 to 90%. *Campylobacter* spp. prevalence in white meat (33.9%). Within the red meat category by 37 studies, *Campylobacter* spp. was detected at an overall pooled prevalence of 7.9% (Table 2), which

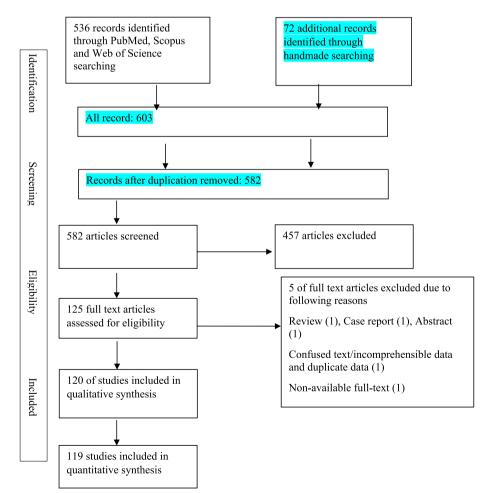



Fig. 1 Diagram of identification and selection of studies for inclusion in the review

| included study   |
|------------------|
| ristics of the   |
| Table 1 Characte |

| Author                                   | Publication<br>year | Study<br>years | Province           | Diagnosis<br>method | Sample source          | Sample<br>type                              | Sample<br>size | Campylobacter<br>(C. jejuni- C.<br>coli-both) | Sample<br>group | Place of<br>sampling                        | Quality<br>score | Reference |
|------------------------------------------|---------------------|----------------|--------------------|---------------------|------------------------|---------------------------------------------|----------------|-----------------------------------------------|-----------------|---------------------------------------------|------------------|-----------|
| Abbasi, E.<br>et al                      | 2019                | 2015           | Markazi            | Cul-<br>ture + PCR  | Human                  | Diarrhea                                    | 230            | 76 (76–0-0)                                   | Feces           | Hospital                                    | 10               | 8         |
| Abdi-<br>Hachesoo, B.<br>etal            | 2014                | 2009           | Fars               | Cul-<br>ture + PCR  | Food                   | Chicken                                     | 100            | 83 (43–40-0)                                  | Meat            | Slaughter-<br>house                         | 10               | [6]       |
| Abdollah-<br>pour, N. et al              | 2015                | 2013           | Razavi<br>khorasan | Cul-<br>ture + PCR  | Environment            | Feces                                       | 200            | 35 (35–0-0)                                   | Feces           | Children<br>playground                      | 10               | [10]      |
| Akramzadeh,<br>N. et al                  | 2020                | 2018           | Tehran             | Culture             | Food                   | Mechani-<br>cally<br>deboned<br>Chicken     | 50             | 20 (0-0-0)                                    | Meat            | Farm                                        | 10               | [11]      |
| Alborzi, A.<br>et al                     | 2008                | 2003           | Fars               | Culture             | Human                  | Diarrhea                                    | 243            | 5 (5–0-0)                                     | Feces           | Hospital                                    | 6                | [12]      |
| Ansari-Lari,<br>M. et al                 | 2011                | 2009           | Fars               | Cul-<br>ture + PCR  | Animal                 | Cecal con-<br>tent                          | 100            | 76 (22–32-22)                                 | Feces           | Slaughter-<br>house                         | 10               | [2]       |
| Azizian, K.<br>et al                     | 2019                | 2015–2016      | Kurdistan          | Cul-<br>ture + PCR  | Animal                 | Cecal con-<br>tent                          | 200            | 67 (57–10-0)                                  | Feces           | Slaughter-<br>house                         | 10               | [13]      |
| Divsalar, N.<br>et al                    | 2019                | 2016–2017      | Mazandaran         | Cul-<br>ture + PCR  | Animal, Food,<br>Human | Feces,<br>Chicken,<br>Red meat,<br>Diarrhea | 100            | 100 (100-0-0)                                 | Feces, Meat     | Slaugh-<br>terhouse,<br>Market,<br>Hospital | Q                | [14]      |
| Haghi, F. et al                          | 2015                | 2014           | Zanjan             | PCR                 | Food                   | Raw milk                                    | 60             | 0                                             | Product         | Farm                                        | 10               | [15]      |
| Hamidian, M.<br>et al                    | 2011                | 2008–2009      | Tehran             | Cul-<br>ture + PCR  | Human                  | Diarrhea                                    | 562            | 49 (34–12-0)                                  | Feces           | Hospital                                    | 6                | [16]      |
| Hassanzadeh,<br>P. & Mota-<br>medifar, M | 2007                | 2004           | Fars               | Culture             | Human                  | Diarrhea                                    | 114            | 11 (11–0-0)                                   | Feces           | Hospital                                    | 10               | [17]      |
| Hoseinpour,<br>F. et al                  | 2017                | 2016           | Kermanshah         | PCR                 | Animal                 | Cecal con-<br>tent                          | 100            | 55 (7–29-16)                                  | Feces           | Market                                      | 10               | [18]      |
| Jafari, F. et al                         | 2009                | 2003-2005      | Tehran             | Culture             | Human                  | Diarrhea                                    | 1087           | (0-0-0) 09                                    | Feces           | Hospital                                    | 6                | [9]       |
| Jafari, F. et al                         | 2008                | 2004-2005      | Tehran             | Culture             | Human                  | Diarrhea                                    | 808            | 20 (0-0-0)                                    | Feces           | Hospital                                    | 10               | [19]      |
| Jahromi, R.<br>et al                     | 2019                | 2017           | Fars               | Cul-<br>ture + PCR  | Food                   | Poultry<br>carcass                          | 328            | 223 (116–65-29)                               | Meat            | Slaughter-<br>house                         | 10               | [20]      |
| Jamshidi, A.<br>et al                    | 2008                | 2005           | Razavi<br>khorasan | Cul-<br>ture + PCR  | Food                   | Poultry<br>carcass                          | 100            | 28 (0-0-0)                                    | Meat            | Slaughter-<br>house                         | 10               | [21]      |
| Jonaidi-Jafari,<br>N. et al              | 2016                | 2014-2015      | Isfahan            | Cul-<br>ture + PCR  | Food                   | Eggshell &<br>Egg content                   | 440            | 34 (28–6-0)                                   | Product         | Market                                      | 10               | [22]      |
| Khoshbakht,<br>R. et al                  | 2016                | 2011-2013      | Shiraz             | Cul-<br>ture + PCR  | Animal                 | Feces                                       | 302            | 205 (26–6-161)                                | Feces           | Slaughter-<br>house                         | 10               | [23]      |

| continue |
|----------|
| S        |
| -        |
| Ð        |
| abl      |
| Ta       |

| Table 1 (continued)          | intinued)           |                |                                  |                     |               |                        |                |                                               |                 |                                |                  |           |
|------------------------------|---------------------|----------------|----------------------------------|---------------------|---------------|------------------------|----------------|-----------------------------------------------|-----------------|--------------------------------|------------------|-----------|
| Author                       | Publication<br>year | Study<br>years | Province                         | Diagnosis<br>method | Sample source | Sample<br>type         | Sample<br>size | Campylobacter<br>(C. jejuni- C.<br>coli-both) | Sample<br>group | Place of<br>sampling           | Quality<br>score | Reference |
| Khoshbakht,<br>R. et al      | 2013                | 2011-2012      | Shiraz                           | Cul-<br>ture + PCR  | Animal        | Feces                  | 100            | 90 (48–42-0)                                  | Feces           | Slaughter-<br>house            | 10               | [24]      |
| Mahmoodi-<br>pour, H. et al  | 2017                | 2016           | Khuzestan                        | Cul-<br>ture + PCR  | Animal        | Feces                  | 392            | 50 (36–14-0)                                  | Feces           | Slaughter-<br>house            | 10               | [25]      |
| Maktabi, S.<br>et al         | 2019                | 2016           | Khuzestan                        | Cul-<br>ture + PCR  | Food          | Chicken-<br>Red meat   | 380            | 32 (26–6-0)                                   | Meat            | Slaugh-<br>terhouse,<br>Market | 10               | [26]      |
| Malekian, M.<br>et al        | 2021                | 2020           | Isfahan                          | Gram stain          | Environment   | Feces                  | 150            | 72 (-)                                        | Feces           | Landfill                       | 6                | [27]      |
| Soltan Dallal,<br>M.M. et al | 2010                | 2006-2007      | Tehran                           | Culture             | Food          | Chicken-Red<br>meat    | 379            | 109 (83–26-0)                                 | Meat            | Market                         | 10               | [28]      |
| Sharifi, S. et al            | 2021                | 2019–2020      | Tehran                           | Cul-<br>ture + PCR  | Human         | Diarrhea               | 283            | 20 (18–2-0)                                   | Feces           | Hospital                       | 10               | [29]      |
| Nassiri, D.<br>et al         | 2016                | 2014           | West Azer-<br>baijan             | Cul-<br>ture + PCR  | Food          | Chicken-<br>Organ meat | 552            | 208 (188–20-0)                                | Meat            | Slaughter-<br>house            | 10               | [30]      |
| Nouri, S. et al              | 2020                | 2018           | East Azer-<br>baijan             | Cul-<br>ture + PCR  | Food          | Organ meat             | 100            | 43 (31–12–0)                                  | Meat            | Slaughter-<br>house            | 10               | [31]      |
| Bakhshi, B.<br>et al         | 2016                | 2012           | Tehran                           | Cul-<br>ture + PCR  | Food          | Chicken                | 70             | 39 (0–39-0)                                   | Meat            | Market                         | 10               | [32]      |
| Sarhangi, M.<br>et al        | 2021                | 2018           | Tehran                           | Cul-<br>ture+PCR    | Human         | Diarrhea               | 280            | 23 (20–3-0)                                   | Feces           | Hospital                       | 6                | [33]      |
| Rahimi, E.<br>et al          | 2017                | 2014-2015      | Isfahan                          | Cul-<br>ture+PCR    | Animal        | Feces                  | 400            | 28 (22–6-0)                                   | Feces           | Slaughter-<br>house            | 10               | [34]      |
| Rahimi, R. &<br>Ameri, M     | 2011                | 2009–2010      | Chaha-<br>rmahal va<br>Bakhtiari | Cul-<br>ture + PCR  | Food          | White meat             | 494            | 225 (205–20-0)                                | Meat            | Market                         | 10               | [35]      |
| Rahimi, E.<br>et al          | 2010                | 2008–2009      | lsfahan-<br>Yazd                 | Culture             | Food          | Red meat               | 722            | 50 (42–8-0)                                   | Meat            | Market                         | 10               | [36]      |
| Rahimi, E.<br>et al          | 2010                | 2009–2010      | Khuzestan                        | Cul-<br>ture + PCR  | Food          | White & Red<br>meat    | 205            | 60 (53–7-0)                                   | Meat            | Market                         | 10               | [37]      |
| Rahimi, E.<br>et al          | 2010                | 2007-2008      | Khuzestan                        | Cul-<br>ture + PCR  | Food          | Poultry<br>carcass     | 336            | 213 (190–23-0)                                | Meat            | Slaughter-<br>house            | 10               | [38]      |
| Rahimi, E.<br>et al          | 2010                | 2007           | Isfahan                          | PCR                 | Food          | Poultry<br>carcass     | 348            | 216 (175–41-0)                                | Meat            | Slaughter-<br>house            | 10               | [39]      |
| Rahimi, E. &<br>Tajbakhsh, E | 2008                | 2006–2008      | Isfahan                          | Culture             | Food          | White meat             | 800            | 377 (288–89-0)                                | Meat            | Market                         | 10               | [4]       |
| Razei, A. et al              | 2017                | 2014           | Tehran                           | PCR                 | Food          | Milk                   | 30             | 1 (1-0-0)                                     | Product         | Market                         | 10               | [40]      |
|                              |                     |                |                                  |                     |               |                        |                |                                               |                 |                                |                  |           |

| σ        |
|----------|
| ĕ        |
| ¥        |
| Ę        |
| .=       |
| Ę        |
| 5        |
| 8        |
| S        |
|          |
| <b>-</b> |
| Ð        |
|          |
| ab       |
| ц        |
|          |

| Author                                            | Publication<br>year | Study<br>years | Province                                     | Diagnosis<br>method | Sample source       | Sample<br>type                                                | Sample<br>size | Campylobacter<br>(C. jejuni- C.<br>coli-both) | Sample<br>group | Place of<br>sampling | Quality<br>score | Reference |
|---------------------------------------------------|---------------------|----------------|----------------------------------------------|---------------------|---------------------|---------------------------------------------------------------|----------------|-----------------------------------------------|-----------------|----------------------|------------------|-----------|
| Ghasemian<br>Safaei, H. et al                     | 2011                | 2008           | Chaha-<br>rmahal va<br>Bakhtiari             | Culture             | Food                | Egg                                                           | 100            | 0                                             | Product         | Market               | 0                | [41]      |
| Salari, S. et al                                  | 2020                | 2017           | Sistan va<br>Baluchistan                     | PCR                 | Environment         | Feces                                                         | 100            | 0                                             | Feces           | Landfill             | 10               | [42]      |
| Torkan, S.<br>et al                               | 2018                | 2015-2016      | lsfahn &<br>Chaha-<br>rmahal va<br>Bakhtiari | Cul-<br>ture + PCR  | Environment         | Feces                                                         | 100            | 19 (2–1-0)                                    | Feces           | Pet clinic           | 7                | [43]      |
| Shafiei, A.<br>et al                              | 2020                | 2018-2019      | Chaha-<br>rmahal va<br>Bakhtiari             | Cul-<br>ture + PCR  | Food & Animal       | Meat, liver,<br>kidney,<br>heart and<br>contents of<br>rectum | 1800           | 126 (66–60-0)                                 | Meat, Feces     | Slaughter-<br>house  | σ                | [44]      |
| Ghane, M.<br>et al                                | 2011                | 2010           | Fars                                         | Culture             | Animal, Environment | Feces                                                         | 160            | 32 (16–9-0)                                   | Feces           | Environ-<br>ment     | 6                | [45]      |
| Ghorbanali-<br>zadgan, M.<br>et al                | 2019                | 2018           | Tehran                                       | Cul-<br>ture + PCR  | Human               | Diarrhea                                                      | 750            | 33 (31–2-0)                                   | Feces           | Hospital             | 10               | [46]      |
| Atefi Tabar, E.<br>et al                          | 2019                | 2017           | Semnan                                       | Cul-<br>ture + PCR  | Animal              | Feces                                                         | 190            | 124 (60–0-0)                                  | Feces           | Slaughter-<br>house  | ∞                | [47]      |
| Zendehbad,<br>B. et al                            | 2013                | 2012           | Razavi<br>khorasan                           | Cul-<br>ture + PCR  | Food                | White Meat                                                    | 300            | 149 (127–27-0)                                | Meat            | Market               | 10               | [48]      |
| Zendehbad,<br>B. et al                            | 2015                | 2013           | Razavi<br>khorasan                           | Cul-<br>ture + PCR  | Food                | Chicken                                                       | 360            | 227 (200–27-0)                                | Meat            | Market               | 10               | [49]      |
| Amanpour, Z.<br>et al                             | 2021                | 2018           | llam                                         | PCR                 | Human               | Diarrhea                                                      | 103            | 11 (11–0-0)                                   | Feces           | Hospital             | 6                | [50]      |
| Shahrokhab-<br>adi, R. et al                      | 2013                | 2011-2012      | Kerman                                       | Cul-<br>ture + PCR  | Food                | Red meat                                                      | 148            | 17 (14–3-0)                                   | Meat            | Slaughter-<br>house  | 10               | [51]      |
| Azizian, K.<br>et al                              | 2018                | 2015-2016      | Kurdistan                                    | Cul-<br>ture + PCR  | Animal              | Cecal con-<br>tent                                            | 200            | 67 (57–10-0)                                  | Feces           | Farm                 | 10               | [13]      |
| Abbasi, E.<br>et al                               | 2019                | 2015           | Markazi                                      | Cul-<br>ture + PCR  | Human               | Diarrhea                                                      | 200            | 5 (0-5-0)                                     | Feces           | Hospital             | 10               | [52]      |
| Ashrafgan-<br>jooyi, S.B. &<br>Saeide Adlei,<br>N | 2016                | 2008–2010      | Kerman                                       | Culture             | Animal              | Cecal con-<br>tent                                            | 600            | 190 (190–0-0)                                 | Feces           | Slaughter-<br>house  | 10               | [53]      |
| Dabiri, A. et al 2016                             | 2016                | 2012           | Mazandaran                                   | Cul-<br>ture + PCR  | Food                | Raw milk                                                      | 72             | 12 (100)                                      | Product         | Collection<br>center | 10               | [54]      |

|                                    | (2) 20 10 10        |                |                         |                     |               |                                   |                |                                               |                         |                        |                  |           |
|------------------------------------|---------------------|----------------|-------------------------|---------------------|---------------|-----------------------------------|----------------|-----------------------------------------------|-------------------------|------------------------|------------------|-----------|
| Author                             | Publication<br>year | Study<br>years | Province                | Diagnosis<br>method | Sample source | Sample<br>type                    | Sample<br>size | Campylobacter<br>(C. jejuni- C.<br>coli-both) | Sample<br>group         | Place of<br>sampling   | Quality<br>score | Reference |
| Babaienajad-<br>basiri, F. et al   | 2016                | 2014-2015      | Alborz                  | Culture             | Animal        | Feces                             | 150            | 98 (78–20-0)                                  | Feces                   | Farm                   | 10               | [55]      |
| Bagherpour,<br>A. et al            | 2014                | 20,112,013     | Khuzestan               | Culture             | Food          | Chicken and<br>Organ Meat         | 400            | 264 (239–25-0)                                | Meat                    | Slaughter-<br>house    | 10               | [56]      |
| Barati, M. et al                   | 2021                | 2015-2017      | Tehran                  | Cul-<br>ture + PCR  | Human         | Diarrhea                          | 283            | 42 (40–2-0)                                   | Feces                   | Hospital               | 10               | [57]      |
| Berizi, E. et al                   | 2017                | 2009           | Fars                    | Cul-<br>ture + PCR  | Animal        | Cecal con-<br>tent                | 300            | 180 (60–75-45)                                | Feces                   | Slaughter-<br>house    | 10               | [58]      |
| Aminshahidi,<br>M. et al           | 2017                | 2014–2015      | Fars                    | Cul-<br>ture + PCR  | Human         | Diarrhea                          | 269            | 7 (7–0-0)                                     | Feces                   | Hospital               | 6                | [29]      |
| Ebrahimi<br>Lagha,F. et al         | 2015                | 2013           | West Azer-<br>baijan    | Cul-<br>ture + PCR  | Food          | Organ meat                        | 80             | 50 (20–20-0)                                  | Meat                    | Slaughter-<br>house    | 10               | [60]      |
| Ehsannejad,<br>F. et al            | 2015                | 2013           | Tehran                  | Cul-<br>ture + PCR  | Environment   | Feces                             | 660            | 20 (16–4-0)                                   | Feces                   | Pet clinic             | 10               | [61]      |
| Fani, F. et al                     | 2019                | 2016           | Fars                    | Cul-<br>ture + PCR  | Food          | Chicken                           | 90             | 26 (24–2-0)                                   | Meat                    | Slaughter-<br>house    | 10               | [62]      |
| Jazayeri<br>Moghadas, A.<br>et al  | 2008                | 2007           | Semnan                  | Culture             | Human         | Diarrhea                          | 276            | 27 (27–0-0)                                   | Feces                   | Hospital               | 10               | [63]      |
| Feizabadi,<br>M.M. et al           | 2007                | 2004–2005      | Tehran                  | Cul-<br>ture + PCR  | Human         | Diarrhea                          | 500            | 35 (30–5-0)                                   | Feces                   | Hospital               | 10               | [64]      |
| Ghane, M.<br>et al                 | 2011                | 2010           | Fars                    | Culture             | Animal        | Feces                             | 260            | 65 (27–18-0)                                  | Feces                   | Farm                   | 10               | [65]      |
| Ghane, M.<br>et al                 | 2010                | 2009           | Mazandaran<br>and Gilan | Cul-<br>ture + PCR  | Environment   | Feces, Water,<br>Sewage           | 235            | 64 (21–13-0)                                  | Feces, Envi-<br>ronment | Farm, River,<br>Sewage | 10               | [99]      |
| Ghane, M.<br>et al                 | 2012                | 2011           | Mazandaran<br>and Gilan | Cul-<br>ture + PCR  | Environment   | Water                             | 263            | 7 (7–0-0)                                     | Environ-<br>ment        | Caspian sea            | 10               | [67]      |
| Ghorbanali-<br>zadgan, M.<br>et al | 2014                | 2012-2013      | Tehran                  | Cul-<br>ture + PCR  | Human         | Diarrhea                          | 200            | 12 (10–2-0)                                   | Feces                   | Hospital               | 10               | [68]      |
| Hamidian, M.<br>et al              | 2011                | 2007–2008      | Tehran                  | Cul-<br>ture + PCR  | Food, Human   | Red meat,<br>Chicken,<br>Diarrhea | 798            | 149 (99–33-0)                                 | Meat, Feces             | Market,<br>Hospital    | 10               | [69]      |
| Harzandi, N.<br>et al              | 2015                | 2009           | Alborz                  | PCR                 | Human         | Diarrhea                          | 160            | 18 [4–2-3)                                    | Feces                   | Hospital               | 6                | [02]      |
| Hosseinza-<br>deh, S. et al        | 2015                | 2011           | West Azer-<br>baijan    | Cul-<br>ture + PCR  | Food          | Chicken<br>wings                  | 96             | 0                                             | Meat                    | Market                 | 10               | [1]       |

Table 1 (continued)

| Table 1 (continued)                         | ntinued)            |                |                                  |                     |               |                                   |                |                                               |                  |                      |                  |           |
|---------------------------------------------|---------------------|----------------|----------------------------------|---------------------|---------------|-----------------------------------|----------------|-----------------------------------------------|------------------|----------------------|------------------|-----------|
| Author                                      | Publication<br>year | Study<br>years | Province                         | Diagnosis<br>method | Sample source | Sample<br>type                    | Sample<br>size | Campylobacter<br>(C. jejuni- C.<br>coli-both) | Sample<br>group  | Place of<br>sampling | Quality<br>score | Reference |
| lrajian, Gh.R.<br>et al                     | 2008                | 2007           | Semnan                           | Culture             | Human         | Diarrhea                          | 306            | 38 (38–0-0)                                   | Feces            | Hospital             | 10               | [72]      |
| Irannejhad,A.<br>et al                      | 2015                | 2014           | Isfahan                          | Cul-<br>ture + PCR  | Food          | Chicken                           | 160            | 102 (92–10-0)                                 | Meat             | Slaughter-<br>house  | 10               | [73]      |
| Jamali, H.<br>et al                         | 2015                | 2008-2010      | Tehran                           | Culture             | Animal        | Cecal con-<br>tent                | 471            | 161 (138–23-0)                                | Feces            | Market               | 10               | [74]      |
| Kafshdouzan,<br>K. et al                    | 2019                | 2015           | Mazandaran                       | PCR                 | Animal        | Cecal con-<br>tent                | 75             | 13 (11–2–0)                                   | Feces            | Urban                | 10               | [75]      |
| Kalantar, M.<br>et al                       | 2017                | 2012           | Tehran                           | Cul-<br>ture + PCR  | Food          | Chicken                           | 70             | 39 (0-39-0)                                   | Meat             | Market               | 10               | [76]      |
| Kazemeini, H.<br>et al                      | 2011                | 2008–2009      | Isfahan                          | Culture             | Food          | Raw milk                          | 120            | 3 (3–0-0)                                     | Product          | Farm                 | 10               | [22]      |
| Khalili, M. &<br>Mansouri, L                | 2009                | 2007           | Kerman                           | Cul-<br>ture + PCR  | Animal        | Cecal con-<br>tent                | 90             | 3 (3–0-0)                                     | Feces            | Farm                 | 10               | [78]      |
| Khanzadi, S.<br>et al                       | 2010                | 2009           | Razavi<br>khorasan               | Cul-<br>ture + PCR  | Food          | Raw milk                          | 200            | 31 (160)                                      | Product          | Bulk Tank            | 10               | [62]      |
| Khoshbakht,<br>R. et al                     | 2015                | 2012           | Khuzestan                        | Cul-<br>ture + PCR  | Environment   | Feces                             | 63             | 33 (17–3-0)                                   | Feces            | Wildlife<br>refuge   | 10               | [80]      |
| Khosravi, A.D.<br>et al                     | 2011                | 2007–2008      | Khuzestan                        | Culture             | Human         | Diarrhea                          | 220            | 14 (9–5-0)                                    | Feces            | Hospital             | 10               | [81]      |
| Mahzouni-<br>yeh, M. et al                  | 2013                | 2012           | Tehran                           | PCR                 | Environment   | Feces                             | 100            | 39 (2–0-0)                                    | Feces            | Pet clinic           | 10               | [82]      |
| Modirrousta,<br>Sh. et al                   | 2016                | 2013           | Zanjan                           | Culture             | Food          | Red Meat,<br>Chicken,<br>Eggshell | 330            | 92 (55–29-0)                                  | Meat,<br>Product | Market,<br>Farm      | б                | [83]      |
| moham-<br>madzadeh, A.<br>et al             | 2012                | 2011           | Chaha-<br>rmahal va<br>Bakhtiari | PCR                 | Environment   | Feces                             | 60             | 18 (5–0-0)                                    | Feces            | Pet clinic           | 10               | [84]      |
| Mokhtarian,<br>Dalouei H.<br>et al          | 2009                | 2008           | Razavi<br>khorasan               | Culture             | Food          | Poultry<br>carcass                | 100            | 31 (19–12-0)                                  | Meat             | Slaughter-<br>house  | 10               | [85]      |
| Mosallanejad,<br>B. et al                   | 2020                | 2017-2018      | Khuzestan                        | Cul-<br>ture + PCR  | Environment   | Feces                             | 101            | 37 (4–7-2)                                    | Feces            | Pet clinic           | 10               | [86]      |
| Negahdari, B.<br>et al                      | 2016                | 2010           | Tehran                           | Cul-<br>ture + PCR  | Human         | Diarrhea                          | 117            | 35 (27–8-0)                                   | Feces            | Hospital             | 6                | [87]      |
| Rahimi, E. &<br>Torkey Bagh-<br>badorani, Z | 2009                | 2006–2008      | lsfahan                          | Culture             | Food          | Organ meat<br>(Poultry<br>Liver)  | 205            | 101 (85–16-0)                                 | Meat             | Market               | 10               | [88]      |

| Table 1 (continued)           | intinued)           |                |                                                                         |                     |               |                                       |                |                                               |                  |                      |                  |           |
|-------------------------------|---------------------|----------------|-------------------------------------------------------------------------|---------------------|---------------|---------------------------------------|----------------|-----------------------------------------------|------------------|----------------------|------------------|-----------|
| Author                        | Publication<br>year | Study<br>years | Province                                                                | Diagnosis<br>method | Sample source | Sample<br>type                        | Sample<br>size | Campylobacter<br>(C. jejuni- C.<br>coli-both) | Sample<br>group  | Place of<br>sampling | Quality<br>score | Reference |
| Rahimi,E. et al               | 2013                | 2011           | Chaha-<br>rmahal va<br>Bakhtiari                                        | Cul-<br>ture + PCR  | Food          | Chicken &<br>Red meat &<br>White Meat | 917            | 213 (193–20-0)                                | Meat             | Market               | 10               | [8]       |
| Rahimi,E. et al               | 2008                | 2006–2007      | Isfahan                                                                 | Culture             | Food          | Red meat                              | 183            | 0                                             | Meat             | Slaughter-<br>house  | 10               | [06]      |
| Rahimi, M.K.<br>et al         | 2009                | 2007-2009      | Tehran                                                                  | Culture             | Human         | Diarrhea                              | 06             | 7 (7–0-0)                                     | Feces            | Hospital             | 10               | [16]      |
| Rahimi,E. et al               | 2011                | 2009–2010      | Gilan                                                                   | Cul-<br>ture + PCR  | Food          | White Meat                            | 159            | 52 (46–6-0)                                   | Meat             | Market               | 10               | [92]      |
| Rahimi,E. et al               | 2013                | 2009–2010      | Isfahan-<br>Chaha-<br>rmahal va<br>Bakhtiari                            | Cul-<br>ture + PCR  | Food          | Red meat                              | 379            | 31 (24–7-0)                                   | Meat             | Market               | 10               | [63]      |
| Rahimi, E. &<br>Esfahani, M.H | 2010                | 2009-2010      | Chaha-<br>rmahal va<br>Bakhtiari &<br>Kohgiluyeh<br>and Boyer-<br>Ahmad | Cul-<br>ture + PCR  | Food          | Chicken                               | 350            | 197 (183–14-0)                                | Meat             | Market               | 10               | [94]      |
| Rahimi, E                     | 2013                | 2010-2011      | Chaha-<br>rmahal va<br>Bakhtiari                                        | Cul-<br>ture + PCR  | Food          | Chicken &<br>Organ meat               | 480            | 331 (301–30-0)                                | Meat             | Slaughter-<br>house  | 10               | [95]      |
| Rashed, T.<br>et al           | 1994                | 1993–1994      | Razavi<br>khorasan                                                      | Culture             | Human         | Diarrhea                              | 903            | 19 (19–0-0)                                   | Feces            | Hospital             | 10               | [96]      |
| Ranjbar, R.<br>Babazadeh, D   | 2017                | 2016           | West Azer-<br>baijan                                                    | Cul-<br>ture + PCR  | Human         | Diarrhea                              | 1010           | 0                                             | Feces            | Hospital             | 10               | [22]      |
| Roshanjo, K.<br>et al         | 2019                | 2014           | Gilan                                                                   | PCR                 | Environment   | Water                                 | 45             | 7 (7–0-0)                                     | Environ-<br>ment | River                | 10               | [98]      |
| Jahromi, R.<br>et al          | 2021                | 2019           | Khuzestan                                                               | Cul-<br>ture + PCR  | Food          | Poultry<br>carcass                    | 370            | 203 (130–73-0)                                | Meat             | Slaughter-<br>house  | 10               | [66]      |
| Saadatmand.<br>A. et al       | 2017                | 2016           | Hamadan                                                                 | Culture             | Food          | Organ meat                            | 80             | 72 (53–19-0)                                  | Meat             | Market               | 10               | [100]     |
| Sabzmey-<br>dani, A. et al    | 2020                | 2018–2019      | Mazandaran                                                              | Cul-<br>ture + PCR  | Food          | Poultry<br>Eggshell                   | 450            | 84 (45–3-0)                                   | Product          | Market               | 10               | [101]     |
| Sadeghi, A.<br>et al          | 2020                | 2019–2020      | Tehran                                                                  | Cul-<br>ture + PCR  | Human         | Diarrhea                              | 400            | 28 (24–2-0)                                   | Feces            | Hospital             | 10               | [102]     |
| Salehi, M.<br>et al           | 2014                | 2011–2013      | Sistan va<br>Baluchistan                                                | Culture             | Human         | Diarrhea                              | 164            | 19 (19–0-0)                                   | Feces            | Hospital             | 10               | [103]     |
|                               |                     |                |                                                                         |                     |               |                                       |                |                                               |                  |                      |                  |           |

| Table 1 | (continued) |  |
|---------|-------------|--|
|         | able        |  |

| Author                           | Publication<br>year | Study<br>years | Province                         | Diagnosis<br>method | Sample source | Sample<br>type                                      | Sample<br>size | Campylobacter<br>(C. jejuni- C.<br>coli-both) | Sample<br>group  | Place of<br>sampling                         | Quality<br>score | Reference |
|----------------------------------|---------------------|----------------|----------------------------------|---------------------|---------------|-----------------------------------------------------|----------------|-----------------------------------------------|------------------|----------------------------------------------|------------------|-----------|
| Shahrokhab-<br>adi, R. et al     | 2011                | 2010           | Kerman                           | Cul-<br>ture + PCR  | Food          | Chicken &<br>Organ meat                             | 100            | 31 (19–12-0)                                  | Meat             | Slaughter-<br>house                          | 10               | [104]     |
| Shakerian, A                     | 2016                | 2014           | Chaha-<br>rmahal va<br>Bakhtiari | Cul-<br>ture + PCR  | Food          | Vegetable                                           | 100            | 15 (2–13-0)                                   | Environ-<br>ment | Market                                       | 10               | [105]     |
| Shakerian, A.<br>et al           | 2011                | 2006–2008      | Isfahan                          | Culture             | Food          | Red meat                                            | 150            | 17 (13–4-0)                                   | Meat             | Slaughter-<br>house                          | 10               | [106]     |
| Shams, S.<br>et al               | 2017                | 2012-2014      | Tehran                           | Cul-<br>ture + PCR  | Human         | Diarrhea                                            | 750            | 35 (33–2-0)                                   | Feces            | Hospital                                     | 6                | [107]     |
| Shirazi, M.H.<br>et al           | 2013                | 2011           | Tehran                           | Culture             | Human         | Diarrhea                                            | 117            | (0-0-6) 6                                     | Feces            | Hospital                                     | 10               | [108]     |
| Soltan Dallal,<br>M.M. et al     | 2016                | 2015           | Tehran                           | Culture             | Human         | Diarrhea                                            | 305            | 3 (0–3-0)                                     | Feces            | Hospital                                     | 6                | [109]     |
| Taremi, M.<br>et al              | 2006                | 2004           | Tehran                           | Culture             | Food          | Red Meat &<br>Chicken                               | 241            | 88 (0-0-0)                                    | Meat             | Market                                       | 10               | [110]     |
| Tavakoli<br>vaseksi, A.<br>et al | 2012                | 2010–2011      | Mazandaran                       | Cul-<br>ture + PCR  | Food          | Raw milk                                            | 552            | 47 (36–11-0)                                  | Product          | Collection<br>center                         | 10               | [111]     |
| Zamani<br>moghadam,<br>A. et al  | 2011                | 2010–2011      | Chaha-<br>rmahal va<br>Bakhtiari | Cul-<br>ture + PCR  | Environment   | Feces                                               | 150            | 1 (1–0-0)                                     | Feces            | Environ-<br>ment                             | 10               | [112]     |
| Zamani<br>moghadam,<br>A. et al  | 2012                | 2011           | Chaha-<br>rmahal va<br>Bakhtiari | Cul-<br>ture + PCR  | Environment   | Feces                                               | 120            | 2                                             | Feces            | Environ-<br>ment                             | 10               | [113]     |
| Ziaei, N. et al                  | 2008                | 2005–2006      | Golestan                         | Cul-<br>ture + PCR  | Human         | Diarrhea                                            | 455            | 3 (3–0-0)                                     | Feces            | Hospital                                     | 10               | [114]     |
| Azimirad, M.<br>et al            | 2021                | 2019           | Tehran                           | Cul-<br>ture + PCR  | Food          | Vegetable                                           | 366            | 76 (24–52-0)                                  | Environ-<br>ment | Market                                       | 10               | [115]     |
| Rastyani, S.<br>et al            | 2015                | 2013–2014      | Hamadan                          | Cul-<br>ture + PCR  | Human         | Diarrhea                                            | 120            | 9 (6–3-0)                                     | Feces            | Hospital                                     | 6                | [3]       |
| Raeisi, M. et al                 | 2017                | 2014-2015      | Mazandaran<br>and<br>Golestan    | Cul-<br>ture + PCR  | Food          | Raw milk,<br>Chicken,<br>White<br>Meat, Red<br>meat | 590            | 141 (79–41-0)                                 | Product,<br>Meat | Bulk tank,<br>Market,<br>Slaughter-<br>house | 10               | [2]       |
| Rahimi, E.<br>et al              | 2010                | 2007-2008      | Isfahan                          | Culture             | Food          | Red meat                                            | 94             | 5 (1-4-0)                                     | Meat             | Slaughter-<br>house                          | 6                | [116]     |
|                                  |                     |                |                                  |                     |               |                                                     |                |                                               |                  |                                              |                  |           |

| Table 1 (continued)       | ntinued)                        |                |                   |                     |                                   |                      |                |                                                            |                 |                      |                  |           |
|---------------------------|---------------------------------|----------------|-------------------|---------------------|-----------------------------------|----------------------|----------------|------------------------------------------------------------|-----------------|----------------------|------------------|-----------|
| Author                    | Publication Study<br>year years | Study<br>years | Province          | Diagnosis<br>method | Diagnosis Sample source<br>method | Sample<br>type       | Sample<br>size | Campylobacter Sample<br>(C. jejuni- C. group<br>coli-both) | Sample<br>group | Place of<br>sampling | Quality<br>score | Reference |
| Basirisalehi,<br>M. et al | 2007                            | 2006           | Fars              | Culture             | Animal                            | Feces                | 120            | 37 (15–10-0)                                               | Feces           | Farm                 | œ                | [117]     |
| Basirisalehi,<br>M. et al | 2007                            | 2006           | Fars &<br>Bushehr | Culture             | Animal                            | Feces                | 455            | 85 (24–13-0)                                               | Feces           | Farm                 | 10               | [118]     |
| Dabiri, H. et al          | 2014                            | 2011-2012      | Tehran            | Culture             | Food                              | Red Meat,<br>Chicken | 450            | 121 (93–28-0)                                              | Meat            | Market               | 10               | [119]     |
| Mirzaie, S.<br>et al      | 2011                            | 2010           | Tehran            | Culture             | Animal                            | Cecal con-<br>tent   | 125            | 52 (19–33-0)                                               | Feces           | Slaughter-<br>house  | 10               | [120]     |

| (continued) |
|-------------|
| -           |
| Ð           |
| q           |
| a'          |




Fig. 2 Forest plot of pooled prevalence/proportion of *Campylobacter* spp. in white and red meat, product of animal, feces and environmental samples of Iran

was reported from 0 to 24% in the literature. Campylobacter contamination in this category was mostly prevalent in buffalo (13.5%), followed by goat and sheep (8.6%), cattle (8.4%) and camel (2.5%) meat. While among animal products eggs were found to have a 5.5% prevalence of *Campylobacter* spp. contamination, with a high rate of contamination prevalence being observed for chicken eggs (9.9%) in eight studies compared to eggs of other types of poultry (4.2%) from 24 studies. The prevalence of *Campylobacter* spp. contamination detected among environmental samples was 14.9%. Vegetables were constituted environmental samples that showed highest prevalence (19.4%) of Campylobacter contamination. Water and sewage samples had prevalence of 15.4% and 7.4%, respectively. As the I2 heterogeneity index was more than 50, there was heterogeneity in the included studies.

## Prevalence/proportion of *Campylobacter* spp. in fecal samples

Literature review of 79 studies that investigated the fecal samples in animal [60] and human [34] revealed that pooled proportion of *Campylobacter* spp. was 18.7% in fecal samples. Among food animals, poultry had the highest contamination of fecal samples (46.8%). Domestic and wild animal had 21% and 14.1% contamination of *Campylobacter* spp. (Table 2). A proportion of 8.4% of human samples were positive regarding *Campylobacter* spp.

## Prevalence/proportion of *Campylobacter* spp. by place of sampling

Table 3 presents an overview from the meta-analysis of Campylobacter spp. prevalence from Iran based on sampling places. Poultry feces (61.9%) and white meat (47.2%) were determined to have the highest Campylobacter spp. prevalence at the slaughterhouse. This was followed by white meat at market (42.6%) and farm (40%) levels. The lowest pooled prevalence of Campylobacter spp. was observed for milk sampled at farm (1%) and market (3.3%) levels, eggs sampled at market (5.4%) and red meat sampled at slaughterhouse (6.2%) levels. Campylobacter spp. prevalence in white and red meat, and milk samples at markets (sampled from retails, supermarkets and butcher's) was higher than at farms (Table 3). Considerable proportions of wild animal (prevalence of 25.4%) and dog and cat feces (prevalence of 20.4%), were found to be contaminated with Campylobacter spp..

## Prevalence/proportion of C. jejuni and C. coli

As the *C. jejuni* and *C. coli* are the main causative agents of human campylobacteriosis, the pooled prevalence of these two species was determined in Iran samples. Most of the studies reported the prevalence of *C. jejuni* and *C. coli* in their samples. *C. jejuni* had higher pooled prevalence/proportion than *C. coli* in all of the obtained samples except for those derived from vegetables. Sewage (100%) (one study), milk (86.6%) (7 studies), human feces (83.3%) (33 studies) and water (82.8%) (3 studies) samples

| Sample          | Number of effect size | Pooled Prevalence/Proportion (%) | 95% Confidence Interval | Heterogeneity<br>(I2) |
|-----------------|-----------------------|----------------------------------|-------------------------|-----------------------|
| Meat            | 96                    | 27.3                             | 21.8–33.1               | 98.3                  |
| White meat      | 55                    | 43.9                             | 38.7–49.8               | 96.4                  |
| Chicken         | 37                    | 48.6                             | 41.8-55.4               | 96.8                  |
| Poultry         | 18                    | 33.9                             | 23.7-44.7               | 95.1                  |
| Red meat        | 37                    | 7.9                              | 5.4–10.8                | 90.6                  |
| Cattle          | 15                    | 8.4                              | 3.8-14.3                | 94.3                  |
| Goat-Sheep      | 17                    | 8.6                              | 5.7-11.9                | 83.2                  |
| Camel           | 3                     | 2.5                              | 0.7–5.3                 | -                     |
| Other red meat  | 2                     | 13.5                             | 7.0-21.4                | -                     |
| Product         | 44                    | 6.6                              | 4.4–9.3                 | 89                    |
| Milk            | 9                     | 7.2                              | 4.0-11.2                | 78.1                  |
| Egg             | 32                    | 5.5                              | 3.0-8.6                 | 87.9                  |
| Hen             | 8                     | 9.9                              | 2.7–20.5                | 93.1                  |
| Poultry         | 24                    | 4.2                              | 2.0-7.0                 | 76.9                  |
| Environment     | 6                     | 14.9                             | 5.7–27.1                | -                     |
| Water           | 3                     | 15.4                             | 0.4-43.9                | -                     |
| Sewage          | 1                     | 7.4                              | 0.9–24.3                | -                     |
| vegetable       | 2                     | 19.4                             | 15.9–23.2               | -                     |
| Feces           | 79                    | 18.7                             | 14.5-23.2               | 98.3                  |
| Human           | 34                    | 8.4                              | 6.0-11.1                | 95.8                  |
| Domestic Animal | 12                    | 21                               | 8.2–37.6                | 98.1                  |
| Wild Animal     | 15                    | 14.1                             | 6.9–23.1                | 96.7                  |
| Poultry         | 18                    | 46.8                             | 36.4–57.3               | 97.0                  |

**Table 2** Pooled prevalence/proportion of *Campylobacter* spp. in samples

had the most frequent contaminations with *C. jejuni* (Fig. 3). Pooled *C. jejuni* prevalence in white meat (54 studies), egg (28 studies), poultry feces (19 studies) and red meat (35 studies) was 68.7%, 65.5%, 65.2% and 62.7%, respectively. Vegetable (2 studies) samples had the least pooled prevalence of *C. jejuni* (28%). On the other hand the highest pooled prevalence of *C. coli* was reported in vegetable samples (72%) followed by egg (33%) and red meat (24.1%) samples. Pooled prevalence of *C. coli* was zero (95%CI: 0–84.2%) in sewage samples (Fig. 3).

## Pooled proportion of virulence genes in *Campylobacter* spp.

Despite the high number of studies that reported the prevalence of *Campylobacter* spp., a limited number of them investigated the virulence genes required for pathogenesis. *CdtA*, *cdtB*, *cdtC*, *cadF* and *pldA* had the highest number of investigated studies. Figure 4 shows the proportion of virulence genes in *Campylobacter* spp. *cadF* (97%) had the highest pooled prevalence in *Campylobacter spp. cadF* (97%) had the highest pooled prevalence in *Campylobacter spp. in 28* studies, followed by *racR* (93.8%) (3 studies) and *flaA* (91.3%) (17 studies). *VirB11* had the least prevalence (0%) in the *Campylobacter* spp. in 11 investigated studies. A total of 31% of *Campylobacter spp.* 

contained *wlaN* in 7 studies. With the sensitivity analysis, it was found that one of the studies pulls the results towards itself. The virB11 gene has the greatest impact on heterogeneity.

### Discussion

Campylobacter spp. are regarded as the commonest cause of bacterial human gastroenteritis around the world [121]. In the present study, we tried to determine the prevalence of *Campylobacter* spp. in the food, animal and human samples of Iran based on systematic review of studies published from the country. Our findings showed that in Iran, white meat including, chicken and poultry accounts for the highest pooled prevalence of *Campylo*bacter spp. These results are consistent with high average Campylobacter contamination prevalence that has also been observed for broiler chicken (36.7%) and turkey (11.0%) meat in Europe as reported by the European Food Safety Authority [122]. *Campylobacter* spp. (33.3%) represented the second most prevalent bacterial contamination of poultry meat based on a systematic review of European surveys [123]. As much as 48.6% of chicken and 23% of other poultry meat samples in Europe were contaminated with Campylobacter spp. [123]. Frequency

| Place                          | Number of effect size | Pooled Prevalence/<br>Proportion (%) | 95% Confidence Interval | Heterogeneity<br>(I2) |
|--------------------------------|-----------------------|--------------------------------------|-------------------------|-----------------------|
| Slaughterhouse (Feces)         |                       |                                      |                         |                       |
| Poultry                        | 9                     | 61.9                                 | 44.9–77.7               | 97.8                  |
| Domestic animals               | 8                     | 25.3                                 | 7.4–48.9                | 98.6                  |
| Slaughterhouse (Meat)          |                       |                                      |                         |                       |
| White meat                     | 18                    | 47.2                                 | 37.5–57.0               | 97.5                  |
| Red meat                       | 21                    | 6.2                                  | 3.5-9.4                 | 89.2                  |
| Market                         |                       |                                      |                         |                       |
| White meat                     | 38                    | 42.6                                 | 36.0-49.4               | 95.5                  |
| Poultry feces                  | 2                     | 37.7                                 | 33.7-48.7               | -                     |
| Vegetables                     | 2                     | 19.4                                 | 15.9–23.2               | -                     |
| Red meat                       | 17                    | 10.2                                 | 6.6–14.4                | 91.2                  |
| Egg                            | 33                    | 5.4                                  | 3.1-8.1                 | 85.7                  |
| Milk                           | 1                     | 3.3                                  | 0.1-17.2                | -                     |
| Farm                           |                       |                                      |                         |                       |
| White meat                     | 1                     | 40                                   | 26.4–54.8               | -                     |
| Egg                            | 1                     | 31.7                                 | 23.5-40.8               | -                     |
| Poultry feces                  | 6                     | 31.1                                 | 15.8–48.9               | 96.1                  |
| Wild animal feces              | 2                     | 25.4                                 | 16.7–35.1               | -                     |
| Domestic animal feces          | 4                     | 13.5                                 | 2.2-31.2                | 93.0                  |
| Milk                           | 3                     | 1                                    | 0.01-3.5                | -                     |
| Pet clinic (Dog and cat feces) | 7                     | 20.4                                 | 8.6-35.6                | 97.4                  |
| Hospital (Human feces)         | 34                    | 8.4                                  | 6.0-11.1                | 95.8                  |

## Table 3 Pooled Prevalence/proportion of Campylobacter spp. by sampling place

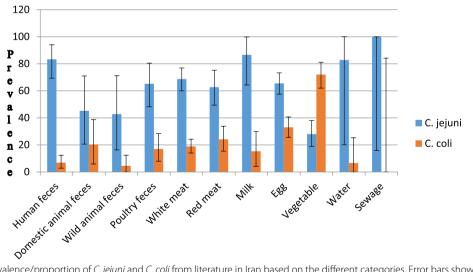



Fig. 3 Pooled prevalence/proportion of C. jejuni and C. coli from literature in Iran based on the different categories. Error bars show the 95% confidence interval

of *Campylobacter* spp. contamination in chicken was reported as 99.5% in Italy, 93.7% in Northern Ireland, 84% in Ireland, 82% in Switzerland, 56% in Turkey, 53% in Spain, 51% in Austria, 50% in Poland, 14.9% in Sweden, and 9.7% in Romania [123]. In Portugal 40.3% of

fresh broiler meat samples were reported to be contaminated with *Campylobacter* spp. [124]. Our analysis in this review shows that about 76% of broiler flocks in Shiraz, Iran were positive for Campylobacter. *C. jejuni* accounted for 22% whereas *C. coli* for 32% of the Campylobacter

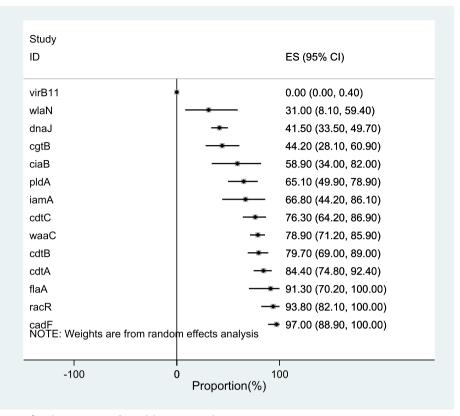



Fig. 4 Pooled proportion of virulence genes in Campylobacter spp. isolates in Iran

positive chicken samples [2]. The current study revealed a higher prevalence of C. jejuni than C. coli in white meat of Iran. Poultry carcasses had 35.37% and 19.82% prevalence of C. jejuni and C. coli contaminations, respectively from the slaughterhouses of Jahrom-Iran [20]. Campylobacter was recovered from 49.2% of poultry liver, 42.8% of gizzard 33.3% of heart and 25.4% of meat from poultry slaughterhouses at West Azerbaijan, Iran [30]. The quail meat had the highest contamination (68.4%) with Campylobacter spp. followed by chicken (56.1%), turkey (27.4%) and ostrich meat (11.7%). The high contamination of quail meat could be due to handling in slaughtering and packaging procedure that leads to higher cross-contamination [4]. The total prevalence of *Campy*lobacter spp. in poultry meat sampled from Isfahan was 47.1% [4]. Meanwhile about 55.4% of hen carcasses sampled in processing plant of Ahvaz, Iran, were contaminated with *Campylobacter* spp. [38]. Turkey samples had contamination with *Campylobacter* spp. (62.1%) [39]. Duck samples were more contaminated (39.2%) than goose samples (26.1%) [74]. Hen liver had the highest frequency of Campylobacter spp. (63.6%), then was turkey (40%) and ostrich liver (16.7%) [88]. Liver was more contaminated with *Campylobacter* spp. than meat [104]. Recovery of Campylobacter was more in chicken (63%) than beef (10%) [110]. Sheep meat (3.10%) was the most contaminated in the meat samples followed by chicken (2.40%), beef (1.80%), and buffalo meat (1.10%) from Khuzestan. 81.30% of the isolates were C. jejuni and 18.70% were C. coli [26]. Campylobacter was detected in 49.5% of chicken and 8% of beef samples [28]. Lamb meat had the highest prevalence (12%) of Campylobacter spp. followed by goat (9.4%), beef (2.4%) and camel meat (0.9%) [36] in Isfahan and Yazd, which was according to the present study. Higher contamination of lamb and goat meat revealed the effect of manual skinning, evisceration and processing in abattoir and inadequate hygiene in transport, storage and cutting of meat in local butcheries. Lower rate of contamination of camel milk may be related to high number of homogenic bacteria in rumen of camel and H2 accumulation that leads to destroying of campylobacter [118].

In a study that examined individual unpasteurized bovine and ovine milk samples from Zanjan, Iran, Haghi et al. [15] detected no *Campylobacter* contamination, which was in contrast to most of other studies covered in the current meta-analysis and it could be due to that other studies examined bulk milk, but Haghi et al.

investigated individual milk. *Campylobacter* spp. isolated from 2.5% to 12.5% of milk samples in Mazandaran, Isfahan and Mashhad. *C. jejuni* was detected in 2.5% to 13.88% of these milk samples [5, 54, 77, 79]. Results of the current study showed 5.5% detection of *Campylobacter* spp. in eggs. Another study showed 7% contamination of eggshell of hen, 5% of duck's eggshell, 3.3% of goose, 2.5% of ostrich, 4.2% of partridge, 5% of quail and 3.8% of turkey's eggshell to *Campylobacter* spp. [22]. Prevalence of *C. jejuni* (6.3%) was more than *C. coli* (1.3%) in avian eggs which was according to present study. Safaei et al. [41] observed no *C. jejuni* in table eggs. 18.67% to 31.6% of eggshell were contaminated with *Campylobacter* spp. [83, 101].

Examination of cecal contents of poultry conducted in Kurdistan revealed that 55% of samples were contaminated with Campylobacter spp. that included C. jejuni (86.2%) and C. coli (13.7%) [13]. Similar prevalence levels have also been reported in Iran based on literature reviewed here that found C. jejuni is more frequent than C. coli in poultry feces. Khoshbakht et al. [23] reported 67.8% of Campylobacter spp. in cattle and sheep fecal samples of Shiraz, which was higher than current study. C. jejuni and C. coli were seen in 78.5% of the samples simultaneously. Moreover, 2.9% and 12.6% of the samples were positive for C. coli and C. jejuni, respectively [23]. Prevalence studies conducted in Isfahan detected Campylobacter spp. in 10%, 8%, 5.3% and 4% of sheep, goat, cattle and camel feces [34]. Salari et al. (2020) observed no C. jejuni in Crested lark [42]. About 33% of pet bird feces were contaminated with Campylobacter spp. [61]. C. jejuni was detected in 48.62% of bird feces [27]. 52.3% of Persian fallow deer fecal samples which were collected from Dasht-e-Arzhan located in southwest of Iran, were contaminated with Campylobacter spp. [80], which was higher than the present study. Most of the studies reported higher prevalence of *C. jejuni* than C. coli in the foodstuffs [4, 26, 28, 30, 31, 35, 36, 38, 39, 44, 51, 55, 56, 60, 83, 85, 93, 99, 101, 104] and fecal samples [13, 61, 64, 65, 70, 74, 75].

Among environmental samples examined from northern Iran, the prevalence of *Campylobacter* spp. was higher in river water (36.92%) than fecal samples of poultry (34.88%), cow (28.57%), horse (20%) and sheep (9%) origin. The lowest contaminated environmental samples were those of sewage (7.4%) origin [66]. A study that have examined Caspian Sea's water reported a *Campylobacter* spp. contamination prevalence of 2.66% [67]. In the investigation of vegetable samples, 15% of mushrooms in Shahrekord had *Campylobacter* spp. contamination [105]. *Campylobacter* spp. was detected in 3.5% of leafy vegetables marketed in Tehran [115]. These different reported rate of contamination could be due to the difference of geographical location and season of sampling, type and number of the samples, method of isolation, and different sanitary situation on farms and slaughterhouses [49, 74].

Our current study found that human diarrheal samples examined from Iran had a pooled Campylobacter spp. prevalence of 8.4%. Studies from central Iran reported that 33% of infectious diarrheal samples were positive for C. jejuni [8]. Among acute diarrhea samples examined in Tehran, Campylobacter spp. were detected in 8.6% of the samples of which 69.5% were C. jejuni and 24.5% was C. coli [16]. Jafari et al., [6] studied the prevalence of Campylobacter spp. in children under five years of age with acute diarrhea in Tehran. They found campylobacter in 5.5% of patients, equal to 10.8% of all isolated bacteria. In Shiraz~9.6% of acute diarrhea samples were positive for C. jejuni [17]. 4% of fecal samples were contaminated with Campylobacter spp. [46]. 9.8% of diarrheic children was positive for C. jejuni [63]. C. jejuni was the major species recovered from human samples [122].

Pathogenesis of Campylobacter was associated with some virulence genes. cadF, flaA, and ciaB genes are essential virulence factors for adhesion and colonization of Campylobacter to epithelial cells in human intestine [68]. Some studies observed 100% prevalence of cadF virulence gene in C. jejuni [14, 24, 62, 68, 76] and C. coli isolates [24, 68] which was agreed with the current study. The CDT toxin leads to cell cycle arrest and promotes DNA damage; so, its presence is related with the severity of the campylobacteriosis [68]. Prevalence of cdtA, cdtB, cdtC, pldA, and iamA genes were 97%, 97%, 96%, 72%, and 60%, respectively in the isolates [14], which was higher than the current study. Prevalence of *cdtA*, *cdtB*, *cdtC*, *racR* and *pldA* was observed 100% in some studies [24, 25, 62, 68, 69, 76]. VirB11 gene was not detected in any of the strains [5, 24] that was according to present study and could be related to the plasmid nature of this gene [5]. Guillain-Barre' and Miller-Fischer syndromes are associated with *wlaN*, *cgtB* genes and *waaC* gene [125]. Prevalence of other genes including *iamA*, and wlaN, was reported as 81.11%, and 82.22%, respectively [24], which was higher than current meta-analysis. Frequency of cgtB genes was observed as 22.22% [24] that was lower than present study. Frequency of *ciaB* was reported in 76.92% of poultry, 55.56% of cow and 100% of sheep fecal samples [25]. *pldA* and *cgtB* were detected in raw chicken Campylobacter isolates in Shiraz as 65.4% and 15.4%, respectively [62]. Prevalence of *dnaJ* was from 11 to 100% in different samples [69]. WaaC was detected in 100% of food isolates of C. jejuni and 75.6% of C. coli [5]. Campylobacter food isolates carried most of the virulence genes essential for pathogenesis that shows the high risk of these isolates for human.

Prevalence of *Campylobacter* spp. contamination was higher at market than farm level in Iran as determined in the present study, which is similar to observations from previous studies conducted in other countries [123]. Gonçalves-Tenório et al. [123] reported higher prevalence of Campylobacter spp. (44.3%) contamination at retail level than at the end-processing (30.7%) stage in poultry meat. *Campylobacter* spp. are able to colonize and attach to tissues of poultry during processing [126]. Carcass processing in the slaughterhouse including, scalding, washing and cooling was found not to decrease the level of Campylobacter spp. contamination of poultry meat [127]. Freezing significantly decreased chicken contamination with Campylobacter spp. during processing of poultry carcasses from 80 to 30% [73]. Washing reduced the contamination of sheep carcass from 10% after hiding to 8% after washing [106]. Since farms are considered as the initial site of contamination with Campylobacter, most preventive strategies must therefore be implemented at farm level by increasing of biosecurity and enhancing monitoring [128]. The higher contamination observed at market level may be due to uncontrolled temperature during transport of meat [5].

Poultry are regarded as a major source of this organism due to their carriage of *Campylobacter* spp. in the intestinal tract [127]. Similarly we also found here that poultry samples in Iran including meat and feces are associated with higher *Campylobacter* spp. contamination. The handling and preparation of broiler meat led to crosscontamination of poultry meat and is considered as contributing cause for one-third of human campylobacter infection in Europe while the remaining cases are related to the self-contamination of chicken with *Campylobacter* as the reservoir of the organism [122]. Establishing if such a link also exists in Iran is rather difficult due to the fact that there is currently neither notification nor investigation of food vehicles of human campylobacteriosis.

### Conclusion

In conclusion the current systematic review and metaanalysis of *Campylobacter* prevalence shows that chicken has great concern for *Campylobacter* carriage in Iran. This must be considered in preparation of undercooked poultry such as barbecue. Most of the isolated *Campylobacter* carried virulence associated genes that show their potential pathogenicity. Since our analysis showed that the gastrointestinal tract and slaughtering facilities are among the main sources of *Campylobacter* contamination for poultry meat in Iran, implementing preventive and corrective actions at several stages mainly at farm level is very vital. Implementing control strategies specifically for this pathogen will have a remarkable impact on its incidence and production of safer meat for consumers. Moreover, consumer education in hand hygiene, sanitation of surfaces prior to and after handling meat, separation of raw and cooked meat and checking the temperature of refrigerator is also needed to reduce contamination and infections with this pathogen.

## Methods

#### Search strategy

A systematic search was performed in PubMed, Scopus, and Web of Science electronic databases in papers that were published from November of 2021 to the end of January 2022. The search keyword was "*Campylobacter coli* " or "*Campylobacter jejuni*" combined with the following terms: "Food", "Animal", "Chicken", "Poultry", "Meat", "Beef", "Lamb", "Fish", "Milk", "Dairy", "Egg", "Sheep", "Goat", "Avian", "Cow", "Cattle", "Human", "Feces", "Diarrhea", "Gastroenteritis " and "Iran" (Supplementary file). Handmade search was performed in Google Scholar and scientific information database (SID). PRISMA guidelines were used to perform the systematic reviews.

#### Selection criteria and quality assessment

Selection of studies were performed by these inclusion criteria: research studies including original article either published or in press; studies with a cross-sectional design to detect *Campylobacter* on the samples based on culture or PCR; had a known sample size; and studies with available full-text. Title and abstracts of the searched papers were assessed to identify articles that matched with the inclusion criteria. In some circumstances full texts were evaluated. The exclusion criteria include articles that did not follow standard methods, duplicate articles and reports, studies with unclear or incomprehensible text and analysis, articles that did not report the exact sample size and number /percent of Campylobacter. Positive samples Reviews; letters or editorial articles without original data were also excluded. Quality assessment of the eligible studies were performed by Joanna Briggs Institute [129]. Articles which gained 6 score (from 10) were eligible for data extraction. When two reviewers (EA and TZ) were disagreed about an article, seek the opinion of third reviewer (PS). Duplicates articles were removed by help of Endnote reference manager and also some of them were found by manual check.

### **Data extraction**

Data extraction forms were designed in Microsoft Excel. Articles that obtained more than 60% of quality score were eventually included in the analysis as they were meet 6 out of 10 criteria of Joanna Briggs check-list. Following information was collected from the included studies: the first author's name, date of publication, study design, study location, number of samples,

source of samples (animal, human and environment), sample group (meat, food product?, feces and environment) and type of samples (human, domestic animal, wild animal, poultry, white meat, red meat, milk, egg, water, sewage, vegetable), sample species (chicken, poultry white meat, cattle, goat, sheep, camel and other red meat, hen egg and poultry egg), place of sampling (hospital, pet clinic, slaughterhouse, farm, market and environment), diagnostic technique (Culture, PCR, culture and PCR), prevalence of *Campylobacter* spp., *C. jejuni*, *C. coli*, virulence factors and quality score.

### Statistical analysis

In this study, the data analysis was done with STATA 14 software (STATA Corp., College Station, Texas) with metaprop command. A random effect model was applied to determine the pooled prevalence and 95% Confidence interval of *Campylobacter* spp.. A forest plot was used to calculate the pooled prevalence with 95% confidence intervals. Statistical heterogeneity among studies was evaluated by computing  $I^2$ , Cochran's Q. 25%, 50%, and 75% of  $I^2$  values are classified as low, medium, and high heterogeneity, respectively. A subgroup analysis, sensitivity analysis, and meta-regression were performed on the basis of publication year, and type of sampling to evaluate sources of heterogeneity.

#### Abbreviations

| PRISMA | Preferred Reporting Items for Systematic Reviews and |
|--------|------------------------------------------------------|
|        | Meta-Analyses                                        |
| ΤZ     | Tayebeh Zeinali                                      |
| SMR    | Seyed Mohamad Riahi                                  |
| EA     | Elham Ansarifar                                      |
| WHO    | World health organization                            |
| SD     | Standard deviation                                   |
| PCR    | Polymerase chain reaction                            |
| Fig    | Figure                                               |
|        |                                                      |

## Supplementary Information

The online version contains supplementary material available at https://doi. org/10.1186/s12866-023-02879-w.

## Additional file 1.

#### Acknowledgements

The authors acknowledge the research and technology deputy of Birjand University of Medical Sciences for support of this study.

#### Authors' contributions

SMR, EA, TZ and T.T. designed research; PS and TZ conducted the systematic search; SMR conducted the meta-analysis; TZ and PS extracted the data; all authors drafted the manuscript and revised the manuscript. All authors read and approved the final manuscript.

#### Funding

We have no financial sources to disclose for the study.

#### Availability of data and materials

Data are available from the corresponding author on reasonable request.

#### Declarations

#### Ethics approval and consent to participate

The study was approved by ethical committee of Birjand University of Medical Sciences (IR.BUMS.REC.1402.061).

#### **Consent for publication**

Not applicable.

#### **Competing interests**

The authors declare no competing interests.

## Received: 21 August 2022 Accepted: 4 May 2023 Published online: 10 May 2023

#### References

- Mobaien A, Moghaddam F, Talebi S, Karami A, Amirmoghaddami H, Ramazani A. Studying the prevalence of Campylobacter jejuni in adults with gastroenteritis from northwest of Iran. Asian Pacific J Trop Dis. 2016;6(12):957–60.
- Ansari-Lari M, Hosseinzadeh S, Shekarforoush SS, Abdollahi M, Berizi E. Prevalence and risk factors associated with campylobacter infections in broiler flocks in Shiraz, southern Iran. Int J Food Microbiol. 2011;144(3):475–9.
- Rastyani S, Alikhani MY, Sedighi I, Kazemi S, Kohan HF, Arabestani MR. Campylobacter jejunia and Campylobacter coli in Children With Acute Diarrhea in Health Centers of Hamadan. Iran Avicenna J Clin Microb Infec. 2015;2(4): e29791.
- Rahimi E, Tajbakhsh E. Prevalence of campylobacter species in poultry meat in the esfahan city. Iran Bulgarian J Vet Med. 2008;11(4):257–62.
- Raeisi M, Khoshbakht R, Ghaemi EA, Bayani M, Hashemi M, Seyedghasemi NS, et al. Antimicrobial Resistance and Virulence-Associated Genes ofCampylobacterspp. Isolated from Raw Milk, Fish, Poultry, and Red Meat. Microbial Drug Resist (Larchmont, NY). 2017;23(7):925–33.
- Jafari F, Garcia-Gil LJ, Salmanzadeh-Ahrabi S, Shokrzadeh L, Aslani MM, Pourhoseingholi MA, et al. Diagnosis and prevalence of enteropathogenic bacteria in children less than 5 years of age with acute diarrhea in Tehran children's hospitals. J Infect. 2009;58(1):21–7.
- Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM. Global Epidemiology of Campylobacter Infection. Clin Microbiol Rev. 2015;28(3):687–720.
- Abbasi E, van Belkum A, Ghaznavi-Rad E. Quinolone and Macrolide-Resistant Campylobacter jejuni in Pediatric Gastroenteritis Patients from Central Iran. Microb Drug Resist. 2019;25(7):1080–6.
- Abdi-Hachesoo B, Khoshbakht R, Sharifiyazdi H, Tabatabaei M, Hosseinzadeh S, Asasi K. Tetracycline resistance genes in Campylobacter jejuni and C. coli isolated from poultry carcasses. Jundishapur J Microbiol. 2014;7(9):e1229.
- Abdollahpour N, Zendehbad B, Alipour A, Khayatzadeh J. Wild-bird feces as a source of Campylobacter jejuni infection in children's playgrounds in Iran. Food Control. 2015;50:378–81.
- Akramzadeh N, Ramezani Z, Ferdousi R, Akbari-Adergani B, Mohammadi A, Karimian-Khosroshahi N, et al. Effect of chicken raw materials on physicochemical and microbiological properties of mechanically deboned chicken meat. Vet Res Forum. 2020;11(2):153–8.
- 12. Alborzi A, Aelami MH, Astaneh B, Pourabbas B, Farshad S, Kalani M, et al. Is Escherichia coli O157:H7 a common pathogen in children with bloody diarrhea in Shiraz, Iran? Gut Pathogens. 2008;50(4):349–53.
- Azizian K, Hasani A, Shahsavandi S, Ahangarzadeh Rezaee M, Hosseinpour R, Alizadeh H. Campylobacter jejuni and Campylobacter coli in cecum. Trop Biomed. 2018;35(2):423–33.
- 14. Divsalar G, Kaboosi H, Khoshbakht R, Shirzad-Aski H, Ghadikolaii FP. Molecular typing and virulence gene profiles of Campylobacter

jejuni isolated from human, animals, and meat in northern Iran. Revue De Med Vet. 2019;170(7–9):129–35.

- Haghi F, Zeighami H, Naderi G, Samei A, Roudashti S, Bahari S, et al. Detection of major food-borne pathogens in raw milk samples from dairy bovine and ovine herds in Iran. Small Rumin Res. 2015;131:136–40.
- Hamidian M, Sanaei M, Azimi-Rad M, Tajbakhsh M, Dabiri H, Zali MR. fla-typing, RAPD analysis, isolation rate and antimicrobial resistance profile of Campylobacter jejuni and Campylobacter coli of human origin collected from hospitals in Tehran. Iran Ann Microbiol. 2011;61(2):315–21.
- 17. Hassanzadeh P, Motamedifar M. Occurrence of Campylobacter jejuni in Shiraz, Southwest Iran. J Cell Physiol. 2007;16(1):59–62.
- Hoseinpour F, Foroughi A, Nomanpour B, Nasab RS. Identification and differentiation of Campylobacter species by high-resolution melting curve analysis. Microb Pathog. 2017;108:109–13.
- Jafari F, Shokrzadeh L, Hamidian M, Salmanzadeh-Ahrabi S, Zali MR. Acute diarrhea due to enteropathogenic bacteria in patients at hospitals in Tehran. Jpn J Infect Dis. 2008;61(4):269–73.
- Jahromi RR, Moradi F, Erfanian S, Faraji SZ, Zargar MF, Haghighi BR, et al. Molecular Analyses of the Prevalence of Campylobacter Detected from the Poultry Meat and its Byproducts. Ambient Science. 2019;6(2):7–10.
- Jamshidi A, Bassami MR, Farkhondeh T. Isolation and identification of Campylobacter spp. and Campylobacter coli from poultry carcasses by conventional culture method and multiplex PCR in Mashhad, Iran. Iran J Vet Res. 2008;9(2):132–7.
- 22. Jonaidi-Jafari N, Khamesipour F, Ranjbar R, Kheiri R. Prevalence and antimicrobial resistance of Campylobacter species isolated from the avian eggs. Food Control. 2016;70:35–40.
- Khoshbakht R, Tabatabaei M, Hoseinzadeh S, Raeisi M, Shirzad Aski H, Berizi E. Prevalence and antibiotic resistance profile of thermophilic Campylobacter spp. of slaughtered cattle and sheep in Shiraz, Iran. Vet Res Forum. 2016;7(3):241–6.
- 24. Khoshbakht R, Tabatabaei M, Hosseinzadeh S, Shekarforoush SS, Aski HS. Distribution of nine virulence-associated genes in Campylobacter jejuni and C. coli isolated from broiler feces in Shiraz, Southern Iran. Foodborne Pathogens Dis. 2013;10(9):764–70.
- Mahmoodipour H, Baserisalehi M, Emami A. Molecular detection of virulence genes involved in adherence, colonization, invasion and cytotoxin production in campylobacter jejuni and campylobacter coli isolated from poultry, cow and sheep faeces. Acta Medica Mediterranea. 2017;33(5):763–8.
- Maktabi S, Ghorbanpoor M, Hossaini M, Motavalibashi A. Detection of multi-antibiotic resistant Campylobacter coli and Campylobacter jejuni in beef, mutton, chicken and water buffalo meat in Ahvaz. Iran Vet Research Forum. 2019;10(1):37–42.
- Malekian M, Shagholian J, Hosseinpour Z. Pathogen Presence in Wild Birds Inhabiting Landfills in Central Iran. EcoHealth. 2021;18(1):76–83.
- Soltan Dallal MM, Doyle MP, Rezadehbashi M, Dabiri H, Sanaei M, Modarresi S, et al. Prevalence and antimicrobial resistance profiles ofSalmonellaserotypes, CampylobacterandYersiniaspp. isolated from retail chicken and beef, Tehran, Iran. Food Control. 2010;21:388–92.
- 29. Sharifi S, Bakhshi B, Najar-Peerayeh S. Significant contribution of the CmeABC Efflux pump in high-level resistance to ciprofloxacin and tetracycline in Campylobacter jejuni and Campylobacter coli clinical isolates. Ann Clin Microbiol Antimicrob. 2021;144(3):475–9.
- Nassiri D, Razavilar V, Motalebi A. Occurrence of Campylobacterin Poultry Meat and Edible Offal's in the northwest of Iran. Int J Adv Biotechnol Res. 2016;7(1):351–7.
- Nouri Gharajalar S, Hassanzadeh P, Hosseinali NN. Molecular detection of Campylobacter species and Cytolethal distending toxin isolated from chicken livers in Tabriz. Comp Immunol Microbiol Infect Dis. 2020;71: 101474.
- 32. Bakhshi B, Kalantar M, Rastegar-Lari A, Fallah F. PFGE genotyping and molecular characterization of Campylobacter spp. isolated from chicken meat. JVR. 2016;17(3):177–83.
- Sarhangi M, Bakhshi B, Peeraeyeh SN. High prevalence of Campylobacter jejuni CC21 and CC257 clonal complexes in children with gastroenteritis in Tehran, Iran. BMC Infect Dis. 2021;21(1):108.

- Rahimi E, Alipoor-Amroabadi M, Khamesipour F. Investigation of prevalence of thermotolerant Campylobacter spp. in livestock feces. Canadian J Anim Sci. 2017;97(2):207–13.
- Rahimi E, Ameri M. Antimicrobial resistance patterns of Campylobacter spp. isolated from raw chicken, turkey, quail, partridge, and ostrich meat in Iran. Food Control. 2011;22(8):1165–70.
- 36. Rahimi E, Ameri M, Kazemeini HR. Prevalence and Antimicrobial Resistance of Campylobacter Species Isolated from Raw Camel, Beef, Lamb, and Goat Meat in Iran. Foodborne Pathog Dis. 2010;7(4):443–7.
- Rahimi E, Kazemeini HR, Safaei S, Allahbakhshi K, Momeni M, Riahi M, et al. Detection and identification of Campylobacter spp. from retail raw chicken, turkey, sheep and goat meat in Ahvaz, Iran. Afr J Microbiol Res. 2010;4(15):1620–3.
- Rahimi E, Momtaz H, Ameri M, Ghasemian-Safaei H, Ali-Kasemi M. Prevalence and antimicrobial resistance of Campylobacter species isolated from chicken carcasses during processing in Iran. Poult Sci. 2010;89(5):1015–20.
- 39. Rahimi E, Momtaz H, Bonyadian M. PCR detection of Campylobacter sp from turkey carcasses during processing plant in Iran. Food Control. 2010;21(5):692–4.
- Razei A, Sorouri R, Mousavi SL, Nazarian S, Amani J, Aghamollaei H. Presenting a rapid method for detection of Bacillus cereus, Listeria monocytogenes and Campylobacter jejuni in food samples. Iran J Basic Med Sci. 2017;20(9):1050–5.
- Safaei HG, Jalali M, Hosseini A, Narimani T, Sharifzadeh A, Raheimi E. The prevalence of bacterial contamination of table eggs from retails markets by Salmonella spp., Listeria monocytogenes, Campylobacter jejuni and Escherichia coli in Shahrekord, Iran. Jundishapur J Microbiol. 2011;4(4):249–53.
- Salari S, Jahantigh M, Jahantigh M. Investigation of Campylobacter jejuni in microbiota of Galerida cristata, trapped in Southeast of Iran. Sistan J Wildlife Biodiversity. 2020;4(2):28–33.
- Torkan S, Vazirian B, Khamesipour F, Dida GO. Prevalence of thermotolerant Campylobacter species in dogs and cats in Iran. Vet Med Sci. 2018;4:296–303.
- 44. Shafiei A, Rahimi E, Shakerian A. Prevalence, Virulence and Anti-Microbial Resistance in Campylobacter spp. from Routine Slaughtered Ruminants, as a Concern of Public Health (Case: Chaharmahal and Bakhtiari Province, Iran). J Complement Med Res. 2020;11(1):302–15.
- Ghane M, Eghbali M, Baserisalehi M, Bahador N. Antimicrobial Susceptibility of Thermophilic Campylobacter spp. Isolated from Environmental Samples in Tonekabon. Int J Mol Clin Microbiol. 2011;1:21–4.
- Ghorbanalizadgan M, Bakhshi B, Shams S, Najar-Peerayeh S. Pulsed-field gel electrophoresis fingerprinting of Campylobacter jejuni and Campylobacter coli strains isolated from clinical specimens. Iran Int Microbiol. 2019;22:391–8.
- Tabar EA, Staji H, Mahdavi A. Comparative restriction enzyme mapping of Campylobacter jejuni isolates from turkeys and broilers based on flaA flagellar gene using HpyF3I endonuclease. Folia Microbiol. 2019;64(2):189–95.
- Zendehbad B, Arian AA, Alipour A. Identification and antimicrobial resistance of Campylobacter species isolated from poultry meat in Khorasan province. Iran Food Control. 2013;32(2):724–7.
- Zendehbad B, Khayatzadeh J, Alipour A. Prevalence, seasonality and antibiotic susceptibility of Campylobacter spp. isolates of retail broiler meat in Iran. Food Control. 2015;53:41–5.
- Amanpour Z, Kouhsari E, Pakzad I, Kenarkoohi A, Sadeghifard N. Simultaneous molecular detection of common bacterial Enteropathogens in children with diarrhea by multiplex-PCR assay. Clin Lab. 2021;67(6):1403–8.
- Shahrokhabadi R, Rahimi E, Mommtaz H, Poursahebi R. Prevalence of Campylobacter jejuni and coli in sheep carcasses by using cultural and PCR methods. Zahedan J Res Med Sci. 2013;15(12):28–31.
- Abbasi E, Khansarinejad B, Ghaznavi rad E. Dysentery caused by macrolide and fluoroquinolone resistant Campylobacter coli in central area of Iran. Tehran Univ Med J. 2019;76(11):736–41.
- Ashrafganjooyi S B, N. SA. Isolation and survey for drug resistance of Campylobacter jejuni in poultry feces in Kerman. Iran J Med Microbiol. 2016;9(4):95–8.
- 54. Dabiri A, Rouhi S, Nouri B, Zaboli F. Assess the prevalence rate of Campylobacter genus and Campylobacter jejuni species in raw milk

collected from the Amol City by Multiplex-Polymerase Chain Reaction. J Fasa Univ Med Sci. 2016;5(4):516–25.

- Babaienajadbasiri F, Haghighi Khoshkhoo P, Akbariazad G. Prevalence and antibacterial susceptibility of thermophilic campylobacter spp. In broiler chickens. J Mazandaran Univ medical Sci. 2016;26(136):185–9.
- Bagherpour A, Ahmadi A, Soltanialvar M. Survey of Campylobacter contamination in poultry meat and by-products in Dezful province. WALIA J. 2014;30(1):115–8.
- Barati M, Taghipour A, Bakhshi B, Shams S, Pirestani M. Prevalence of intestinal parasitic infections and Campylobacter spp. among children with gastrointestinal disorders in Tehran, Iran. Parasite Epidemiol Control. 2021;13:e00207.
- Berizi E, Shekarforoush S, Hosseinzadeh S, Abdollahi M. Study of the contamination of broiler-chicken flocks to Campylobacter jejuni and Campylobacter coli at the end of a rearing period. J Vet Microbiol. 2017;13(1):11–9.
- Aminshahidi M, Arastehfar A, Pouladfar G, Arman E, Fani F. Diarrheagenic Escherichia coli and Shigella with high rate of extendedspectrum Beta-lactamase production: two predominant etiological agents of acute diarrhea in Shiraz. Iran Microbial Drug Resistance. 2017;23(8):1037–44.
- Ebrahimi Lagha F, Zeynali F, Rezazadeh Bari M, Aliakbarlou J. Isolation of campylobacter from poultry gizzards in Urmia using pcr. J Food Res (University of Tabriz). 2015;25(4):577–84.
- Ehsannejad F, Sheikholmolooki A, Hassanzadeh M, Shojaei Kavan R, Soltani M. Detection of cytolethal distending toxin (cdt) genes of Campylobacter Jejuni and Coli in fecal samples of pet birds in Iran. Iran J Vet Med. 2015;9(1):49–56.
- 62. Fani F, Aminshahidi M, Firoozian N, Rafaatpour N. Prevalence, antimicrobial resistance, and virulence-associated genes of Campylobacter isolates from raw chicken meat in Shiraz. Iran Iran J Vet Res. 2019;20(4):283–8.
- Jazayeri Moghadas A, Irajian G, Kalantari F, Monem M, Salehian A, Rahbar H, et al. Prevalence of Campylobacter jejuniin diarrheic children in Semnan (Iran) Journal of Semnan University of Medical Sciences. 2008;9(4):297–300.
- Feizabadi MM, Dolatabadi S, Zali MR. Isolation and drug-resistant patterns of Campylobacter strains cultured from diarrheic children in Tehran. Jpn J Infect Dis. 2007;60(4):217–9.
- Ghane M, Bahador N, Baserisalehi M, Eghbali M. A comparative study on antimicrobial susceptibility of campylobacter spp. Isolates from fecal samples of domestic animals and poultry in Tonekabon and Shiraz, Iran. J Paramed Sci. 2011;2(2):21–6.
- Ghane M, Bahador N, Baserisalehi M. Isolation, identification and characterization of Campylobacter spp. isolates from environmental samples in North Iran. Nature Environ Poll Technol. 2010;9(4):823–8.
- Ghane M, Moein FG, Massoudian S. The first isolation of Campylobacter jejuni. Adv Stud Biol. 2012;4(9):407–18.
- Ghorbanalizadgan M, Bakhshi B, Kazemnejad Lili A, Najar-Peerayeh S, Nikmanesh B. A Molecular Survey of Campylobacter jejuni and Campylobacter Coli Virulence and Diversity Iranian biomedical journal. 2014;18(3):158–64.
- Hamidian M, Sanaei M, Bolfion M, Dabiri H, Zali MR, Walther-Rasmussen J. Prevalence of putative virulence markers in Campylobacter jejuni and Campylobacter coli isolated from hospitalized children, raw chicken, and raw beef in Tehran. Iran Canadian J Microbiol. 2011;57(2):143–8.
- Harzandi N, Jamshidi S, Dezfulian M, Bahonar A, Bakhtiari A, Banihashemi K. Molecular detection and speciation of Campylobacter species in children with gastroenteritis using polymerase chain reaction in Bahonar Hospital of Karaj City. Int J Enteric Pathog. 2015;3(2):1–4.
- Hosseinzadeh S, Mardani K, Aliakbarlu J, Ghorbanzadehghan M. Occurrence of Campylobacter in chicken wings marketed in the northwest of Iran. Int Food Res J. 2015;22(1):41–5.
- Irajian GR, Jazayeri Moghadas A, Beheshti AAS, Salehian A, Monem M, Ghods F. Prevalence of campylobacter jejuni samples from patients referred to semnan public health centers in 2007. Iran J Med Microbiol. 2008;1(4):35–9.

- Irannejhad A, Rahimi E, Gholami Ahangaran M. Isolation of campylobacter in different processing stage and presentation of poultry carcasses. J Food Microbiol. 2015;2(1):59–67.
- 74. Jamali H, Ghaderpour A, Radmehr B, Wei KSC, Chai LC, Ismail S. Prevalence and antimicrobial resistance of Campylobacter species isolates in ducks and geese. Food Control. 2015;50:328–30.
- Kafshdouzan K, Ashrafi Tamai I, Pouyan S. Detection of Faecal Contamination With Campylobacter jujuni and Campylobacter coli in Urban Ducks in the North of Iran. J Vet Res. 2019;74(2):283–9.
- Kalantar M, Soltan Dallal M-M, Fallah F, Yektaie F. Monitoring the virulence genes in Campylobacter coli strains isolated from chicken meat in Tehran. Iran Infect Epidemiol Microbiol. 2017;3(1):12–5.
- Kazemeini H, Valizade Y, Parsaei P, Nozarpour N, Rahimi E. Prevalence of Campylobacter species in raw bovine milk in Isfahan. Iran Middle-East J Sci Res. 2011;5:664–6.
- Khalili M, Mansourinajand L. Frequency of Campylobacter jejuni in Cecal Content of Kerman Poultry Farms. Iran J Biol. 2010;22(4):730–3.
- Khanzadi S, Jamshidi A, Soltaninejad V, Khajenasiri S. Isolation and identification of Campylobacter jejuni from bulk tank milk in Mashhad-Iran. World Appl Sci J. 2010;9(6):638–43.
- Khoshbakht R, Tabatabaei M, Aski HS, Shayegh H. Distribution of Salmonella, Arcobacter, and thermophilic Campylobacter spp. among Persian fallow deer (Dama mesopotamica) population in Dasht-e-Arzhan Wildlife refuge, southern Iran. Comparative Clin Pathol. 2015;24(4):777–81.
- Khosravi AD, Mehdinejad M, Shamsizadeh A, Montazeri EA, Moghaddam M. Determination of antibiotic susceptibility pattern in Campylobacter jejuni and Campylobacter coli isolated from children with acute diarrhea. Asian Biomedicine. 2011;5(5):611–8.
- Mahzounieh M, Ghorbani M, Zahraei Salehi T. Identification of campylobacter spp. In apparently healthy dog's and cat's stool by multiplex pcr. J Comparative Pathobiol Iran. 2014;10(4):1101–6.
- Modirrousta S, Shapouri R, Rezasoltani S, Molaabaszadeh H. Prevalence of Campylobacter spp. and their Common Serotypes in 330 Cases of Red-meat, Chicken-meat and Egg-shell in Zanjan City, Iran. Infect Epidemiol. 2016;2(1):8–10.
- Mohammadzadeh AAM, Hakimi Alni R, Sharifi A, Gorbami M. A survey of the genus campylobacter contamination in domestic dogs using pcr technique. J Large Animal Clin Sci Res (Journal of Veterinary Medicine). 2012;6(2):25–30.
- Mokhtarian DH, Mohsenzadeh M, Ghahramani M, Moshki M, Fani M. Detection and identification of Campylobacter jejuni and Campylobacter coli from poultry carcasses slaughtered in Gonabad poultry slaughterhouse. Ofogh-e-danesh GMUHS J. 2009;15(3):30–6.
- Mosallanejad B, Gharibi D, Avizeh R, Abbassi R. Isolation and characterization of Campylobacter spp. in feces of companion cats in Ahvaz district by culture and PCR methods. Sci-Res Iran Vet J. 2020;16(1):92–104.
- Negahdari B, Shirazi MH, Malekshahi ZV, Hajikhani S, Rahmati M. Identification of Campylobacter jejuni and Campylobacter coli from diarrheic samples using PCR. Int J Health Stud. 2016;2(2):1–3.
- Rahimi E, Torki Baghbadorani Z. Prevalence of Campylobacter jejuni and C. coli in poultry liver in Isfahan. VetJof IslamicAzadUniv, Garmsar Branch. 2009;5(1):1–4.
- Rahimi E, Shakerian A, Kazemeini HR, Goudarzi MA. Antimicrobial resistance patterns of campylobacter spp. Isolated from raw chicken, turkey, quail, partridge, ostrich, beef, sheep, goat and camel meat marketed in shahrekord. J Food Technol Nutr. 2013;10(3 (39)):95–100.
- 90. Rahimi E, Momtaz H, Hemmatzadeh F. The prevalence of Escherichia coli O157: H7, Listeria monocytogenes and Campylobacter spp. on bovine carcasses in Isfahan, Iran. Iran J Vet Res. 2008;9(4):365–70.
- Rahimi MK, Alambeigi P, Mousavi L, Adimi P, Tayyebi Z, Masoumi M, et al. Frequency of Campylobacter jejuni in stool samples of patients with bloody diarrhea. Med Sci J Islamic Azad Univ. 2009;19(3):212–5.
- Rahimi E, Alian F, Alian F. Prevalence and characteristic of Campylobacter species isolated from raw duck and goose meat in Iran. IPCBEE. 2011;9:171–5.
- Rahimi E, Ameri M, Alimoradi M, Chakeri A, Bahrami AR. Prevalence and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolated from raw camel, beef, and water buffalo meat in Iran. Comp Clin Pathol. 2013;22(3):467–73.

- Rahimi E, Esfahani MS. Seasonal prevalence of Campylobacter jejuni and Campylobacter coli in raw chicken meat using PCR assay. Middle East J Sci Res. 2010;6(4):329–32.
- 95. Rahimi E. Campylobacter spp. Contamination of chicken meat and byproducts in shahrekord, iran. Sci-Res Iran Vet J. 2013;9(1):30–6.
- 96. Rashed T, Ghanaat J, Moshafi M. The prevalence of campylobacter jejuni induced gastroenteritis in patients with diarrhea referring to Mean Reza hospital in Mashhad. Iran J Kerman Univ Med Sci. 1994;1(3):114–9.
- Ranjbar R, Babazadeh D. Contact with poultry and animals increases risk of Campylobacter infections in adults of Ardabil province. Iran Univ Med. 2017;36(1):59–67.
- Roshanjo k, Asadpour L, Shiri Shahsavar M, Hemmati A. Prevalence of cdt Gene in Campylobacter jejuni Strains Isolated from Surface Waters of Rasht, Iran. Med Lab J. 2017;11(2):36–40.
- Jahromi RR, Moradi F, Erfanian S, Pourahmadi M. Evaluation of the Contamination of Poultry Carcasses with Campylobacter jejuni and Campylobacter coli in Southern Iran: A Molecular Study. Jundishapur J Health Sci. 2021;13(3): e116991.
- Saadatmand A, Alikhani MY, Habibipour R, Heshmati A. Antibiotic resistance and prevalence of Campylobacter jejuni and Campylobacter coli in poultry liver. Sci J Hamadan Univ Med Sci. 2017;24(3):253–8.
- Sabzmeydani A, Rahimi E, Shakerian A. Incidence and Antimicrobial Resistance of Campylobacter Species Isolated from Poultry Eggshell Samples. Egypt J Vet Sci. 2020;51(3):329–35.
- 102. Sadeghi A, Owlia P, Ganji L, Besharati S, Ahmadi F, Fani F, et al. The Frequency of Infection with Campylobacter, Its Species Diversity, and Antimicrobial Resistance in Stool Samples of Patients with Community-Acquired Gastroenteritis in Tehran. Govaresh J. 2020;25(2):93–102.
- Salehi M, Shafaei E, Bameri Z, Bokaeian M, Mirzaee B, Mirfakhraee S, et al. Prevalence and antimicrobial resistance of Campylobacter jejuni. Int J Infect. 2014;1(2):e19229.
- 104. Shahrokhabad R, Rahimi E, Mommtaz H. Investigation of morbidity and antibacterial resistance of campylobacter spp. Sample isolation from broilers slaughter in Rafsanjan city using basic culture method. Vet Res Biol Products (pajouhesh-va-sazandegi). 2011;91:53–8.
- 105. Shakerian A. Campylobacter spp. as a potential pathogen in the edible mushrum (Agaricus mushrooms). J Food Hygiene. 2016;3(1):63–72.
- 106. Shakerian A, Rahimi E, Kazemi S. Prevalence and antibiotic resistant of Campylobacter spp. Isolated from different stages of sheep slaughterhouse. J Food Hygiene. 2012;1(4):63–9.
- Shams S, Ghorbanalizadgan M, Haj Mahmmodi S, Piccirillo A. Evaluation of a Multiplex PCR Assay for the Identification of Campylobacter jejuni and Campylobacter coli. Infect Epidemiol Microbiol. 2017;3(1):6–8.
- Shirazi M, Malekshahi V, Afshar D, Ranjbar R, Hajikhani S. Drug resistance among Campylobacter jejuni strain isolated from children with diarrhea. J Babol Univ Med Sci. 2013;15(1):79–83.
- Soltan Dallal MM, Monzavipour MH, Masoumi Asl H, Shirazi MH, Hajikhani S, Rajabi Z. The study of campylobacter frequency in foodborne disease outbreaks in iran. Toloo-e-behdasht. 2017;16(2):9–19.
- 110. Taremi M, Mehdi Soltan Dallal M, Gachkar L, MoezArdalan S, Zolfagharian K, Reza Zali M. Prevalence and antimicrobial resistance of Campylobacter isolated from retail raw chicken and beef meat, Tehran, Iran. Int J Food Microbiol. 2006;108(3):401–3.
- 111. Tavakoli Vaskas A, Karim G, Sharifi Soltani M, Nasiri D, Porjafar H. The study of seasonal incidence of Campylobacter jejuni and Campylobacter coli in raw milks of Amol town through using M. PCR method. Innovation Food Sci Technol. 2013;4(4):81–6.
- Zamani Moghaddam A, Tahmasby H, Mehrabian S, Barati S, Hashemi Babaheidari SH, Safarpour M. Molecular detection of Campylobacter in domestic pigeons from shahrekord, Iran. J Vet Microbiol. 2012;7(2 (23)):63–71.
- Zamani Moghadam A, Tahmasby H, Khosravi Farsani M, Ghasemi M, Kiani SA. Investigation of Campylobacter infection in lovebirds in shahrekord, iran by PCR. Jentashapir J Cell Mol Biology (jentashapir journal of health research). 2013;3(4):489–94.
- Ziaei N, Amir Mozafari N, Kouhsari H, Moradi A, Tabarai A, Dadgar T, et al. Prevalence of Campylobacter jejuni in Diarrhea samples in Gorgan, East north of Iran. Med Lab J. 2008;2(2):36–42.
- 115. Azimirad M, Nadalian B, Alavifard H, Negahdar Panirani S, Mahdigholi Vand Bonab S, Azimirad F, et al. Microbiological survey and occurrence of bacterial foodborne pathogens in raw and ready-to-eat green leafy

vegetables marketed in Tehran, Iran. Int J Hygiene Environ Health. 2021;237:113824.

- 116. Rahimi E, Momtaz H, Nozarpour N. Prevalence of Listeria spp., Campylobacter spp. and Escherichia coli O157:H7 isolated from camel carcasses during processing. Bulgarian J Vet Med. 2010;13:179–85.
- 117. Basirisaehi M, Bahador N, Kapandis BP. A comparison study on antimicrobial susceptibility of Campylobacter spp. isolates from fecal samples of Domestic Animals and Poultry in India and Iran. J Biol Sci. 2007;7(6):977–80.
- Baserisalehi M, Bahador N, Kapadnis BP. Isolation and characterization of Campylobacter spp. from domestic animals and poultry in south of Iran. Pakistan J Biol Sci. 2007;10(9):1519–24.
- 119. Dabiri H, Aghamohammad S, Goudarzi H, Noori M, Ahmadi Hedayati M, Ghoreyshiamiri SM. Prevalence and antibiotic susceptibility of Campylobacter species isolated from chicken and beef meat. Int J Enteric Pathog. 2014;2(2): e17087.
- Mirzaee S, Hassanzadeh M, Bashashati M, Barrin A. Campylobacteroccurrence and antimicrobial resistance in samples from ceca of commercial turkeys and quails in Tehran. Iran Int Res J Microbiol. 2011;2(9):338–42.
- Cody AJ, Maiden MC, Strachan NJ, ND. M. A systematic review of source attribution of human campylobacteriosis usingmultilocus sequence typing. Eurosurveillance. 2019;24(43):1800696.
- EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J. 2017;15:e0507.
- 123. Gonçalves-Tenório A, Nunes Silva B, Rodrigues V, Cadavez V, Gonzales-Barron U. Prevalence of Pathogens in Poultry Meat: A Meta-Analysis of European Published Surveys. Foods. 2018;7(69):foods7050069.
- 124. Xavier C, Gonzales-Barron U, Paula V, Estevinho L, Cadavez V. Metaanalysis of the incidence of foodborne pathogens in Portuguese meats and their products. Food Res Int. 2014;55:311–23.
- 125. Linton D, Gilbert M, PG. Hitchen, Dell A, Morris HR, Wakarchuk WW, et al. Phase variation of a beta-1,3 galactosyltransferase involved in generation of the ganglioside GM1-like lipooligosaccharide of Campylobacter jejuni. Mol Microbiol. 2000;37:501–14.
- 126. Mead GC. Microbiological quality of poultry meat: A review. Rev Bras Cienc Avic. 2004;6:135–42.
- Humphrey T, O'Brien S, Madsen M. Campylobacters as zoonotic pathogens: A food production perspective. Int J Food Microbiol. 2007;117:237–57.
- 128. Skarp CPA, Hänninen ML, Rautelin HIK. Campylobacteriosis: The role of poultry meat. Clin Microbiol Infect. 2016;22:103–9.
- Munn Z, Moola S, Riitano D, Lisy K. The development of a critical appraisal tool for use in systematic reviews addressing questions of prevalence. Int J Health Policy Manag. 2014;3:123.

#### **Publisher's Note**

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

#### Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

#### At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

