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Abstract

Background: Asthma, one of the most common chronic respiratory disorders, is associated with the hyper-activation of
the T-cell subset of adaptive immunity. The gut microbiota may be involved in the development of asthma through the
production of short-chain fatty acids (SCFAs), exhibiting modulatory effects on Th. So, we performed a metagenome-
wide association study (MWAS) of the fecal microbiota from individuals with asthma and healthy controls. And that was
the first case to resolve the relationship between asthma and microbiome among UK adults.

Results: The microbiota of the individuals with asthma consisted of fewer microbial entities than the microbiota of
healthy individuals. Faecalibacterium prausnitzii, Sutterella wadsworthensis and Bacteroides stercoris were depleted in cases,
whereas Clostridiums with Eggerthella lenta were over-represented in individuals with asthma. Functional analysis shows
that the SCFAs might be altered in the microbiota of asthma patients.

Conclusion: In all, the adult human gut microbiome of asthma patients is clearly different from healthy controls. The
functional and taxa results showed that the change of asthma patients might related to SCFAs.
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Background

Asthma is a prevalent chronic respiratory disorder, af-
fecting millions of people globally [1]. Besides several
risk alleles associated with asthma have been reported
[2], the gut microbiota also acts an essential role in the
emergence and development of asthma [3].

The gut microbiota influences metabolic and im-
mune homeostasis [4, 5]. This symbiotic relationship
is related to diverse host physiological functions [6].
It is conventionally believed that asthma is associated
with the over-activation of the T-cell subset arm of
adaptive immunity characterized as the up-regulation
of the pro-inflammatory T-cell subset activity [3, 7].
And the microbiome possibly influences the T-cell
populations through the microbe-derived short-chain
fatty acids (SCFAs), which can regulate T cell activity
and further affect asthma [8]. As the metabolic bal-
ance of SCFAs depends on the symbiosis of micro-
biota, an impaired gut micro-ecosystem might be
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involved in the development of asthma [9]. This idea
is supported by the emerging evidence from the study
on the microbiota of neonates who subsequently de-
velop asthma during childhood [10], and vyet, little is
known on association between gut microbiota and
asthma in adults.

Here, we present the results of the analysis on the
metagenomic data of 36 asthma patients and 185 healthy
controls selected from a former study [11]. We identify
meta-genomic species (MGSs) [12] characteristic of
asthma, and the differentially enriched Gut metabolic
modules (GMMs) [13] between asthma and control sam-
ples, which revealed an association of altered short chain
fatty acid metabolism with asthma.

Results

Global alterations of the gut microbiome in asthma

To investigate the gut microbiota in asthma, we extracted
the high-quality meta-genomic shotgun sequencing data of
36 asthma cases and 185 control samples from the data-
base of a previous study [11] (Additional file 1: Table S1).
These reads were aligned to the human gut microbial gene
catalog composing of 11.4 million genes constructed
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in the same study [11], that leads to the mapping of
averaged 80.19% of sequencing reads per sample
(Fig. 1a, b, Additional file 1: Table S1B).

To evaluate the potential effects of the clinical and
lifestyle factors [14] on the gut microbiota (Fig. 1c, d,
Additional file 1: Table S1A), we conducted permuta-
tional multivariate analysis of variance (PERMANOVA)
[15] with the microbial gene abundance profiles. Patients
diagnosed with asthma was associated with an alteration
of the global microbiota composition (Additional file 2:
Table S2), along with a couple of lifestyle factors, Body
Mass Index (BMI)and ages, which show great difference
in PERMANOVA (Additional file 2: Table S2), but not

Page 2 of 7

significant between asthma and control samples (two-
tailed Wilcoxon-rank sum test, p > 0.5) (Fig. 1c, d).

Gut microbial richness and evenness were compared
between control and asthma samples at the level of
genes, MGSs and KEGG Orthology (KOs) (Fig. 2). The
numbers of genes, MGSs (p =0.026, p = 0.021, respect-
ively, two-tailed Wilcoxon-rank sum test, Fig. 2a, c), and
KOs (p=0.0559, Welch’s t-test, Fig. 2e) are lower in
asthma patients compared to control, while the
alpha-diversities at the three levels show difference be-
tween these two groups (Fig. 2b, d, f).

To show the differences of main genera and phyla
level abundance between asthma patients and healthy
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Fig. 1 High quality reads and lifestyle factor. a-b The count (p = 0.5096, two-tailed Wilcoxon-rank sum test) and rate of aligned to geneset (p = 0.3896,
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Fig. 2 Reduced gut microbial richness in asthma. (a-f) Richness and alpha-diversity (Shannon index) at the gene, MGS and KO level of the two
cohorts (Test by two-tailed Wilcoxon-rank sum test). Box plots showing both the richness values or diversity values and their density
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controls, we selected 117 genera and 15 phyla which oc-
currence rate more 50% versus patients and control.
Then we calculated the mean relative abundance of se-
lected genera and phyla then compared the top 15 gen-
era and top 5 phyla versus patients and healthy people
(Additional file 3: Figure S1, Additional file 4: Figure S2,
Additional file 5: Table S3, Additional file 6: Table S4).
In the genera level the Faecalibacterium is significant
enriched in control, Blautia major in asthma patents (two-
tailed Wilcoxon-rank sum test, p < 0.05, Additional file 3:
Figure S1, Additional file 5: Table S3).

And to clear up the potential bias of twins, we just
picked data from only one of the twins at random for
each pair, that also showed imbalance between these two
cohorts (Additional file 7: Figure S4).

These results demonstrate a reduction of gut microbial
content under the condition of asthma (especially in

gene and MGS level), indicating the undergrowth of cer-
tain microbial entities in patients with asthma.

MGSs characteristic of asthma

To obtain more insights into the signatures of the gut
microbiome in asthma or healthy samples, co-abundance
gene present in more than 90% samples were clustered into
12,226 co-abundance gene groups (CAGs), including 500
meta-genomic species (MGSs) which have no fewer than
700 genes and represent microbial species [16]. A total of 68
of the MGSs differ significantly in abundance between
asthma and control samples (two-tailed Wilcoxon-rank sum
test, p < 0.05, FDR < 0.2), with 19 of these being more abun-
dant in asthma samples (Fig. 3, Additional file 8: Table S5).
Correlation network was constructed for MGS enriched in
either group (Fig. 3).
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Faecalibacterium prausnitzii is a butyrate-producing
bacterium, same as Coprococcus eutactus [16], and also an
anti-inflammatory commensal bacterium [17]. We found
Faecalibacterium prausnitzii is enriched in the gut of
healthy people, and this finding is consisted with former
studies that F. prausnitzii was also enriched in healthy in-
fants but not in asthma development infants [10]. (Fig. 3,
Additional file 8: Table S5). Moreover, the species, such as
Sutterella wadsworthensis and Bacteroides stercoris, are
found to be enriched in our control, this finding is identical
with the former 16S study, in which S.wadsworthensis and
B.stercoris were also found to be enriched in healthy people
[18, 19] (Fig. 3, Additional file 8: Table S5). The abundance
of Eubacterium eligens, a bacterium previously associ-
ated with pectin fermentation in the colon is higher in
control samples than in asthma samples [20] (Fig. 3,
Additional file 8: Table S5). The abundance of Metha-
nobrevibacter smithii, which makes up 10% of all anaer-
obes in the colons of healthy adults and that can be a
therapeutic target for reducing energy harvest in obese
humans [21], is higher in control (Fig. 3, Additional file 8:
Table S5).

In contrast, the asthma enriched Clostridiums include
Clostridium bolteae, Clostridium ramosum, and Clostrid-
ium spiroforme. The first species is targeted for treat and
diagnostic for autism [22]. Clostridium ramosum, associ-
ated to obesity and the down-regulation of it can reduce

the severity of high-fat diet-induced obesity [23]. Also,
Clostridium spiroforme is higher in asthma than in
control samples (Fig. 3, Additional file 8: Table S5).
The asthma-enriched species Eggerthella lenta is iden-
tified in inflammatory bowel disease patients [24]
(Fig. 3, Additional file 8: Table S5).

Besides the abundance differences between asthma and
control samples, the MGSs also show differences in net-
work structure (Spearman’s correlation coefficient (cc) > 0.3
or <-0.3, Fig. 3). Most notably, the asthma-enriched spe-
cies Clostridium bolteae and Eggerthella lenta has negative
correlations with the asthma-depleted species Faecalibac-
terium prausnitzii (Fig. 3, Additional file 8: Table S5). These
results demonstrate imbalances in the composition and
inter-species relationship in the gut microbiome of asthma
patients as compared to healthy controls.

Functional changes in the microbiome of asthma

Here, we used the GMMs [13] to investigate the micro-
bial functional difference between the asthma patients
and healthy control (Table.1; Additional file 9: Table S6,
two-tailed Wilcoxon-rank sum test, P< 0.05, FDR. =
0.2). Results show that the models related to the metab-
olism of several amino acids, glycometabolism, lipid
metabolism are enriched in the asthma patients. On the
contrary, the modules enriched in the healthy people are
related to hydrogen metabolism, butyrate production,
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Table 1 Different GMMs be enriched: This table list the statistically significant GMMs (U statistic of two-tail Wilcoxon rank-sum test,
P <0.05, FDR < 0.26, Effect size equal to ( —%)), where n and m is the sample size of case and control)); whole GMMs please refer

to Additional file 9: Table S6

GMM_ID Functional assignment P value Effect size

Asthma enriched
MF0074 pyruvate: formate lyase 0.000162909 0.397597598
MF0085 urea degradation 0.00026136 0.384984985
MF0029 aspartate degradation |l 0.000862902 0.351351351
MF0063 glyoxylate bypass 0.003920233 0.304204204
MF0049 threonine degradation | 0.004991377 0.296096096
MF0040 proline degradation 0.008443348 0.277777778
MF0091 ethanol production Il 0.0093327 0.274174174
MF0021 xylose degradation 0.011645774 0.266066066
MF0051 arginine degradation | 0.012930992 0.262162162
MF0059 anaerobic fatty acid beta-oxidation 0.020317732 0.244744745
MF0050 threonine degradation Il 0.030266319 0.228528529
MF0069 NADH: ferredoxin oxidoreductase 0.035386145 0.221921922

Control enriched
MF0098 hydrogen metabolism 0.002663119 -0.316816817
MFO0088 butyrate production | 0.017167351 —0.251351351
MF0028 aspartate degradation | 0.028985702 —0.23033033
MF0086 acetyl-CoA to acetate 0.029620059 —0.229429429
MF0073 pyruvate: ferredoxin oxidoreductase 0.036904556 —-0.22012012

aspartate degradation, acetate production and pyruvate
processing (Table.1, Additional file 9: Table S6). These
changes indicate deviations from the normal nutrient
metabolic states in the microbiota of asthma patients,
especially those in SCFA metabolism which enriched in
control samples has modulatory effects on Th2 [8].
Meanwhile according to the virulence factor database
(VEDB), more virulence factors significantly enriched in
the asthma samples compared to the control samples
(Additional file 10: Figure S3, Additional file 11: Table S7).

Discussion

Herein we aligned our high-quality reads to the lasted
human gut microbial gene catalog [12] and demon-
strated the difference of identified genes, phylogenies,
and functions in the gut microbiome of asthma patients
and healthy controls through the metagenome-wide as-
sociation study.

Some enriched species were also reported in previous
study [16-23, 25] and the SCFAs which was depleted in
case revealed some functional changes in asthma pa-
tients. To explore more in this field, more analysis
should be conducted in future researches.

It was believed that asthma is associated with the
over-activation of the T-cell subset of adaptive immunity

characterized by the up-regulation of the pro-inflammatory
T-cell subset activity [8]. Meanwhile, the SCFA metabolism
in our gut could regulate the activity of T-cell subset activ-
ity as well [8, 26]. And the functional and taxa results shows
that not just the SCFAs metabolism, moreover some
SCFAs-producing species, F. prausnitzii [16, 17] and
C.eutactus [16],also depleted in asthma patients. The alter-
ation possibly modulating both the innate and the adaptive
immune system might play an important role in the asthma
pathogenesis.

Conclusions

All in all, the human gut microbiome of asthma pa-
tients is clearly different from healthy controls. The
lack of diversity of the gut microbiome is presented in
asthma patients. And the absence of certain bacteria
related to SCFA metabolism in asthma patient might
accelerate the emergence and development of asthma.
The asthma-depleted species, F. prausnitzii and C.eutac-
tus were butyrate-producing bacteria. It is anticipated that
exploring the gut microbial communities in this study will
contribute to finding more treatments for asthma and
provide a brand-new perspective of human-microbial
relationships.
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Methods

Aim and design of the study

We used the MWAS [24] methods to dig into the difference
between asthma patients and healthy and found the poten-
tial treatment for asthma in the level of metagenomics.

Material

The sequencing data of 221 sample, including 36 asthma
patients and 185 healthy controls were from the former
study [12]. The reads aligned to the updated 11.4 million
genes catalog [12] after filtered low quality reads and the
reads align to host genome(hg19) with in-house scripts.

Taxonomic annotation and abundance calculation

To assign the taxa of target genes, we used the database,
Integrated Microbial Genomes (IMG, v400), with the
inner pipeline detailed previously [12], the abundance of
taxa was calculated by the sum of corresponding genes.

Alpha-diversity and gene count

The within-sample diversity was calculated by gene pro-
file of samples with Shannon index, as described previ-
ously [12]. Genes were considered present with more
than one read map to it.

Remove the bias of twins

To eliminate the bias from twins, we randomly selected
the one from the pairs with the ‘random’ function in Py-
thon (Python 2.7).

PERMANOVA of the effects of related factors

To evaluate the effects of the clinical and lifestyle factors
on listed, we calculated the Permutational multivariate ana-
lysis of variance (PERMANOVA) [15] with the gene abun-
dance files of the samples. The Bray-Curtis distance and
9999 permutations in R (3.2.5, vegan package) were used.

Metagenome-wide association study

To investigate the different taxa of the fecal microbiome
between healthy controls and asthma patients. We clus-
tered all genes were presented at least in 90% samples
into MGSs according to previous describe [12]. Taxo-
nomic annotation and abundance characteristics of the
MGSs were carried out as described previously [12].
When comparing two groups, MGSs were further calcu-
lated according to Spearman’s correlation between their
abundances in all samples, and the software, Cytoscape
3.4.0, was used to visualize the co-occurrence network.
The Wilcoxon rank-sum test (P < 0.05) was used to de-
termine the orientation of enrichment.

Gut metabolic modules analysis
Each GMM abundance was calculated as the median of
KO abundance with 66% coverage just as showed in the
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former article [13]. And When comparing two groups,
the Wilcoxon rank-sum test (P < 0.05) was used to deter-
mine the orientation of enrichment.

Virulence factors

Virulence factors were analyzed according to VFDB
(2585 proteins as of 16 August 2016). Genes in the refer-
ence gut microbiome gene catalog were identified as
these virulence factors (best match according to BlastP,
identity > 35%, score > 60), and their relative abundances
could then be determined accordingly and only accept
present in more than 50% samples.

Additional files

Additional file 1: Table S1. Sample information: The clinical and
sequencing information of the sample. (XLS 71 kb)

Additional file 2: Table S2. Factors influence the gut microbiome: Test
the factors influence the gut microbiome with PERMANOVA. (XLS 7 kb)

Additional file 3: Figure S1. The top 15 genera (the mean relative
abundance more than 0.46%) in the cohort versus asthma patients to
control individuals (two-tailed Wilcoxon-rank sum test, Additional file 5:
Table S3c). Genus in blue and red denote asthma-enriched and control-
enriched genus respectively (two-tailed Wilcoxon rank-sum test, P < 0.05).
We selected 117 genera which occurrence rate more 50% versus patients
and control as core genera (two-tailed Wilcoxon rank-sum test, P < 0.05,
FDR < 0.26). (PDF 302 kb)

Additional file 4: Figure S2. The top 5 phyla (the mean relative
abundance more than 1.78%) in the cohort between asthma patients
and control individuals (two-tailed Wilcoxon-rank sum test, Additional file 6:
Table S4c): Phyla in blue and red denote asthma-enriched and control-
enriched phyla respectively (two-tailed Wilcoxon rank-sum test, P < 0.05).
(PDF 133 kb)

Additional file 5: Table S3. The genus: The relative abundance and
statistical test of the genus. (XLS 1084 kb)

Additional file 6: Table S4. The phylum: The relative abundance and
statistical test of the phylum. (XLS 95 kb)

Additional file 7: Figure S4. Reduced gut microbial richness in only
one twin sample. (a-f) Richness and alpha-diversity (Shannon index) at
the gene, MGS and KO level of the two cohorts (Test by two-tailed
Wilcoxon-rank sum test). Box plots showing both the richness values or
diversity values and their density. (PDF 262 kb)

Additional file 8: Table S5. MGSs from the cohort: The relative
abundance and statistical test of the MGSs. (XLS 1648 kb)

Additional file 9: Table S6. Differentially enriched GMMs: The relative
abundance and statistical test of the GMMs. (XLS 394 kb)

Additional file 10: Figure S3. The number of significant enrichment
virulence factor (VF): we counted the significant (two-tailed Wilcoxon
rank-sum test, P < 0.05) enrichment VF in different cohort. (PDF 92 kb)

Additional file 11: Table S7. The VFG: The relative abundance and
statistical test of the VFGs. (XLS 3741 kb)
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BMI: Body Mass Index; CAGs: Co-abundance gene group; GMMs: Gut
metabolic modules; KO: KEGG Orthology; MGSs: Meta-genomic species;
MWAS: Metagenome-wide association study; PERMANOVA: Permutational
multivariate analysis of variance; SCFAs: Short-chain fatty acids; VF: Virulence
factor; VFDB: Virulence factor database
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