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Abstract
Background: Ehrlichia chaffeensis is a rickettsial agent responsible for an emerging tick-borne
illness, human monocytic ehrlichiosis. Recently, we reported that E. chaffeensis protein expression
is influenced by macrophage and tick cell environments. We also demonstrated that host response
differs considerably for macrophage and tick cell-derived bacteria with delayed clearance of the
pathogen originating from tick cells.

Results: In this study, we mapped differences in the promoter regions of two genes of p28-Omp
locus, genes 14 and 19, whose expression is influenced by macrophage and tick cell environments.
Primer extension and quantitative RT-PCR analysis were performed to map transcription start sites
and to demonstrate that E. chaffeensis regulates transcription in a host cell-specific manner.
Promoter regions of genes 14 and 19 were evaluated to map differences in gene expression and to
locate RNA polymerase binding sites.

Conclusion: RNA analysis and promoter deletion analysis aided in identifying differences in
transcription, DNA sequences that influenced promoter activity and RNA polymerase binding
regions. This is the first description of a transcriptional machinery of E. chaffeensis. In the absence
of available genetic manipulation systems, the promoter analysis described in this study can serve
as a novel molecular tool for mapping the molecular basis for gene expression differences in E.
chaffeensis and other related pathogens belonging to the Anaplasmataceae family.

Background
Ehrlichia chaffeensis, an obligate, intracellular, tick-borne
bacterium that belongs to the family Anaplasmataceae, is
responsible for an emerging disease in humans called
human monocytic ehrlichiosis (HME) [1,2]. The trans-
mitting vector of E. chaffeensis, Amblyomma americanum,
acquires the pathogen during a blood meal from an
infected host [2]. Host cell adaptation and establishment
of persistent infection in tick and vertebrate hosts are crit-
ical for successful completion of the E. chaffeensis lifecycle
and, similarly, for other tick-transmitted rickettsiales of

the genera Ehrlichia and Anaplasma [3-7]. It is necessary for
the tick-transmitted pathogens to have evolved strategies
that support host cell adaptation and to establish persist-
ent infections. There may be many ways by which the
pathogens persist; strategies may include altering the host
response [8,9], varying expressed proteins relative to time
post-infection and differential host-specific protein
expression [10-19].

Recently, we reported that Ehrlichia species alter the
expression of many proteins in a host cell-specific manner
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[18-21]. Differentially expressed proteins include outer
membrane proteins made from p28-Omp multigene
locus having 22 tandomly arranged paralogous genes of E.
chaffeensis [18-20]. The major expression from this locus
is limited to a subset of genes and is also influenced by
vertebrate and tick cell environment. P28-Omp 14 protein
is the major expressed protein when E. chaffeensis is grown
in tick cells, whereas p28-Omp 19 is expressed predomi-
nantly by the organism in macrophages. We also reported
that the pathogen originating from tick cells persists
longer in a vertebrate host and the host response is signif-
icantly different for tick cell-derived bacteria compared
with bacteria originating from macrophages [9].

Little is known about the promoter structures and tran-
scriptional regulation of E. chaffeensis genes and their con-
tributions to alter the gene expression in response to tick
and vertebrate host cell environments. Promoter analysis
under in vivo conditions is not possible at this time
because of a lack of methods to transform E. chaffeensis. In
the current study, we report the first description of map-
ping promoter regions of two host-specific differentially
expressed genes of E. chaffeensis.

Results
Primer extension analysis of p28-Omp genes 14 and 19
Host-specific differential protein expression from numer-
ous E. chaffeensis genes, including from p28-Omp multi-
gene locus, has been reported previously [18-20]. To eval-
uate the gene expression at transcription level, primer
extension analysis was performed for p28-Omp genes 14
and 19 with macrophage and tick cell-derived E. chaffeen-
sis RNA (Figure 1A and 1B). The primer extended products
for genes 14 and 19 were detected in tick cell- and macro-
phage-derived E. chaffeensis RNA, respectively (Figure 1).
The analysis also aided in identifying the transcription
start sites for genes 14 and 19 located at 34 and 26 nucle-
otides upstream to the initiation codons, respectively (Fig-
ure 1). The nucleotide at the transcription start sites for
both the genes is adenosine.

Transcriptional analysis by quantitative RT-PCR at 
different times post-infection
Our previous studies suggested that both p28-Omp genes
14 and 19 are transcriptionally active in E. chaffeensis orig-
inating from vertebrate macrophages and tick cells but the
expression levels are different [9,19]. The quantitative
gene expression differences for genes 14 and 19 were
determined by TaqMan-based real-time RT-PCR analysis
(quantitative RT-PCR) (Figure 2). Consistent with the pre-
vious observations, transcripts for genes 14 and 19 were
detected in RNA isolated from both host cell back-
grounds. In tick cell-derived E. chaffeensis, p28-Omp gene
14 expression remained higher than expression of p28-
Omp gene 19 (Figure 2A). The gene 14 expression in E.

chaffeensis also remained high for all time points analyzed
post-inoculation in tick cells. In macrophage-derived E.
chaffeensis, expression levels were reversed with signifi-
cantly higher expression for gene 19 (Figure 2B).

P28-Omp 14 and 19 promoter regions sequence analysis
The entire non-coding sequences upstream to genes 14
and 19 were evaluated to identify sequences similar to the
consensus E. coli RNA polymerase binding site sequences,
-10 and -35, and ribosome binding site sequences (RBS)
(Figure 3). Consensus -10 and -35 elements were identi-
fied and are located few bases upstream to the transcrip-
tion start sites mapped by primer extension analysis
(Figure 3). Similarly, putative RBS sequences [22] were
identified 7 and 4 nucleotides upstream to the initiation
codon of genes 14 and 19, respectively. Genes 14 and 19
sequences upstream to the predicted -10 and -35
sequences differed considerably in their lengths and
homology (Figure 3A and 3B). The gene 14 upstream
sequence is 581 bp in length, which is 273 bp longer than
the gene 19 upstream sequence (308 bp). The sequences
included several gene-specific direct repeats and palin-
drome sequences. In addition, a unique 14 nucleotide-
long 'G' rich sequence was detected in the gene 19
sequence. The consensus -35 sequence was identical for
both the genes, whereas the -10 and RBS sequences dif-
fered by one nucleotide each (Figure 3C). Relative dis-
tances of the consensus -10 and -35 sequences from
transcription start sites also remained the same for both
the genes (Figure 3C).

Evaluation of promoter activities of the sequences 
upstream to the coding regions of the p28-Omp genes 14 
and 19
The transcription analysis assessed by direct RNA map-
ping and TaqMan-based RT-PCR methods revealed quan-
titative differences in gene expression for p28-Omp genes
14 and 19, which is influenced by invertebrate and verte-
brate host cell environments. It is unclear how the host
cell environments influence the Ehrlichia gene expression.
Promoter analysis of these differentially expressed genes
will be valuable for gaining insights about how differen-
tial expression is achieved by E. chaffeensis in vertebrate
and tick host environments. Promoter characterization in
vivo for E. chaffeensis is not feasible at this time because
genetic manipulation systems are yet to be established.
Alternatively, characterization of E. chaffeensis promoters
may be performed in E. coli or with E. coli RNA polymer-
ase as reported for several C. trachomatis genes [23-30].

To validate the use of E. coli for mapping the promoters of
E. chaffeensis genes,in vitro transcription assays were per-
formed for p28-Omp 14 and 19 promoter regions with E.
coli RNA polymerase by following methods reported for
Chlamydia species [28-30]. Predicted in vitro transcripts, as
Page 2 of 16
(page number not for citation purposes)



BMC Microbiology 2009, 9:99 http://www.biomedcentral.com/1471-2180/9/99
estimated from transcription start sites mapped by primer
extension described previously, were detected only when
p28-Omp 14 and 19 complete upstream sequences were
ligated to a segment of lacZ coding sequence (Figure 4). In
vitro transcripts were absent in the reactions that con-
tained the complete gene 14 and 19 promoter regions
ligated in reverse orientation (Figure 4).

Upstream sequences for p28-Omp genes 14 or 19 were
subsequently evaluated in E. coli. Transformants of E. coli
containing promoter regions of genes 14 and 19 cloned in
front of the promoterless green fluorescent protein (GFP)
coding sequence in the pPROBE-NT plasmid were posi-

tive for green fluorescence as visualized by the presence of
green color colonies (Figure 5A). E. coli transformed with
pPROBE-NT plasmids alone were negative for the green
fluorescence. The GFP expression was verified by Western
blot analysis with GFP-specific polyclonal sera (not
shown). Promoter activities for upstream sequences of
genes 14 and 19 were further confirmed by another inde-
pendent method (i.e., by assessing the -galactosidase
activity after inserting the sequences in front of the pro-
moterless lacZ gene in pBlue-TOPO plasmid). The E. coli
transformants with plasmids having gene 14 or 19
sequences cloned in correct orientation had significantly
more -galactosidase activity (P  0.001) than the base-

Primer extension (PE) analysis of p28-Omp genes 14 and 19Figure 1
Primer extension (PE) analysis of p28-Omp genes 14 and 19. Panel A has a cartoon spanning all 22 genes [37]. This 
panel also has an expansion of cartoons for genes 14 and 19 with predicted transcripts, the primers used for the PE analysis 
and sequences of the primer extended products with transcription start sites identified with asterisks. PE analysis products 
resolved on a sequencing gel are shown in panel B. Blots on the left and right represent the data for transcripts of genes 14 and 
19, respectively. A sequence ladder for the gene 14 analysis was prepared by using the same primer used for the PE analysis but 
with a DNA template spanning the gene 14 sequence. For gene 19, PE analysis was performed with RRG 44 primer, and the 
sequencing ladder was generated by using RRG20-PEXT primer with a gene 19 DNA template. (Lane 1, E. chaffeensis RNA 
from tick cells; lane 2, E. chaffeensis RNA from macrophages).

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 19 20 2114 181’ 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 19 20 2114 181’

A.

mRNA mRNA
RRG44 (primer) RRG14-5’-rev (primer)

atttatttgtcactattaggttatatATGAATTACAAAAAAGT

TTTCATAACAAGTGCATTGATATCATTAATATCTTCTCTACCT

*

*

aatttttattatcttttataaaaggtttattaacATGAATTAC

AAGAAAATTTTTGTAAGCAGTGCATTAATTTCATTAATGTCAA

TCTTACCTTACCAATCTTTTGCAGATCCTGTAACTTCAAATGA

TACAGGAATCAACGACAGCAGAGAAGGC

RRG14-5’-rev

GGAGTATCATTTTCCGACCCAGCAGGTAGTGGTATTAACGGTA

ATTTCTACATCAGTGGAAAATACATGCCAAGTGCTTCGCATTT

TGGAGTATTCTCTGCTAAGGAAGAAAGAAATACAACAGTTGGA

GTGTTTGGACTGAAGCAAAATTGGGACGGAAGCG

RRG20-PEXT

RRG44

G A C T 1 2 A T G C 1 2

B.

*

G  A  C  T             1         2 A    T    G   C      1        2

PE product from

RRG44 (249  bases)

PE product from

RRG14 ’ (1 b )RRG14-5’-rev (157 bases)
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Quantitative RT-PCR analysisFigure 2
Quantitative RT-PCR analysis. TaqMan-based quantitative RT-PCR analysis was performed with RNA isolated from tick 
cell (A) and macrophage (B) cultures harvested at different times postinfection. Transcript numbers were estimated and pre-
sented per million E. chaffeensis organisms. Data are presented with SE values calculated from three independent experiments 
(P  0.05).
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P28-Omp genes 14 and 19 promoter region sequence analysisFigure 3
P28-Omp genes 14 and 19 promoter region sequence analysis. Upstream sequences of genes 14 (panel A) and 19 
(panel B) were evaluated for the presence of direct repeats (red text), palindromic sequences (pink text) and for the presence 
of unique sequences (G-rich region), consensus -35 and -10 regions (green text) and ribosome binding sites (blue text). Panel C 
shows the comparison of -10, -35 and ribosome binding sites of genes 14 and 19 with the E. coli consensus sequences. Tran-
scription start sites for the genes mapped by primer extension analysis are identified with bold and grey color highlighted text 
or with an asterisk. Dashes were introduced in the p28-Omp gene 19 sequence to create alignment with the gene 14 
sequence.

A.

ttgctcaaccataaaataatgggaaattaccttttctaggaagtttctcattatttaacagttaactttctgtaaactt

ctaataacagtattttgttcactcttccccttaataaaaatcataagtttacaataatgtcaaaaagatttctttttaa

35 10

acacatttaaaatggctaaaccgttttctgctttattagaatgattcccaaataaattttaattaattactgttccgta

tttattaatatatgttataatgtaattaaataaggatactagatttgctcataatgcatgtactgaatttgtgatttga

aataacaagacttaaatgtcgaatttagcttctgtcctagtggataagtactttagcaagtggtaaaagcaagtctact

catatttttattaattaagtagtaaagttaactatagattttattaaaatttttattctaatcactttaaatatcaat

B.

-35 -10

R BS

*
tacttttgttgtaaatttgaaagaaattttatattctagacTTGCTTttctttatttctttcatTATTCTtaaattttt

attatcttttataaaaggtttattaac

-35 -10 R BS*

ttttattattgccacatgttaaaaataatctaaacttgtttttattattgctgcaggtaaataaaaatagtggcaaaag

aatgtagcaataagaggggggggggggggactagtttataagtgctgtttttctcacctttacacatgatactatactt

Aaccagtttttttgctattacttacctgacgtaatatattaaattttccttacaaaagttaccgatattttatacaaaa

atttatattctgacTTGCTTttatatgacacttctacTATTGTtaatttatttgtcactattaggttatatatttatattctgacTTGCTTttatatgacacttctacTATTGTtaatttatttgtcactattaggttatat

                        -35                                              -10                                                          RBS 

E. coli:  TTGACA               TATAAT                        AGGAGG     

P28 14: ACTTGCTTTTCTTTATTTCTTTCATTATTCTTAAATTTTTATTATCTTTTATAAAAGGTTTATTAACATG

C.

P28-14: ACTTGCTTTTCTTTATTTCTTTCATTATTCTTAAATTTTTATTATCTTTTATAAAAGGTTTATTAACATG

P28-19: ACTTGCTTTTATATGACACTTCTACTATTGTTAATTTATTTGTCACTATT-----AGGTTATATATG
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line activity observed for constructs with no promoter
sequences or when the sequences were inserted in reverse
orientation (Figure 5B).

Promoter deletion analysis
Deletion analyses were performed to assess whether the
promoter activities are influenced by the sequences
upstream to the transcription start sites of genes 14 and
19; -galactosidase activity for several pBlue-TOPO plas-
mid constructs with segments deleted from the 5' end for
both the genes were evaluated (Figure 6). Deletions to the
sequences ranged from 60 to 476 bp for p28-Omp gene
14 and 69 to 183 bp for gene 19. All deletion constructs
for gene 14, except for deletions having 461 and 350 bp
segments, had significantly higher -galactosidase activity
compared with negative controls lacking no insert and the
insert in the reverse orientation. The first 60 bp deletion
from the 5' end resulted in no significant change in -
galactosidase activity compared with that observed for the
full-length insert, whereas a deletion of an additional 60
bp caused a decline of about 90% of the enzyme activity.
The -galactosidase activity was restored completely by an
additional 61 bp deletion. Further deletion of another 50
bp also resulted in another near-complete loss of activity.
Subsequent deletions of 64 bp each caused a stepwise res-
toration of the enzyme activity to 54 and 91%, respec-

tively. Deletion of another 53 bp caused another drop in
-galactosidase activity to 24%, which remained unaf-
fected with an additional deletion of a 64 bp fragment
(Figure 6A and 6B). Similar deletion analysis performed
for the gene 19 upstream sequence also resulted in altered
-galactosidase activity compared with the full-length
sequence (Figure 6, panels C and D). The 5' end deletions
of 69 and 120 bp for this gene resulted in a 20 and 30%
decline, respectively, in enzyme activity. These declines,
however, were not statistically significant. Deletion of an
additional 63 bp caused an increase of about 60% more
-galactosidase activity. To confirm that the RNA
polymerase binding regions are located within the
sequences spanning up to the consensus -35 sequences, 3'
end deletion constructs lacking sequences up to the -35
region for genes 14 and 19 (65 and 57 bp, respectively)
were prepared and assessed for -galactosidase activity.
These deletions led to the complete loss of -galactosidase
activity (Figure 6A–B lane 11 and 6C–D lane 6).

Location of -10 and -35 regions
To determine whether the consensus -35 and -10 repre-
sented true RNA polymerase binding site regions, con-
structs lacking either the predicted -35 or -10 alone or the
regions spanning from -35 to -10 were generated, and the
effect of the loss of these sequences on promoter activity
was evaluated by measuring -galactosidase activity. Dele-
tion of the predicted -35 regions alone or in combination
with the -10 for both the genes resulted in decline of -
galactosidase activity to the background levels observed
for negative controls. Deletion of the consensus -10
region alone for both the genes, however, resulted in no
significant change to the promoter activity (Figure 7). The
impact of the deletions of -35 and -10 are very similar for
both genes' promoters.

Discussion
Differences in protein expression influenced by vertebrate
and tick cell environment are now well documented for E.
chaffeensis [18-20] and other tick-transmitted bacteria
[12,13,15,16]. We recently reported novel data describing
differences in immune response in the murine host
against E. chaffeensis originating from tick cells compared
with that observed for the bacteria originating from mac-
rophages [9]. Importantly, the murine host takes longer to
clear the pathogen originating from tick cells, and the
delayed clearance has been associated with altered macro-
phage, B-cell and cytokine responses. These studies sug-
gest that tick cell-specific altered pathogen protein
expression offers a selective advantage to E. chaffeensis for
its continued survival when it enters into a vertebrate host
from the tick cell environment. To date, no studies have
assessed the molecular mechanisms used by E. chaffeensis
to achieve differential gene expression.

In vitro transcription analysisFigure 4
In vitro transcription analysis. In vitro transcription analy-
sis was performed for the complete upstream sequences of 
genes 14 and 19 in forward and reverse orientations ligated 
to a partial lacZ gene segment (301 bp) (solid black boxes). 
The orientation of ligated promoter regions is shown by 
arrowhead lines (right arrowhead line, forward orientation; 
left arrowhead line, reverse orientation). Wiggled arrowhead 
lines show predicted transcripts of 335 bases for gene 14 and 
327 bases for gene 19. Sequence segments and the predicted 
transcripts for genes 14 and 19 are shown as cartoons on the 
left, and the observed transcripts are shown on the right of 
the panels. Puc18 plasmid DNA was used as the template to 
generate a sequence ladder with an M13 forward primer. 
Numbers 1 and 2 refer to the constructs for in vitro tran-
scription for gene 14, and 3 and 4 refer to in vitro transcrip-
tion templates for gene 19.

G      A      T     C   1    2    3 4

335 b

327 b

335 b

327 b

581 bp

581 bp

308 bp

308 bp

A.

1

2

3

4
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(A) Green fluorescent protein (GFP) constructs evaluated for the promoter activity of p28-Omp genes 14 and 19Figure 5
(A) Green fluorescent protein (GFP) constructs evaluated for the promoter activity of p28-Omp genes 14 and 
19. The pPROBE-NT plasmids containing the promoterless GFP gene (2 and 3) and upstream sequences of genes 14 and 19 in 
front of the GFP gene (1 and 4, respectively) and a construct containing no promoter sequence were evaluated for GFP 
expression in E. coli. (B) LacZ constructs evaluated for the promoter activity of p28-Omp genes 14 and 19. The pBlue-TOPO 
vector containing promoterless lacZ gene (pBlue-TOPO) and upstream sequences of genes 14 and 19 inserted in forward (14-
F and 19-F) and reverse orientations (14-R and 19-R) were evaluated for -galactosidase activity in E. coli. Data are presented 
with SD values calculated from four independent experiments (P  0.001).
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Primer extension analysis reported in this study con-
firmed our previous observations of Northern blot analy-
sis that transcripts of p28-Omp genes 14 and 19 are
differentially expressed and as monocistronic messages
[19]. The primer extension analysis also aided in defining
transcription start sites. Adenine, the base found at the
transcription start site for genes 14 and 19 of E. chaffeensis,
appears to be the most common base at which transcrip-
tion is initiated from rickettsiales genes, including patho-

gens of the genera Rickettsia and Anaplasma [31-34]. Our
previous studies and those of other investigators also sup-
port that genes 14 and 19 are transcriptionally active inde-
pendent of E. chaffeensis originating from macrophages or
tick cells [9,19,21,35-38]. In the current study, quantita-
tive RT-PCR analysis confirmed the previous observations
about the presence of messages for genes 14 and 19 in
both host cell backgrounds. In addition, the analysis
aided in mapping quantitative differences in transcription

Deletion analysis of promoter regions of genes 14 and 19Figure 6
Deletion analysis of promoter regions of genes 14 and 19. -galactosidase activity of extracts prepared from E. coli cul-
tures of bacteria transformed with various deletion constructs was determined. Panels A and C have cartoons depicting dele-
tion constructs and their orientations for genes 14 and 19, respectively. (Solid black boxes represent lacZ gene, and right and 
left arrowhead lines show orientation of the promoter regions ligated in front of the lacZ coding sequence. Lengths of the pro-
moter regions in base pairs are indicated on the left. Panels B and D contain the -galactosidase activity analysis data. (-galac-
tosidase activity was expressed as percent activity relative to the activity observed for full length promoter segments.) Data are 
presented with SD values calculated from four independent experiments (P  0.001).
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of differentially expressed genes. The quantitative RT-PCR
analysis demonstrates that although genes 14 and 19 are
transcriptionally active, levels of transcription are influ-
enced in response to the macrophage and tick cell envi-
ronments. Gene 19 is higher in its expression in
macrophages, and the opposite is true for gene 14 expres-
sion.

Promoter regions of genes 14 and 19 differed considera-
bly; the differences include variations in length of the
upstream sequences, presence of several gene-specific
direct repeats, palindrome sequences and presence of a G-
rich region found in gene 19. Importance of palindrome
and direct repeat sequences in regulating transcription is
well established for many prokaryotes and for a rickettsial
pathogen [34,39-42]. For example, the presence of a pal-
indrome sequence in the citrate synthase gene of Rickettsia
prowazekii with its possible role in transcriptional regula-
tion is reported by Cai and Winkler [42]. Similarly, tran-

scription factors such as zinc finger proteins that influence
gene expression via interacting with G-rich sequences are
established for both prokaryotes and eukaryotes [43-49].
The E. chaffeensis genome contains two homologs of zinc
finger proteins (Genbank #s ABD44730 and ABD45416)
[50]. It is of interest to investigate whether one or both of
these putative E. chaffeensis zinc finger proteins act as tran-
scription regulators for p28-Omp gene 19.

Mapping the functions of E. chaffeensis genes in vivo can-
not be performed because genetic manipulation systems
are yet to be established. To overcome this limitation, we
assessed the utility of E. coli RNA polymerase as a surro-
gate to characterize E. chaffeensis gene promoters as
reported for several C. trachomatis genes [23-30]. In vitro
transcription assays performed with E. coli RNA polymer-
ase identified the same transcription start sites for p28-
Omp genes 14 and 19 as observed in E. chaffeensis. This
observation validates the use of E. coli RNA polymerase.

Deletion analysis spanning the -35 and -10 regions of genes 14 and 19Figure 7
Deletion analysis spanning the -35 and -10 regions of genes 14 and 19. -galactosidase activity of extracts prepared 
from E. coli cultures of bacteria transformed with -35 or -10 deletions or deletions spanning from -35 to 10 were determined. 
Panels A and C have cartoons depicting deletion constructs and their orientations for genes 14 and 19, respectively. Panels B 
and D contained the -galactosidase activity analysis data. Data are presented with SD values calculated from four independent 
experiments (P  0.001).
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Molecular characterization of promoter sequences located
upstream to the transcription start sites of genes 14 and 19
is critical in determining how E. chaffeensis regulates gene
expression. In E. coli, expression of reporter gene products,
GFP and -galactosidase, is evident when sequences
upstream to the coding regions of p28-Omp genes 14 and
19 were placed in front of promoterless GFP or -galactos-
idase genes, respectively. These data are also consistent
with previous reports that the E. coli RNA polymerase can
complement the functions of rickettsial RNA polymerases
of the genera Anaplasma, Ehrlichia and Rickettsia
[31,32,37], including recognizing the transcription start
sites [32].

Sequential deletions in the gene 14 upstream sequences
from the 5' end, whereby some of the direct repeats and
palindrome sequences were deleted, resulted in variations
in the promoter activity that fluctuated from complete or
partial loss of activity compared with that observed for the
full-length upstream sequence. Additional deletions
caused the restoration of 100% activity, and subsequent
additional deletions again led to a decline in promoter
activity. Similarly, deletion analysis in the gene 19 pro-
moter region caused loss or gain of promoter activities rel-
ative to the inclusion of full-length upstream sequence as
a promoter. These data suggest that promoter regions of
genes 14 and 19 contain sequence domains that influence
binding affinity of RNA polymerase to the respective pro-
moters. Altered promoter activities observed in deletion
analysis experiments may have resulted from the dele-
tions of upstream sequences involved in altering DNA
topology and making RNA polymerase less or more acces-
sible to its binding domains. Influence of 5' sequences
altering the DNA topology for RNA polymerase binding
has been well established for promoters of several bacte-
rial organisms such as Bacillus subtilis, C. tracomatis, E. coli,
and Klebsiella pneumoniae [23,51-56]. Previous reports
also suggest that the inverted and direct repeats contribute
to the DNA curvatures, thus affecting RNA polymerase
binding to the -35 and -10 regions [23,39]. Although less
likely, the presence of E. coli regulators that are homo-
logues of E. chaffeensis may also bind and influence the
promoter activity. For example, homologues of R. prow-
azekii repressors/enhancers in E. coli have been reported
for the 16S rRNA gene [32]. Variations in the promoter
activity of E. chaffeensis genes observed in E. coli for the
deletion constructs may not represent what may occur in
the pathogen. Defining the importance of the putative
regulatory domains of p28-Omp genes identified in this
study requires further analysis in E. chaffeensis or using E.
chaffeensis RNA polymerase.

Deletion of the consensus -35 region alone or in combi-
nation with the -10 region, but not of the -10 region
alone, reduced the promoter activity to background levels

for both genes 14 and 19. These data suggest that, inde-
pendent of the gene assessed, the -35 regions identified
contribute to the RNA polymerase binding. It is unclear
why deletions of the predicted -10 regions for both the
genes had little effect in altering the promoter functions.
Greater tolerance to the loss of the -10 regions compared
to -35 regions is reported for other prokaryotes [26,57-
59]. It is, however, possible that the -10 regions we pre-
dicted are not accurate and may be present at a different
location. Alternatively, the -10 regions may be less impor-
tant in E. chaffeensis. This hypothesis is too premature at
this time; more detailed mapping of the -10 regions is
needed.

In the absence of genetic manipulation methods, an in
vitro transcription system can serve as a useful molecular
tool for mapping the molecular basis for differences in E.
chaffeensis gene expression. For example, extensive studies
have already reported using in vitro transcription systems
to map regulation of gene expression for another intra-
phagosomal bacterium, C. trachomatis, for which genetic
manipulation systems are yet to be established [28-30]. In
the current study, we also presented the first evidence for
a similar in vitro transcription protocol to drive expression
from two E. chaffeensis promoter sequences. More detailed
investigations may also be performed by using the in vitro
transcription protocol with E. coli or E. chaffeensis RNA
polymerase, similar to studies carried out for C. trachoma-
tis and R. prowazekii [23-30,32].

Conclusion
In this study, we performed detailed RNA analysis to dem-
onstrate that E. chaffeensis regulates transcription by sens-
ing differences in host cell environments. Experimental
evidence presented in this study also demonstrates that
gene expression differences are achieved by altering
changes in RNA polymerase activity influenced by the
sequences located upstream to the transcription start sites.
More detailed investigations are needed to map the mech-
anisms controlling gene expression in E. chaffeensis in dif-
ferent host cell environments.

Methods
In vitro cultivation of E. chaffeensis
E. chaffeensis Arkansas isolate was cultured in vitro in the
canine macrophage cell line (DH82) and in the tick cell
line (ISE6) as described previously [1,60].

Nucleic acids isolation
About 20 ml of 90–100% infected E. chaffeensis confluent
monolayers of DH82 or ISE6 cell cultures recovered from
a T-150 flask were used for isolation of total RNA. Total
RNA was isolated with the Tri-reagent method by follow-
ing the manufacturer's instructions (Sigma-Aldrich, St.
Louis, MO). The RNA pellet recovered was resuspended in
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100 l of nuclease-free water containing 40 units of RNase
inhibitor, RNasin, (Ambion Inc., Austin, TX) and stored at
-70°C until use. Quality and concentration of RNA were
assessed by spectrophotometry with an ND-1000 spectro-
photometer (Nanodrop Technologies, Wilmington, DE)
and by calculating the ratio between the optical densities
at 260 nm and 280 nm.

Genomic DNA was isolated from 2 ml of 90–100%
infected E. chaffeensis confluent monolayer by the sodium
dodecyl sulfate (SDS), proteinase K, phenol, chloroform,
isoamyl alcohol method [61]. Final purified DNA was
resuspended in 100 l of TE buffer (pH 8.0); concentra-
tion was assessed by spectrophotometry with an ND-1000
spectrophotometer and stored at -20°C. Quality of DNA
and RNA samples was further confirmed by resolving
about 1–5 g each on a 0.9% agarose gel or 1.5% formal-
dehyde agarose gel, respectively [61].

Oligonucleotides
Oligonucleotides used for the experiments described in
this study are custom synthesized from Integrated DNA
Technologies (Coralville, IA) and are listed in Table 1.

Primer extension analysis
Primer extension analysis was performed by using a
Primer Extension System AMV Reverse Transcriptase kit
(Promega, Madison, WI). Briefly, oligonucleotides com-
plementary to the transcripts of p28-Omp genes 14 and
19 were end labeled with [-32p] ATP using T4 polynucle-
otide kinase (Promega, Madison, WI) at 37°C for 10 min.
The kinase reaction was stopped by heat inactivation at
90°C for 2 min. The end labeled primers (one  mole
each) were annealed to E. chaffeensis RNA (~10 g) by
incubating at 58°C for 20 min in 11 l reactions contain-
ing AMV primer extension buffer. E. chaffeensis RNA used
for this experiment was isolated from cultures when the
infection reached to 80–100%. One micro liter of AMV
reverse transcriptase (1 unit) was added, and the reaction
was incubated at 42°C for 30 min. The reaction products
were concentrated by ethanol precipitation and electro-
phorosed on a 6% polyacrylamide gel containing 7 M
urea, and the gel was transferred to a Whatman paper,
dried and exposed to an X-ray film. The primer extended
products were detected after developing the film with a
Konica film processor (Wayne, NJ).

Quantitative RT-PCR analysis
Quantitative differences in transcripts for p28-Omp genes
14 and 19 were assessed with a TaqMan-based diplex RT-
PCR assay using gene-specific primers and probes as we
reported earlier [19]. The analysis was performed on total
RNA isolated for E. chaffeensis infected DH82 and ISE6
cells at 12, 24, 48, 72, 96 and 120 h post infection. Quan-

titative data relative to the number of Ehrlichia organisms
were calculated [9,19].

Bioinformatics analysis
Sequences upstream from the protein coding regions of E.
chaffeensis p28-Omp 14 and 19 were obtained from the
GenBank data base and aligned by using the genetic com-
puter group (GCG) programs PileUp and Pretty [62] to
search for sequence homologies. Direct repeats and palin-
drome sequences in the upstream sequences were identi-
fied with the GCG programs Repeat and StemLoop,
respectively. E. coli 70 promoter consensus sequences (-
10 and -35) [63] were used to locate similar elements
manually in p28-Omp genes 14 and 19 sequences
upstream to the transcription start sites.

Promoter constructs
Promoter constructs for p28-Omp genes 14 and 19 were
made with two independent promoterless reporter genes
containing plasmid vectors pPROBE-NT [64] and pBlue-
TOPO (Invitrogen Technologies, Carlsbad, CA). The
pPROBE-NT vector contains a GFP gene as the reporter
gene, whereas a lacZ gene is the reporter gene in the pBlue-
TOPO vector. To generate a p28-Omp gene14 promoter
region construct, the entire non-coding sequences located
between coding sequences of p28-Omp genes 13 and 14
were amplified by using E. chaffeensis genomic DNA as a
template and the sequence-specific oligonucleotides
(Table 1). A similar strategy was used to prepare the gene
19 promoter constructs by amplifying the DNA segment
located between the coding regions of p28-Omp genes 18
and 19. The PCR products were ligated into the promoter-
less pBlue-TOPO and pPROBE-NT vectors and trans-
formed into E. coli strain, Top10 (Invitrogen
Technologies, Carlsbad, CA) and DH5 strain, respec-
tively [61]. One clone each in forward and reverse orien-
tations was selected for the genes 14 and 19 in the pBlue-
TOPO plasmid. For the pPROBE-NT constructs, only for-
ward orientation inserts containing plasmids were
selected. In addition, nonrecombinant plasmids trans-
formed in E. coli were selected to serve as negative con-
trols.

Promoter deletion constructs
Various deletion fragments of the promoter regions lack-
ing parts of the 5' or 3' end segments of genes 14 and 19
were also generated by PCR and cloning strategy in the
pBlue-TOPO plasmid. Deletion constructs of gene 14 and
19 promoters that are lacking the predicted -35 or -10
alone or the regions spanning from -35 to -10 were also
generated by PCR cloning strategy but by using a Phusion
site-directed mutagenesis kit as per the manufacturer's rec-
ommendations (New England Biolabs, MA). Primers used
for the deletion analysis experiments are included in Table
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Table 1: List of oligonucleotides used for this study

Primers Sequence Orientation Amplicon size
(bp)

Annealing temperature
(°C)

PROMOTER ANALYSIS
Gene 14-upstream sequence primers
For cloning into pPROBE-NT
RRG 183* 5' GACTCTAGAttgctcaacccataaaataatg Forward 596 50
RRG 184 5' AGTGAGCTCtttataaaagataataaaaatttaag Reverse

For cloning into pBlue-TOPO
RRG 217 5' attgctcaaccataaaataatggga Forward 581 48
RRG 218 5' gttaataaaccttttataaaag Reverse

RRG 267 5' cagttaactttctgtaaacttc Forward 521 48
RRG 218** Reverse

RRG 268 5' atcataagtttacaataatgtc Forward 461 48
RRG 218 Reverse

RRG 269 5' cgttttctgctttattagaatg Forward 400 48
RRG 218 Reverse

RRG 270 5' gttccgtatttattaatatatg Forward 350 48
RRG 218 Reverse

RRG 271 5' catgtactgaatttgtgatttg Forward 286 48
RRG 218 Reverse

RRG 272 5' ggataagtactttagcaagtgg Forward 222 48
RRG 218 Reverse

RRG 273 5' taagtagtaaagttaactatag Forward 169 48
RRG 218 Reverse

RRG 274 5' acttttgttgtaaatttgaaag Forward 105 48
RRG 218 Reverse

RRG 217 Forward 516 50
IG14-35 del R 5' (PO4)-gtctagaatataaaatttctttc Reverse

IG14-10 del F 5' (PO4)-taaatttttattatcttttataaaaggtttattaac Forward 8366 56
IG14-10 del R 5' (PO4)-atgaaagaaataaagaaaagcaagtctag Reverse

IG14-35 del F 5' (PO4)-ttctttatttctttcattattc Forward 8366 48
IG14-35 del R Reverse

IG14-10 del F Forward 8343 51
IG14-35 del R Reverse

Gene 19-upstream sequence primers
For cloning into pPROBE-NT
RRG 185 5' GACTCTAGActtttaattttattattgccacatg Forward 334 61
RRG 186 5' AGTGAGCTCaatagtgacaaataaattaacaatag Reverse

For cloning into pBlue-TOPO
RRG 185 Forward 308 60
RRG 445 5' atataacctaatagtgacaaataaattaac Reverse

RRG 275 5' gtggcaaaagaatgtagcaataag Forward 239 50
RRG 445 Reverse

RRG 276 5' gtgctgtttttctcacctttacac Forward 188 63
Page 12 of 16
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1. Presence of correct inserts for the clones was always ver-
ified by restriction enzyme and sequence analysis.

Assessment of promoter activity in vitro
Promoter region and reporter gene segments were ampli-
fied by PCR using pBlue-TOPO promoter constructs as the
templates. Amplicons were then used for in vitro transcrip-
tion reactions. The entire gene 14 upstream, 5' end non-
coding region in forward or reverse orientations along
with a 301 bp lacZ gene fragment were amplified from the
constructs in pBlue-TOPO (described previously). A simi-
lar strategy was followed to generate gene 19 promoter
region templates for use in the in vitro transcription anal-

ysis. PCR products were purified with the QIAquick PCR
Purification Kit (Quiagen, Valencia, CA).

In vitro transcription analysis was performed by following
protocol described previously [65] with minor modifica-
tions. Briefly, assays were performed in a 10 l reaction
containing 50 mM Tris-acetate (pH 8.0), 50 mM potas-
sium acetate, 8.1 mM magnesium acetate, 27 mM ammo-
nium acetate, 2 mM dithiothreitol, 400 M ATP, 400 M
GTP, 400 M UTP, 1.2 M CTP, 0.21 M [-32P] CTP, 18
U of RNasin, 5% glycerol, 100 ng of purified PCR tem-
plates and 0.03 U of E. coli RNA polymerase holoenzyme
(Epicentre, Madison, WI). The reaction was incubated at

RRG 445 Reverse

RRG 277 5' ctgacgtaatatattaaattttcc Forward 125 55
RRG 445 Reverse

RRG 185 Forward 267 50
IG19-35 del R 5' (PO4)-gtcagaatataaatttttgtataaaatatcg Reverse

IG19-10 del F 5' (PO4)-taatttatttgtcactattaggttat Forward 8112 56
IG19-10 del R 5' (PO4)-gtagaagtgtcatataaaagcaag Reverse

IG19-35 del F 5' (PO4)-ttatatgacacttctactattgttaatttatttg Forward 8112 61.5
IG19-35 del R Reverse

IG19-10 del F Forward 8088 58
IG19-35 del R Reverse

PRIMER EXTENSION ANALYSIS
Gene 14
RRG 14-5'rev 5' gccttctctgctgtcgttgattcc NA 52

Gene 19
RRG 20-PEXT 5' cgttaataccactacctgctgggtcg NA 58
RRG 44 5' cgcttccgtcccaattttgcttc NA 58

IN VITRO TRANSCRIPTION ASSAY
Gene 14 upstream full-length+lac Z segment
RRG 217 5' attgctcaaccataaaataatggga Forward 882 50
RRG 226 5' cgccattcgccattag Reverse

RRG 218 5' gttaataaaccttttataaaag Forward 882 50
RRG 226 Reverse

Gene 19 upstream full-length+lac Z segment
RRG 217 5' attgctcaaccataaaataatggga Forward 601 50
RRG 226 Reverse

RRG 445 5' atataacctaatagtgacaaataaattaac Forward 601 50
RRG 226 Reverse

IN VITRO TRANSCRIPTION COUPLED TRANSLATION ASSAY
RRG 185 5' gactctagacttttaattttattattgccacatg Forward 848 58
RRG 247 5' tccggctcgtatgttgtgtg Reverse

* Text in capital letters refers to sequences inserted for creating restriction enzyme sites. ** Primer sequences were presented only once when a 
primer was described for the first time.

Table 1: List of oligonucleotides used for this study (Continued)
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37°C for 15 min and then terminated by adding 4 l of
stop solution (95% formamide, 20 mM EDTA, 0.05%
bromophenol blue, 0.05% xylene cyanol). Four micro lit-
ers of reaction contents each were resolved in a 6% poly-
acrylamide gel containing 7 M urea [66]. The gel was
transferred to a Whatman paper, dried and exposed to an
X-ray film; the in vitro transcripts were detected after devel-
oping the film with a Konica film processor (Wayne, NJ).

Assessment of promoter activity in E. coli
The pPROBE-NT constructs containing promoter regions
of genes 14 and 19 were assessed for promoter activities
by observing green florescence emitted from colonies on
agar plates. The promoter activity was further confirmed
by performing Western blot analysis using a GFP polyclo-
nal antibody (Rockland Immunochemicals, Inc., Gilberts-
ville, PA) on protein extracts made from E. coli containing
the recombinant plasmids. The pBlue-TOPO promoter
constructs were also evaluated for promoter activity by
measuring -galactosidase activity. To accomplish this, E.
coli colonies containing the recombinant plasmids were
grown to an optical density of 0.4 (at 600 nm); soluble
protein preparations from the cell lysates were prepared
and assessed for the lacZ expression by using a -gal assay
kit as per the manufacturer's instructions (Invitrogen
Technologies, Carlsbad, CA,). About 2.5 or 5 g of protein
preparations were assessed for the -galactosidase activity
using Ortho-Nitrophenyl--D-Galactopyranoside
(ONPG) as the substrate. The analysis included protein
preparations made from no-insert controls as well as E.
coli cultures containing constructs with promoter seg-
ments in the reverse orientation. The experiments were
repeated four independent times with independently iso-
lated protein preparations; samples were also assayed in
triplicate each time. Specific activity of -galactosidase
was calculated using the formula outlined in the -gal
assay kit protocol.

Statistical Analysis
Statistical analysis of RT-PCR experiments for measuring
the quantitative differences in the gene expression of p28-
Omp genes14 and 19 was performed by using the
unpaired Student t-test. For promoter deletion analysis
experiments, statistical analysis was performed by using
repeated measures of ANOVA, and the Bonferroni
method was used to adjust for multiple comparisons.
GraphPad InStat Software (La Jolla, CA) was used to per-
form these analyses. A P value of less than 0.05 was con-
sidered significant.
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