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Abstract

Background: Acinetobacter baumannii is an opportunistic pathogen that causes serious nosocomial infection in
intensive care units. In particular, carbapenem-resistant A. baumannii (CRAB) strains have been increasing in the past
decade, and they have caused major medical problems worldwide. In this study, a novel A. baumannii lytic phage,
the YMC 13/03/R2096 ABA BP (phage B$-R2096), which specifically causes the lysis of CRAB strains, was
characterized in detail in vitro and in silico, and the in vivo effectiveness of phage therapy was evaluated using
Galleria mellonella and a mouse model of acute pneumonia.

Results: The A. baumannii phage B¢-R2096 was isolated from sewage water using CRAB clinical strains selected
from patients at a university hospital in South Korea. The complete genome of the phage B$-R2096, which belongs
to the Myoviridae family, was analyzed. Phage B$-R2096 inhibited bacterial growth in a dose-dependent manner
and exhibited high bacteriolytic activity at MOl = 10. In the evaluation of its therapeutic potential against CRAB
clinical isolates using two in vivo models, phage B$p-R2096 increased the survival rates of both G. mellonella larvae
(from 0 to 50% at 24 h) and mice (from 30% with MOI=0.1 to 100% with MOl =10 for 12 days) in post-infection of
CRAB. In particular, phage B$-R2096 strongly ameliorated histologic damage to infected lungs, with bacterial
clearance in the lungs observed on day 3 postinfection in the mouse acute pneumonia model. Moreover, in vivo
studies revealed no mortality or serious side effects in phage-treated groups.

Conclusion: The results of this study strongly suggest that phage B$-R2096, a novel A. baumannii lytic phage,
could be an alternative antibacterial agent to control CRAB infections. This study is the first report to compare in
vivo evaluations (G. mellonella larvae and a mouse acute pneumonia model) of the therapeutic efficacy of a phage
against CRAB infections.
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Background

The emergence and rise of antibiotic-resistant bacteria
related to the use of broad-spectrum antibiotics has
been reported [1-3]. Recently, pandrug-resistant patho-
gens, which are resistant to all commercially available
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antibiotics, have become significant therapeutic chal-
lenges worldwide [4].

Acinetobacter baumannii, a Gram-negative coccobacil-
lus, is an important global nosocomial pathogen species
that causes infections such as bacteremia, pneumonia,
urinary tract infections, wound infections, and meningi-
tis in critically immunocompromised patients in inten-
sive care units (ICUs) [5]. The rapid spread of
multidrug-resistant (MDR) A. baumannii, one of the
ESKAPE (Enterococcus faecium, Staphylococcus aureus,
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Kiebsiella  pneumoniae, Acinetobacter — baumannii,
Pseudomonas aeruginosa, and Enterobacter species)
pathogens, is of great concern in hospitals around the
globe [6, 7].

Carbapenems have been the most effective antibiotics
against the serious infections caused by Acinetobacter
spp; however, carbapenem resistance rates among A.
baumannii isolates have increased significantly in many
countries, including the USA [8], China [9], and South
Korea [10, 11], since the first reported emergence in
New York, USA, in 1991 [12]. Infections caused by
carbapenem-resistant A. baumannii (CRAB) are difficult
to treat due to limited of therapeutic options, and they
are associated with high mortality and economic costs
driven by long hospital stays [13-16].

Acinetobacter baumannii’s ability to acquire resistance
has increased rapidly. Carbapenem resistance is caused
by several mechanisms, including the loss of outer
membrane proteins, overexpression of efflux pumps and
metallo-beta-lactamase [17, 18]. The carbapenem
resistance of A. baumannii isolates is mostly due to the
production of OXA-type carbapenemases (class D
carbapenemase-hydrolyzing oxacillinases) [19-21].

Colistin is an alternative agent that retains high activ-
ity against all Gram-negative bacilli, including MDR A.
baumannii [22]. However, it is limited by dose-limiting
toxicity and efficacy. Moreover, since the first report in
the Czech Republic in 1999, increasing incidents of A.
baumannii resistance to colistin have been reported in
many countries [23-26]. Therefore, the need to develop
novel antibacterial agents and strategies to control hos-
pital infections caused by MDR A. baumannii is urgent
[27-31].

Bacteriophages (phages) are natural viruses that infect
bacteria and exist as one of the most abundant biological
entities in the biosphere [32]. Since their discovery by
Frederick Twort in 1915 and Felix d’Herelle in 1917,
clinical approaches for phage therapy have been reported
in the USA, Georgia, Poland and Russia; however, phage
therapy declined sharply with the introduction of antibi-
otics in the 1940s [31, 33]. Currently, phages have been
reviewed for application as novel alternative agents to
combat antimicrobial pathogen challenges caused by the
emergence and increase of antibiotic resistance world-
wide [34-36].

Since Soothill et al. [37] first reported that phage BS46
had therapeutic potential in vivo to treat systemic infec-
tions caused by A. baumannii, researchers have studied
lytic phages for MDR Acinetobacter spp. and suggested
them as alternative therapeutics and environmental dis-
infectants for hospital ICUs [38—44].

Recently, the emergence of phage-resistant mutants to
single phages through the mechanisms of phage-resistance
has been one of the major concerns in the phage therapy
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[45]. For this reason, the application of phage cocktails has
been used to significantly reduce the evolution of resistant
bacteria, and to maintain higher lytic efficacy [46]. Never-
theless, for the fundamental data to formulate a safe and ef-
fective phage cocktail, it is important to isolate new
bacteriophages and to accumulate information on the
characterization of individual phages from experiments in
vitro and in vivo [47].

In the present study, we isolated and characterized a
novel A. baumannii phage, Bp-R2096, in vitro and in
silico, including its bacteriolytic activity and a whole gen-
ome sequence analysis. We also evaluated the in vivo
therapeutic potential of phage B}-R2096 against CRAB
infection. A Galleria mellonella model has been used for
several years as a tool to assess the virulence of bacterial
pathogens and evaluate the therapeutic efficacy of phages
against bacterial infections [48-51]. Therefore, we per-
formed in vivo evaluations of the phage therapy using
both the Galleria mellonella model and a mouse model of
acute pneumonia. To the best of our knowledge, this
study is the first to confirm experimental details compar-
ing the therapeutic effects of an A. baumannii phage
against CRAB clinical strains using G. mellonella (wax
worms) and a mouse model of acute pneumonia.

Results

Characterization of carbapenem-resistant Acinetobacter
baumannii clinical isolates

The 20 CRAB clinical isolates were resistant to ceftazi-
dime, cefepime, cefotaxime, imipenem, meropenem,
piperacillin-tazobactam, and cotrimoxazole, but not
colistin and tigecycline. Specifically, the host bacterium
of phage B$p-R2096, A. baumannii YMC13/03/R2096,
was resistant to piperacillin-tazobactam, ceftazidime,
cefotaxime, cefepime, imipenem, meropenem, gentami-
cin, amikacin, levofloxacin, and cotrimoxazole, but not
ampicillin-sulbactam, colistin, minocycline, or
tigecycline (Additional file 1: Table S1). PFGE of 31
carbapenem-resistant and -susceptible A. baumannii
strains showed different clonality with distinguishable
restriction patterns (Additional file 1: Figure S1), and
MLST analysis of the 20 CRAB strains, including A. bau-
mannii YMC13/03/R2096, indicated that they were se-
quence type (ST) 357 (allelic profile 1-12-3-2-2-145-3),
which belongs to European clone II. All strains had a
blaoxa.es-like gene, which confers carbapenem resistance
(Additional file 1: Table S1). We used A. baumannii
YMC13/03/R2096 for the in vitro characterization and in
vivo study of phageBd-R2096.

Characterization of phage Bp-R2096 infecting
carbapenem-resistant A. baumannii strains

As shown Fig. la, electron microscopy indicated that
phage B§-R2096 belongs to the Myoviridae family, with
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Fig. 1 The morphology (a) of A. baumannii phage Bg-R2096 as shown by transmission electron microscopy and plaque formation (b) of A.
baumannii phage Bp-R2096. The phage was placed onto a carbon-coated copper grid and negatively stained with 2% uranyl acetate for 15s. The

an isometric head approximately 60 nm in diameter and
a contractile tail approximately 89 nm in length (n = 15).
The phage Bd-R2096 formed clear plaques of 2-3 mm,
and observed plaque-surrounding halos on agar plates.
In the adsorption rate and one step growth curve
analysis, phage B-R2096 exhibited an adsorption rate
of 83% within 2 min and 95% within 5 min (Additional
file 1: Figure S2 A), a latent period of 50 min, and a burst
size of 142 PFU per infected cell (Additional file 1:
Figure S2 B). Its temperature and pH stability were eval-
uated in the 25-70°C and pH4-10 ranges (Additional
file 1: Figure S3). Phage B$-R2096 showed high stability
at 25°C (> 99%) for up to 9h and maintained activities
of 58, 47, and 24% at 40°C, 50°C, and 60 °C, respect-
ively, for up to 9h, but it showed no activity at 70°C at
any time point (Additional file 1: Figure S3 A). In the
pH stability test, > 60% of phage B$-R2096 was retained
at pH7, pH 7.5, and pH 8, and it also showed significant
stability (>40%) at pH 10 during the 10 month study
(Additional file 1: Figure S3 B).

Host spectrum test of A. baumannii phage B®-R2096

In the host spectrum assay of phage Bp—R2096 against 40
clinical strains (20 carbapenem-resistant A. baumannii, 11
carbapenem-susceptible A. baumannii, 3 carbapenem- and
colistin-resistant A. baumannii, 3 carbapenem-resistant P.
aeruginosa, and 3 carbapenem-resistant E. coli), phage Bdp—
R2096 formed a clear zone on 16 of the 20 carbapenem-re-
sistant A. baumannii strains and 1 of the 3 carbaepenem-
and colistin-resistant A. baumannii strains with EOP of >0.5
(Table 1). However, we could not measure the EOP in the
other 23 isolates. Thus, phage Bdp-R2096 has strong species
and strain specificity and is a relatively broad host-spectrum
phage for carbapenem-resistant A. baumannii isolates.

Host cell lytic activity test of phage Bp-R2096

The bacteriolytic effect of phage B$p-R2096 on the A.
baumannii YMC13/03/R2096 isolate in vitro is shown
in Fig. 2. The absorbance (ODggg) of the uninfected
control culture increased rapidly (ODggo=1.49, 6h),
whereas all phage-Bp-R2096-infected cultures showed sig-
nificantly inhibited bacterial growth after 3h (MOI = 10,
ODggo = 0.37, 6 h), although the bactericidal effect exhib-
ited slight differences with changes in the MOI (Fig. 2).

Genome sequencing and bioinformatics analysis

The genome of phage B}p-R2096 was sequenced with
58,755 read lengths and 285-fold coverage. The linear
dsDNA of phage B$-R2096 was illustrated in Fig. 3a as a
circular form using DNAPIotter. The phage Bd-R2096
genome was annotated 32 of the 162 ORFs in the phage
Bp-R2096 genome, and among them, 12 predicted
proteins for phage structures (orf 41, orf 43, orf 44, orf
46, orf 51, orf 55, orf 56, orf 62). The DNA metabolism
modules (orf 81, orf 87, orf 88, orf 89) exhibited 24—51%
protein sequence similarity with A. baumannii phage
vB_AbaM_Acibel004 (GenBank accession no. NC_025462)
in the BlastP database (Additional file 1: Table S2). Also,
the putative tail fiber (orf 34) and putative endolysin (orf
68) revealed 71 and 56% of sequence similarity with A.
baumannii phage AM24 and A. baumannii phage AP22,
respectively (Additional file 1: Table S2). However, the
whole genome of the novel phage B$-R2096 has no BlastN
matches with any other Acinetobacter phage genomes, ex-
cept for Acinetobacter phage AM24 (GenBank accession
number KY000079). As shown in Fig. 3b, the genomic
structure of phage Bp-R2096 was compared with that of
phage AM24. This alignment indicates that the gene
organization of phage B$-R2096 and phage AM24 are simi-
lar, and share an overall high DNA sequence similarity (the
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Table 1 Clinical strains used in this study and their sensitivity to A. baumannii phage B$-R2096

Species and strains Sensitivity®to EOPP Species and strains Sensitivity to EOP
phage B¢-R2096 phage B¢-R2096

Carbapenem-resistant ~ YMC13/03/R2096 ++ 1.0 Carbapenem-susceptible ~ YMC13/05/R728 -

A baumanni YMCI13/01/R1400  ++ 09 A baumanni YMC13/05/R550 -

YMC13/01/R1224 + 0.6
YMC13/01/R1919 + 0.6
YMC13/01/R187 + 0.5
+
+

YMC13/01/R2058 0.6
YMC13/01/R1238 0.7
YMC13/01/R249 ++ 09
YMC13/01/R280 ++ 0.9
YMC13/01/R224 ++ 0.8
YMC13/01/R656 + 06
YMC13/03/R1209%  + 0.7
YMC13/01/R317 + 0.5
YMC13/01/R129 + 0.5
YMC13/01/R3197 + 0.6
YMC13/04/B720 + 0.6

YMC13/02/R291
YMC13/02/R319
YMC13/02/R401 -
YMC13/02/R427 -

YMC13/01/R588 -
YMC13/06/R2026 -
YMC13/01/R722 -
YMC13/06/R1660 -
YMC13/04/R3097 -
YMC13/01/R3428 -
YMC13/05/R407 -
YMC13/04/R3148 -
YMC13/01/R3291 -
YMC13/07/ R3044 + 0.5
YMC13/08/R2633 -
YMC13/09/R888
YMC13/01/B10214 -
YMC13/01/ B11605
YMC13/03/ B9708 -
YMC13/01/ B9566
YMC13/01/ B10710 -
YMC13/01/ B11097

Colistin-resistant

A. baumannii

Carbapenem-resistant
Pseudomonas aeruginosa

Carbapenem-resistant
Escherichia coli

®Phage activity against collected bacteria: ++, clear plaque; +, turbid plaque; —, no plaque
BThe efficiency of plating (EOP) was calculated as the titer (PFU/ml) on the test bacteria strain divided by titer (PFU/ml) on host bacteria strain

query coverage of 81%, the max identity of 98%). The viru-
lence and lysogeny-related genes (encoding protein such as
integrase) were not detected in the phage B-R2096 gen-
ome. In phage Bd-R2096 genome, 239 promoters and 45
rho-independent transcription terminators were predicted
by using BPROM and ARNold software, respectively.

Therapeutic effect of phage B@-R2096 against CRAB in
Galleria mellonella infection model

We used Galleria mellonella larvae as an animal model
to evaluate the effectiveness of A. baumannii phage
B$p-R2096 as a therapy against the YMC13/03/R2096
strain of CRAB. G. mellonella larvae were treated with
concentrated phage B(p-R2096 (1 x 10" PFU) at two
MOIs (MOI 100 and 10) 30 min after infection with
CRAB (1 x 10® CFU). The results in Fig. 4a show that
the bacteria-only-infection group died rapidly: 90 and
100% of larvae were dead at 16 h and 24 h, respectively.
However, the postinfection phage-treatment larval group
at an MOI of 100 had a survival rate of 80 and 50% at
16 h and 48 h, respectively. There was a statistically sig-
nificant improvement in survival rates of larvae treated
with phage at MOI of 100 and untreated control larvae
(p <0.0001) at 48 h. The phage-treated larval group at an
MOI of 10 exhibited 45% survival at 16 h, but this group

showed only 10% survival at 48 h. The two groups
injected with buffer (PBS + SM) and concentrated phage
solution (1 x 10'° PFU) showed no mortality or signs of
melanization after 48 h; thus, the phage caused no viru-
lence, and the injection caused no trauma.

To observe the effects of phage therapy in the larval
tissue, we examined the histology of larvae from each
experimental group. As shown in Fig. 4b, many mela-
nized nodules were detected in various areas of larval
tissue from the bacteria-only-treatment group (1 x 10%
CFU); however, the larval group that received postinfec-
tion phage treatment (MOI 100) had significantly less
tissue damage and melanization in the fat body well and
the muscle layer than the group that received only bac-
teria. Furthermore, the phage-only-treatment (1 x 10
PFU) groups did not exhibit any tissue damage not also
seen in the buffer-only-treatment (PBS + SM) group.

Therapeutic effect of phage against CRAB in a mouse
model of acute pneumonia

We investigated the survival rate in a mouse model of
acute pneumonia to assess the therapeutic effect and
safety of A. baumannii phage Bp-R2096 as an antibac-
terial agent. As shown in Fig. 5, A. baumannii phage
Bp-R2096 exhibited excellent elimination of the target
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Fig. 2 Time course of cell lysis by A. baumannii phage Bg-R2096 on carbapenem-resistant A. baumannii YMC13/03/R2096 strain. The host
bacterium, A. baumannii YMC13/03/R2096, was infected with phage B@-R2096 at MOlIs of 0.1, 1, and 10. The turbidity of the bacterial cultures was
measured by spectrophotometer at ODgqo. Data are presented as the mean + standard deviation
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bacteria. The bacteria-only-treatment mouse group all
died by day 5 postinfection; however, the mouse groups
who received phage treatment at 30 min postinfection
showed high survival rates on day 12 at MOI=10
(100%), MOI =1 (60%), and MOI = 0.1 (30%). Moreover,
no mice in the phage-only group or the control group
(buffer-treated) died and lost weight (Additional file 1:
Figure S4).

Histological changes and cytokines

We used a histological analysis and the immunogenicity of
lung samples to evaluate the efficacy of the phage therapy
in the mouse acute pneumonia model. We compared the
histological changes in the lung tissues from each group
using H&E staining (Fig. 6a). The bacteria-only-treatment
group sustained significant damage, such as severe thicken-
ing of the alveolar walls and hemorrhaging in the alveolar
space, on days 1 and 3, but the group that received phage
treatment postinfection showed only a slight region of mild
or moderate alveolar wall thickening. Moreover, the group
that received only phages showed no histological changes
compared with the control (buffer-treated) group on days 1
and 3. In the cytokine analysis (TNF-a, IL-10, IL-1p), the
levels of TNF-a (****p <0.0001), IL-6 (****p <0.0001), ex-
cept IL-1B (no significant difference), in the lungs of the
postinfection phage-treatment group were significantly re-
duced compared with the bacteria-only-treatment group on
day 1. The phage-only-treated group and control (buffer--
treated) group exhibited no appreciable levels of TNF-q,
IL-6 or IL-1p (Additional file 1: Figure S5).

Bacterial clearance and phage count

We measured the number of bacteria and phages in mouse
lungs from each group on days 1 and 3. Each point of Fig.
6 (b) and (c) indicates the bacterial or phage counts of a
single mouse. The bacterial load in the lungs of the postin-
fection phage-treatment group declined >2 log;, CFU
(**» <0.001) compared with the bacteria-only-treatment
group on day 1, and in the postinfection phage-treatment
group, bacteria were cleared completely from most of the
mouse lungs on day 3 (Fig. 6b). Viable bacteria were not
detected in the buffer only and phage-only-treatment
groups (data not shown) at the same time points. In phage
counts in the mouse lungs, the PFU value in the postinfec-
tion phage-treatment group was significantly higher (>6
logo PFU, ****p < 0.0001) than in the phage-only-treatment
group on day 1. By day 3, the number of phages in the post-
infection phage-treatment group had decreased signifi-
cantly (12.2 to 7.7 log;o PFU), and the PFU value of the
phage-only-treatment group had declined from 6.2 to 2.3
log;o PFU (Fig. 6¢). In this test, the control (buffer-treated)
group and the bacteria-only-treatment group (data not
shown) had no detectable phage plaques at any time point.

Discussion
The development of new antibiotics and their dramatic
effect on bacterial diseases have improved human life
since the middle of the twentieth century, but unfortu-
nately the emergence and worldwide spread of MDR
bacteria has become a major global challenge [52].

MDR bacteria are resistant to at least three different clas-
ses of antibiotics, such as carbapenems, aminoglycosides,
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and quinolones [53]. MDR Acinetobacter spp., including
CRAB, have been increasing during the past decade and
are of great medical concern worldwide [22]. Because the
need to control MDR infections is urgent, phages are being
newly studied as potential antibiotic alternatives.
Phage-related therapy has unique advantages, including
high specificity to target pathogens, self-replication, and
low toxicity, compared with commercial antibiotics [30,
35], which explains why the therapeutic effects of various
phages against many MDR bacterial infections, such as
Staphylococcus aureus, P. aeruginosa, and E. coli, have been
widely studied in animals [54—57].

In 2006, the US FDA approved food applications of
phages to eliminate food-borne pathogens such as Lis-
teria monocytogenes, Salmonella spp., and Shigella spp.
[35, 58]. Thus, bacteriophages are safe in humans and
stable in the environment, so they can be applied as al-
ternative therapeutic agents.

The purpose of this study was to characterize novel
Acinetobacter phage B$p—R2096, which lyses MDR Aci-
netobacter spp. including CRAB clinical isolates, in detail
and to provide in vivo data on the therapeutic effects of
phage B§-R2096 against CRAB clinical isolates in G.
mellonella infection and mouse acute pneumonia
models.

In this study, the host bacterium, CRAB YMC13/03/
R2096 strain, isolated from a patient is an ST 357 strain
belonging to EU clone II [59]. Especially, 16S rRNA
methylase ArmA gene which has high level of resistance
to various aminoglycosides also was identified in this or-
ganism (data not shown) [60].

The morphological features of phage By-R2096 indicate
that it is part of the family Myoviridae; it is similar to
other Myoviral Acinetobacter phage AP22 [61] and vB_A-
baM-IME-AB2 [40] (Fig. 1). The phage B-R2096 formed
clear round plaques, and showed plaque-surrounding
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Fig. 4 Survival of G. mellonella larvae treated with A. baumannii phage B@-R2096 against carbapenem-resistant A. baumannii YMC13/03/R2096 (a)
and histological features of the G. mellonella larvae (b). G. mellonella larvae treated with A. baumannii phage Bp-R2096 (MOI 100 and 10) after
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presented using the log-rank (Mantel-Cox) test (GraphPad Prism v 5.03). The results show the average of three independent trials (n = 20 larvae
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halos which are associated with phage-derived depoly-
merases on agar plates. This phenomenon indicates the
presence of depolymerase activity which degrades capsular
exopolysaccharides producing bacteria [62].

In vitro characterization of phage Bp-R2096 showed that it
has a high adsorption rate and burst size (Additional file 1:
Figure S2). In particular, this phage was relatively stable at
high temperatures and more stable at an alkaline pH than an
acidic pH for up to 10 months (Additional file 1: Figure S3).
These results suggest that phage B-R2096 is more stable

for long periods in storage and various physiological condi-
tions than that of previous reports [39, 63, 64]. In the host
spectrum using spot test, phage B§-R2096 exhibited a
specific and broad host range on the ST357 CRAB strains.
Especially; efficiency of plating (EOP) assay was performed
to assess a quantitative measure and possible “lysis from
without” phenomenon of lytic activities of phage Bdp-R2096
against CRAB strains (Table 1) [65]. In the host cell lysis test,
phage B¢-R2096 strongly prevented bacterial growth dose
dependently in vitro (Fig. 2). This result indicates that phage
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Fig. 5 Therapeutic effects of A. baumannii phage B@-R2096 in a mouse model of acute pneumonia caused by carbapenem-resistant A. baumannii
YMC13/03/R2096 strain. The C57BL/6 mice were intranasally inoculated with phage, bacteria, or both (n =6 mice per group). Group 1 (control):
PBS + SM buffer treatment; Group 2: A. baumannii-only-treatment; Group 3: phage B@-R2096-only-treatment; Groups 4-6: postinfection phage Be-
R2096-treatment (MOI 10, 1, 0.1) 30 min after A. baumannii infection. A second cyclophosphamide (CP) and first bacteria treatment was given on
day 2 (black arrow). Log-rank (Mantel-Cox) test, ***p < 0.001, *p = 0.0236

Bp-R2096 is a CRAB-specific lytic phage that could be a
promising antimicrobial agent to control CRAB.

To date, approximately 27 A. baumannii phage ge-
nomes have been completely sequenced and deposited
in the NCBI database (http://www.ncbi.nlm.nih.gov/gen-
ome/, May 1, 2018), and recently, the potential of thera-
peutic phage as a biocontrol agent against MDR-A.
baumannii has been reported [44, 66—71]. Zhou W et al.
[66] and Mathias Jansen et al. [67] presented synergy of
antibiotics and phages for the control of A. baumannii
strains in in vitro or in vivo, and Regeimbal JM et al.
[44] and Yin S et al. [68] also stated the therapeutic effi-
cacy of phage against A. baumannii using mouse wound
infection model. LaVergne S et al. [69] attempted human
trial on a patient with the MDR-A. baumannii craniect-
omy site infection. However, there is little information
studying the efficacy of phage therapy in the G. mello-
nella bacteremia and the mouse lung infection with
CRAB clinical isolates. Jeon ] et al. [71] and Yunfen Hua
et al. [70] reported that in the intranasal treatment of
monophage, phage therapy rescues the mice from lung
infection caused by CRAB strains. In this study, we also
investigated in details a novel Acinetobacter phage
B$p-R2096 against CRAB clinical isolates in vivo and in
vivo. In particular, to evaluate the therapeutic efficacy of
phage, we employed the G. mellonella wax moth larvae
infection and the mouse acute pneumonia model.

In a G. mellonella infection model, a single dose of
phage B$-R2096 increased survival rate of G. mellonella
against CRAB clinical isolates. Moreover, the G. mello-
nella used in this study exhibited no toxicity from the
concentrated phage (1 x 10'° PFU) injections.

In a previous study, at low MOI, survival of G. mello-
nella was similar to that of our phage for 20 h, but these

G. mellonella larvae were treated with phage cocktail
[72]. In another study, although G. mellonella were
treated with MOI of 0.1 showed higher survival of larvae
than this study [66]; however, we used CRAB strain
which includes the 16S rRNA methylase gene armA
clinical strain as host in this study.

Previous in vivo studies of the therapeutic potential of
phages against bacterial pathogens such as P. aeruginosa,
Clostridium difficile, Klebsiella pneumonia, and A. bau-
mannii have used a G. mellonella infection model [44,
48, 50, 73, 74]. Also, some studies have shown a signifi-
cant correlation between the G. mellonella model and a
mouse infection model, moreover, phages improved sur-
vival in a dose dependent and time-dependent manner
in these infection models; in fact, bacterial isolates are
more virulent in the G. mellonella larval model than
they are in the mouse model [74, 75]. Thus, compared
with the mouse infection model, the G. mellonella larval
model is a simpler, faster, more cost-effective, and more
predictive model system for studying both the toxicity of
pathogens and the therapeutic effects of phages against
bacterial infections [74].

In the mouse acute pneumonia model, a single dose of
phage B$-R2096 produced a strong therapeutic effect in
all the mice. Especially, this phage exhibited approxi-
mately 2 to 3-fold higher survival rate at low MOI (MOI
of 0.1) than that of Jeon J et al. [71] and Yunfen Hua et
al. [70]. To investigate whether high-dose intranasal
phage administration had side effects in this mouse
model, we intranasally administered a high dose of
phage B$-R2096 (10*' PFU/ml) to female C57BL/6 mice
(n=6). No deaths, decreases in bodyweight, or abnormal
symptoms, such as lethargy, piloerection, or hunching
occurred during the following 15 days (data not shown).
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Fig. 6 Histological features of mouse lungs (a), bacteria CFUs (b), and phage PFUs (c) in mouse lungs on days 1 and 3 after treatment with
carbapenem-resistant A. baumannii YMC13/03/R2096 clinical strain, phage Bp-R2096, or both. Five mice were sacrificed from each group on days
1 and 3. Sections of mouse lungs were stained with hematoxylin and eosin and observed at a magnification of x 10. The horizontal bar
represents the mean value for each group. The one-way ANOVA with Tukey's multiple comparisons test was used to compare the phage
concentration data. Significant differences (****p < 0.0001) are indicated by asterisks

Also, none of those animals (n=6) exhibited apparent
histological changes in their lungs (data not shown).
Therefore, the intranasal administration of a single high
dose of phage Bp-R2096 had no significant side effects
on the health of the animals in the mouse infection
model. Our results thus show that phage Bd-R2096 can
eliminate MDR pathogens and ameliorate disease symp-
toms in animals without causing any adverse effects.

In view of the correlation between the two in vivo
models: although the two models used different infection
routes for the phage and bacteria, and the larval model
did not show survival rates as high as those in the mouse
infection model, both models showed improvements from

the phage treatment. Therefore, we suggest that in future
studies, the G. mellonella model is an adequate animal
model for assessing the safety and effectiveness of phage
therapy.

Conclusions

Acinetobacter phage B¢-R2096 is a newly discovered
Myoviral bacteriophage, and we investigated its physio-
logical characteristics and performed a whole genome
analysis. Also, we evaluated its therapeutic effects
against the carbapenem-resistant A. baumanniiYMC13/
03/R2096 clinical strain in two animal infection models.
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Overall, phage B$p-R2096 showed a strong bacteriolytic
activity in vitro and a significant reduction in mortality
in both the G. mellonella larval model and the mouse
acute pneumonia model; moreover, it ameliorated the
pathogenic effects of the CRAB infection in both
wax-moth larvae and mouse lungs. Interestingly, the two
animal models also showed significant correlation for
the efficacy of the phage as a therapeutic agent. In this
study, our research strongly suggests that phage treat-
ment can effectively eliminate pathogens and reduce the
mortality of CRAB infections in vitro and in vivo. There-
fore, we expect that phages will become new therapeutic
agents for treating human pulmonary infections caused
by clinical CRAB. Furthermore, the clear understanding
of the physiological and molecular features of phages
that we provided in this study proposes new promising
strategies to control MDR pathogens. To the best of our
knowledge, this is the first study to compare the thera-
peutic efficacy of a phage lysing CRAB between the G.
mellonella infection model and the mouse acute pneu-
monia model.

Methods

Bacterial strains

The 20 CRAB strains used in this study to screen A.
baumannii lytic phages were collected from patient sam-
ples taken at a tertiary-care hospital in Korea in 2013. The
identification and antimicrobial susceptibility by CLSI
guidelines of the CRAB clinical isolates were confirmed
using previously published methods [76]. We selected 20
carbapenem-resistant and 11 carbapenem-sensitive A.
baumannii clinical isolates for the host spectrum test of the
isolated phage. We used pulsed-field gel electrophoresis
(PFGE) to analyze bacterial genetic differences (Additional
file 1: Figure S1). To describe the genetic backgrounds of
the CRAB isolates, we conducted multilocus sequence typ-
ing (MLST), and we used a multiplex PCR assay to detect
OXA carbapenemase genes in the CRAB strains [77]. The
list of bacterial strains used in this study is given in Table 1.
The carbapenem-resistant A. baumannii YMC13/03/R2096
strain from the sputum of a patient with pneumonia, the
host bacteria of phage Bdp-R2096, was used to study the prep-
aration, physiological characteristics, and in vivo therapeutic
effects of phage Bp-R2096. Eleven carbapenem-susceptible A.
baumannii, three colistin-resistant A. baumannii, three
carbapenem-resistant Pseudomonas aeruginosa, and three
carbapenem-resistant Escherichia coli were used to determine
the infectivity of phage Bg-R2096.

Isolation of bacteriophage

The CRAB lytic phages isolated from sewage samples of
a hospital in South Korea were purified and concen-
trated using methods described previously [76, 78].
Briefly, the sewage water was treated NaCl (1 M) and
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polyethylene glycol (PEG) 8000 (total volume of 10%,
Sigma), incubated at 4°C for 24 h, filtered using 0.22 pm
membranes (Millipore Corporation, Bedford, MA, USA),
and then centrifuged at 12,000xg for 1 h at 4 °C and resus-
pended in sterilized sodium chloride-magnesium sulfate
(SM) buffer (100 mM NaCl, 8 mM MgSOy,, 2% gelatin, 50
mM Tris—HCl, pH7.5). The resuspended solution was
mixed with 20 A. baumannii strains and incubated at 37 °C
for 24h, and then the cultured solution was centrifuged
and filtered. For initial phage isolation, spot tests were per-
formed, and one single-clear plaque of the formed plaques
by double-layer agar method was transferred in to a tube of
LB broth using a sterile pipette tip. For phage purification,
this process was repeated until one-plaque morphology was
exhibited at least three times [61]. To concentrate the puri-
fied phages, we precipitated them using PEG 8000 (total
volume of 10%), centrifuged them (12,000xg at 4°C for 1
h), and then resuspended them in SM buffer. Phage titra-
tion was calculated by the plaque assay using a double-layer
method [78].

Transmission electron microscopy

Concentrated phage B{p-R2096 (approximately 10*' PFU/
ml) was adsorbed onto carbon-coated copper grids and
negatively stained with 2% uranyl acetate for 15s. Phage
morphologies were confirmed using a transmission elec-
tron microscope (JEOL JEM-101, Tokyo, Japan) at 80 kV.

Host range test

The host range of the purified phage against the col-
lected clinical isolates was determined by spot tests, as
described previously with some modifications [79].
Briefly, purified phage stock (1 x 10'® PFU/ml) was seri-
ally diluted with SM buffer. 5pul drop of diluted phage
solution was spotted and dried on Luria-Bertani (LB)
agar plates, each of which contained a different bacterial
strain, and then the plates were incubated at 37 °C for
12 h. When clearing zones formed against each bacterial
host, plaque clarity was evaluated as clear (++), turbid
(+), and no plaque (-). Efficiency of plating (EOP) was
evaluated using diluted phage suspension (1 x 10> PFU/
ml) by the double-layer agar plate method, and was pre-
sented by the ratio of phage titer on the test strain to
that on the host strain [80].

Host cell lytic activity test

The host bacterium, A. baumannii YMC13/03/R2096,
was cultured up to ODggo=0.2 at 37°C in 30ml LB
medium and mixed with the phage at a multiplicity of in-
fection (MOI) of 0.1, 1, and 10. During shake-culturing at
37°C, samples of 1 ml were taken at 1 h intervals for 6 h,
and bacterial turbidity was measured by spectrophotom-
etry at ODggo nm; these tests were assessed in triplicate.
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Genome sequencing and bioinformatics analysis
Bacteriophage genomic DNA was extracted using stand-
ard phenol—chloroform extraction protocols, as described
previously [81]. The genome sequencing of purified phage
DNA was conducted at ChunLab, Inc. (Seoul, South
Korea) using a 454 GS Junior Genome analyzer (Roche
Life Sciences, Branford, CT, USA). The complete genome
sequence was analyzed using the Roche gs Assembler
(version 2.6; Roche) and CLC genomics wb 4.8 (CLCbio,
Aarhus, Denmark). We compared it with the genome se-
quences of other phages using the NCBI database (http://
www.ncbi.nlm.nih.gov/). The prediction of open reading
frames (ORFs) was performed using the NCBI ORF finder
and GenMark.hmm software [82]. The putative promoter
and rho-independent transcription terminators were pre-
dicted by using the Softberry program (http://www.soft-
berry.com) and ARNOLD software (http://rna.igmors.u-
psud.fr/toolbox/arnold/), respectively. The tRNA genes
were predicted by using the tRNAscan-SE program [83].
The similarities (blast E value cutoff of 0.1) of all putative
proteins were confirmed by BlastP and PSI-BLAST
(http://www.ebi.ac.uk/Tools/sss/fasta/). A map of the an-
notated phage genome was generated using DNAPIotter
[84], and phage genome was compared by using Easyfig
software (version 2.1) [85].

Galleria mellonella larvae infection model

Galleria mellonella wax moth worms were used as an in
vivo model to assess the therapeutic effects of the iso-
lated A. baumannii lytic phage against A. baumannii
clinical strains and were evaluated as described previ-
ously, with some modifications [86].

All the G. mellonella larvae were maintained on an artifi-
cial diet (25% liquid honey, 20% glycerin, 5% dried beer yeast,
15% wheat flour, 15% skim milk powder and 20% polent) for
2 days at 25°C. And larvae kept without food in a 90-mm
Petri dish in darkness for 24 h at 37 °C before the experi-
ments. Wax moth worms were randomly selected (weight
200-250 mg) and swabbed with 70% ethanol to reduce po-
tential contamination caused by the injection. Larvae were
divided into 5 groups: 1. Buffer (phosphate-buffered saline
[PBS] + SM)-only group, 2. Bacteria-only-treatment (1 x 10°
CFU/ml) group, 3. Phage-only-treatment group (1 x 10
PFU/ml), 4. Postinfection phage (MOI 100)-treatment group
(1x10" PFU/ml), and 5. Postinfection phage (MOI
10)-treatment group (1 x 10° PFU/ml). Thirty minutes after
larvae received 5 pl of bacteria in the right side last proleg by
injection, 5 pl of phages or buffer were injected into a differ-
ent last proleg using a 10-ul Hamilton syringe (701RN;
Hamilton Bonaduz AG, Bonaduz, Switzerland). The injected
larvae were incubated in the dark at 37 °C in 90-mm plastic
Petri dishes and monitored for their survival at 8-h intervals
for 48 h. Galleria mellonella larvae were considered dead
when they did not move in response to touch with a pipette
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tip. All experiments used 10 larvae per group and were re-
peated three times.

Histology of larvae

The collected larvae were processed for histology, as
previously described with modifications [87]. Briefly, the
larvae in each group were fixed in 10% formalin for 4
days (injected with 100pl of 10% formalin) and
embedded in paraffin. The larval tissue sections were
routinely stained with hematoxylin and eosin (H&E),
and the tissue morphology was observed using an optical
microscope.

Phage therapy in the mouse infection model
To evaluate the therapeutic safety and efficacy of the bac-
teriophage in vivo, we used six groups of C57BL/6 mice (fe-
male aged 7-8 weeks) with six mice per group, divided as
follows: group 1, buffer-only-treatment (PBS, Invitrogen, +
SM) mouse group; group 2, bacteria-only-treatment mouse
group; group 3, phage-only-treatment mouse group; group
4-6, postinfection phage-treatment (MOI=10, 1, 0.1)
mouse groups. Briefly, all of the mice used in the experi-
ments were immunized by the intraperitoneal (ip.) route
using cyclophosphamide (200 mg/kg, Sigma-Aldrich) at
48-h intervals [88]. Mice were treated by the intranasal
route with phage solution (1 x 10'® PFU/ml, 30 ul) or SM
buffer 30 min after infection with 1 x 10° CFU/ml, 30 yl, or
PBS buffer administration by i.p. injection while anesthe-
tized with Zoletil-Rompun. Each group was monitored for
mortality, abnormal behavior, and body weight for 12 days.
For bacterial clearance, phage count, cytokine, and hist-
ology analyses, four groups of mice (ten mice per group)
were divided as follows: group 1, buffer-only-treatment (PBS
and SM) mouse group; group 2, phage-only-treatment
mouse group; group 3, bacteria-only-infection mouse group,
and group 4, postinfection phage-treatment (MOI = 10)
mouse group (30 min after infection). These mice did not re-
ceive cyclophosphamide injections. Mice were sacrificed on
day 1 (five mice per group) or 3 (five mice per group) after
measuring their body weights, and their lungs were collected.
Blood was sampled from the eyes of the mice at the same
time. The supernatants of the lung lysates and serum were
stored at — 70 °C for the cytokine analysis. The mice were eu-
thanized through CO, asphyxiation followed by cervical
dislocation.

Bacteria clearance and phage counting

To determine bacterial counts in the mouse lungs at days 1
and 3 after bacterial infection, the lung samples from each
group were homogenized and serially diluted in PBS and
then plated onto LB agar plates with ampicillin (50 pg/ml).
To assess the bacteriophages, the supernatants of the lung
and blood samples collected from each mouse group were
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serially diluted and counted using the double-layer agar
method at each time point.

Histology of mouse lungs

Mouse lungs were processed for histology, as previously
described with modifications [89]. Briefly, to evaluate
histological features, the right lung tissues were removed
and fixed in 10% formalin. The specimen were dehy-
drated in graded alcohol and embedded in paraffin. The
lung tissue sections of 3 um-thick were stained with
H&E and observed using an optical microscope.

Ethics statement

All animal experiments followed the regulations of the
Institutional Animal Care and Use Committee of Yonsei
University College of Medicine, Seoul, Korea (IACUC
Approval no. 2014-0031-2).

Statistical analysis

We used the log-rank (Mantel-Cox) test and statistical
software (GraphPad Prism Software, version 6; GraphPad
Software, San Diego, CA, USA) to compare groups in the
survival curve test. A one-way ANOVA followed by
Tukey’s test (GraphPad Prism Software) was used to com-
pare statistical calculations for bacterial and phage titers.
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Additional file 1: Figure S1. Pulsed-field gel electrophoresis (PFGE) ana-
lysis of 31 carbapenem-resistant and -susceptible A. baumannii isolates.
Figure S2. The adsorption rate (A) and one-step growth curve (B) of A.
baumannii phage B@-R2096 on A. baumannii strain YMC13/03/R2096.
Figure S3. Temperature and pH stability of A. baumannii phage Be-
R2096 on A. baumannii strain YMC13/03/R2096. Figure S4. Body weight
of C57BL/6 mice infected with A. baumannii phage Bp-R2096, A. baumannii
YMC13/03/R2096, or both. Figure S5. The concentration of cytokines
(TNF-q, IL-6, and IL-1B) in the lungs of mice on days 1 and 3 after treatment
with A. baumannii YMC13/03/R2096, phage B@-R2096, or both. Table S1.
Antibiotic resistance profiles of carbapenem-resistant A. baumannii clinical
strains used in this study. Table S2. A. baumannii phage Bp-R2096 ORFs
summary. (DOCX 698 kb)
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