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Abstract

Background: Though RpoS is important for survival of pathogenic Escherichia coli in natural
environments, polymorphism in the rpoS gene is common. However, the causes of this
polymorphism and consequential physiological effects on gene expression in pathogenic strains are
not fully understood.

Results: In this study, we found that growth on non-preferred carbon sources can efficiently select
for loss of RpoS in seven of ten representative verocytotoxin-producing E. coli (VTEC) strains.
Mutants (Suc**) forming large colonies on succinate were isolated at a frequency of 108 mutants
per cell plated. Strain O157:H7 EDL933 yielded mainly mutants (about 90%) that were impaired in
catalase expression, suggesting the loss of RpoS function. As expected, inactivating mutations in
rpoS sequence were identified in these mutants. Expression of two pathogenicity-related
phenotypes, cell adherence and RDAR (red dry and rough) morphotype, were also attenuated,
indicating positive control by RpoS. For the other Suc** mutants (10%) that were catalase positive,
no mutation in rpoS was detected.

Conclusion: The selection for loss of RpoS on poor carbon sources is also operant in most
pathogenic strains, and thus is likely responsible for the occurrence of rpoS polymorphisms among

E. coli isolates.

Background

Adaptation is important for survival of bacteria in various
natural environments, but the underlying mechanisms
are not fully understood. Bacteria are often present in
large communities (e.g., biofilm [1]) in nature, and adap-
tation can occur at population levels. An important adap-
tive strategy is the generation of variants to maximize
bacteria fitness at the population level in response to fluc-
tuating environments [2,3]. These variants may result
from spontaneous mutations selected within a popula-
tion or from non-genetic changes. For example, to evade

host immune system, some pathogens can alter surface
antigen structure [4], termed phase variation [4,5],
through revertible high frequency mutation of genes
encoding surface proteins [2,5]. Bacteria also exhibit cell-
to-cell variation in gene expression, termed individuality
[2], even in an isogenic population. For example, under
suboptimal induction conditions, the lac operon in
Escherichia coli exhibits two distinct expression states,
either fully induced or non-induced, but not an interme-
diate [6]. Gene expression noise due to stochastic events
also results in phenotypic variation within isogenic E. coli
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populations [2,7]. Both genetic selection and individual-
ity are likely important for bacterial adaptation in natural
environments [2].

An important adaptation regulator is the alternative sigma
factor RpoS widely found in E. coli and many other pro-
teobacteria [8,9]. RpoS controls a large regulon [10-14]
and plays a critical role in survival against stresses, such as
prolonged starvation [15], low pH [16], thermal stress
[17], near-UV exposure [18] and oxidative stress [18].
Despite the importance of RpoS, many attenuating muta-
tions in the rpoS gene have been identified in both labora-
tory and natural E. coli strains. For example, some K12
strains possess an amber mutation (TAG) at codon 33
[19], while others have Glu (GAG), Tyr (TAT), or Gln
(GAG) at the same position [19,20]. GAG is commonly
found in natural non-K12 E. coli isolates [19,20]. Muta-
tions in rpoS have also been identified in Shiga-like toxin-
producing E. coli strains [21].

Polymorphism of rpoS appears to be paradoxical to the
central role that RpoS plays in survival. Mutants of rpoS
can be selected under nutrient limitation and exhibit
enhanced metabolic potential [22], suggesting a regula-
tory trade-off for fitness between stress resistance and
nutrient scavenging [22]. Growth on weak acids, includ-
ing succinate [23] and acetate [24], strongly selects for
mutations in rpoS in laboratory E. coli strains [23]. Con-
sidering that the weak acid (e.g., acetate) concentration is
relatively high in human colon (80 mM) where E. coli col-
onize [25,26], E. coli may face a similar selective pressure
within the host environment. Selection for loss and gain
of RpoS function may be an important adaptive mecha-
nism, like phase variation, to ensure that E. coli can sur-
vive in complex natural environments.

However, whether this selection is responsible for the
observed rpoS polymorphism in natural E. coli isolates
remains unclear, primarily because most studies have
been done with laboratory E. coli K12 strains. The
genomes of E. coli isolates differ substantially and consti-
tute a pangenome consisting of 13,000 genes, of which
2,200 genes are conserved among all isolates [27]. Since
RpoS mostly controls expression of genes encoding non-
essential functions [8,9,12,13], RpoS likely plays a consid-
erable role in the expression of non-conserved genes in
the pangenome. Given that E. coli K12 strains only possess
about 1/3 of all genes found in the pangenome of E. coli
[27], it is possible that rpoS selection is limited to labora-
tory strains. Interestingly, selection for rpoS could not be
observed in a natural E. coli isolate ECOR10 under nutri-
ent limitation (see Fig 5 in [22]).

In this study, we wished to address three outstanding
questions. First, can rpoS mutants be selected in clinical
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strains isolated from natural environments? Of particular
interest is whether this selection occurs in pathogenic
strains, which may have important medical relevance
because of the potential role of RpoS in bacterial patho-
genesis. Second, are there other factors involved in the
selection for enhanced metabolic abilities in natural
strains? Finally, is there any evidence that this selection
occurs in natural environments? To address these ques-
tions, we employed a succinate selection strategy as a tool
[23] and examined the selection using a group of ten rep-
resentative verocytotoxin-producing E. coli (VIEC) strains
from all five identified seropathotypes as our model
strains. VTEC strains, including the O157:H7 serotype, are
responsible for most E. coli foodborne outbreaks and can
cause severe diseases, including diarrhea, hemorrhagic
colitis and the hemolytic uremic syndrome [28]. Our
results show that the selection for loss of RpoS is operant
in most pathogenic E. coli strains. Virulence traits includ-
ing RDAR morphotype and cell adherence were attenu-
ated as a result of rpoS mutations. In addition, although
rpoS mutants constituted most of the metabolic enhanced
mutants, there was a small fraction of mutants that had
intact RpoS function, indicating that other factors can also
increase metabolic potential under conditions examined.
Interestingly, three of ten tested VTEC strains grew well on
succinate, and no growth-enhanced mutants could be
selected. One of these three strains possessed a null rpoS
mutation. This indicates that an adaptation to poor car-
bon source may have occurred in natural E. coli popula-
tions.

Results

Polymorphisms of rpoS in wild type VTEC strains

The ten representative VIEC strains examined in this
study (Table 1) belong to five seropathotypes that have
been categorized on the basis of virulence and outbreak
frequency [29]. To test whether selection for loss of RpoS
function can occur in these isolates, we first examined the
poS sequences of these strains. Many nucleotide base sub-
stitutions were found in rpoS (Table 2). However, these
substitutions did not result in changes in protein
sequence, except for a single transversion (G to T) in strain
N99-4390 which formed a premature stop codon, result-
ing in a loss of 86 amino acids at the C-terminal end of
RpoS. As expression of catalase HPII encoded by katE is
highly RpoS-dependent [30,31], catalase production in all
strains could be used to assess RpoS activity using plate
catalase assays. Only N99-4390 exhibited a low catalase
activity, consistent with the expected effect of the identi-
fied mutation in this strain. All tested VTEC strains were
found to have a GAG at codon 33, in contrast to CAG in
the laboratory K12 strain MG1655 (Table 2).
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Table I: Suc** mutants selected from VTEC strains with attenuated or intact RpoS functions.

Sero-pathotype Serotype Strain Source Host Number of mutants Ratio of rpoS/Suc**
Suct* rpoS
A OI57:H7 EDL933 ). Kaper Human 12 I 0.92
B OlI21:HI9 CLI06 LFZ Human 12 10 0.83
OIl1:NM R82F2 LFZ Human N/A N/A
C O5:NM N00-4067 BCCDC, NLEP Human 12 12 1.00
Ol13:H21 CL3 LFZ Human N/A N/A
OI21:NM N99-4390 BCCDC, NLEP Human N/A N/A
D O103:H25 N00-4859 BCCDC, NLEP Human 12 12 1.00
OI172:NM EC6-484 LFZ Bovine 12 8 0.67
E 0O84:NM EC2-044 LFZ Bovine 12 12 1.00
098:H25 EC3-377 LFZ Bovine 12 12 1.00

Twelve Suc** mutants from each strain were tested for catalase activity using a plate catalase assay. Mutants impaired in catalase were considered as
putative rpoS mutants. Detailed VTEC strain information is described elsewhere [29].

Selection of Suc** mutants

Our primary goal was to determine if loss of RpoS in VTEC
strains can be selected by growing cells on non-preferred
carbon sources. Mutants forming large colonies (Suc*+)
were readily isolated from seven of ten tested strains at a
frequency of 10-8 per cell plated on succinate media, con-
sistent with the frequencies obtained for laboratory strains
[23]. Interestingly, strains CL3, R82F2 and N99-4390
grew uniformly well on succinate plates, much better than
the other wild type strains, thus no Suc** mutants were
obtained. Similar results were obtained by growing cells
on fumarate, another TCA cycle intermediate (data not
shown), indicating that this selection is not limited to suc-
cinate alone.

A group of 12 independent representative Suc** mutants
were selected from each strain to test their RpoS status

Table 2: Polymorphic codons in rpoS among VTEC strains.

using catalase plate assays [23]. Most of the Suc** mutants
(depending on parental strain background) were
impaired in catalase production (Table 1). In E. coli, there
are two catalases, HPI (KatG) and HPII (KatE), but only
catalase HPII (KatE) is highly RpoS-dependent [23]. To
confirm the plate assay results and to differentiate
between the expression of KatE and KatG, we tested the
catalase activity in the isolated catalase-negative Suct+
mutants from three representative VIEC strains EDL933,
CL106, and EC3-377 using native-PAGE gels. As expected,
all Suc** mutants exhibited substantially reduced HPII cat-
alase activity (Figure 1A). The higher expression of HPI in
Suct* mutants (Figure 1A) is not entirely unexpected. Low
levels of HPII may lead to higher accumulation of intrac-
ellular hydrogen peroxide which can activate OxyR, the
main regulator of HPI [32].

Codon 33 54 119 129
Glu Val Leu Arg

Consensus GAG GTG CTT CGC

ATT

154 181 191 243 273 317

Thr His Glu Val Leu
ACC CAT GAG GTG CTG

MG1655 C..
EDL933 T
CL106 e N

R82F2 e LA

NO00-4067

CL3 v . e

N99-4390 e N ..G

NO00-4859

EC6-484

EC2-044

EC3-377

The rpoS gene in E. coli K-12 MG1655 strain was used as the reference for comparison. The G-C transition at codon 33 in MG1655 results in a
conversion of glutamate to glutamine, while the G-T transversion in N99-4390 at codon 243 forms a stop codon resulting in a truncated RpoS

protein. The other polymorphic sites are synonymous mutations.
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Catalase activity and RpoS expression in representative Suc** mutants of VTEC strains EDL933, CL106 and
EC3-377. (A) Samples were separated by native PAGE and stained for catalase activity. Catalase HPI (KatG) and HPII (KatE)
are indicated. (B) Expression of RpoS and RpoS-regulated AppA by Western analysis. Mutations in rpoS were identified in these
tested Suc** mutants by sequencing, and sequences are provided in Supplemental material Figure S| and Figure S2. To confirm
equal protein loading, identical gels were run in parallel and stained by Coomassie Blue R-250 [14,71].

The enhanced growth of Suct* mutants was assessed in
liquid media by comparing the growth of wild type
EDL933 and the derived mutants. There was no difference
between growth of mutants and wild type cultures on glu-
cose. However, growth of wild type strains on succinate
was much lower compared with that of mutant strains,
with a 10-fold longer generation time (Table 3). In addi-
tion, the Suct* mutants grew similarly to an rpoS-null dele-
tion mutant on succinate and glucose (Table 3).

Characterization of rpoS mutations in Suc** mutants

To determine if the loss of RpoS function in Suct* mutants
resulted from acquired mutations in rpoS, the rpoS region
of VITEC Suc** mutants exhibiting catalase deficiency was
amplified and sequenced in both directions. Inactivating
mutations, predicted to result in premature termination
of RpoS, were identified in the rpoS gene in all the Suct+

catalase deficient mutants (see Additional files 1 and 2).
These acquired mutations included transitions, transver-
sions, deletions and duplications (see Additional files 1
and 2). To ensure that enhanced growth on succinate was
attributable to acquisition of rpoS mutations (rather than
to secondary mutations), selected Suc** mutants carrying
rpoS null mutations were complemented with a plasmid-
borne functional rpoS [33]. As expected, the growth of
transformed cells on succinate was much slower than that
of the Suct** parental strains, confirming that acquired
mutations in rpoS are responsible for the enhanced
growth of Suct* mutants (data not shown). To examine
the effect of mutation on RpoS levels, Western analysis
using polyclonal antisera to RpoS was performed. In the
selected representative Suc** mutants (see Additional file
2), RpoS protein was absent (Figure 1B). In addition, the
expression of AppA, a RpoS-dependent protein which has
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Table 3: Growth of EDL933 and isogenic mutants in M9 minimal
media with glucose, succinate, fumarate or malate as the sole
carbon source.

Substrate Generation time (min)
WT rpoS Suc**
Glucose 94+8 102 + 28 106 +8
Succinate 1,443 £ 250 9310 116 £ 14
Fumarate 2,780 + 422 135+ 12 139£6
Malate 2,107 £ 731 1,443 + 31 1,147 + 16

M9 minimal media with glucose (0.4%), succinate (1%), fumarate (1%),
or malate (1%) were prepared as described in Methods. Cells were
grown in LB to an ODy, of 0.6, washed with | x M9 salts at 4°C, and
inoculated into fresh minimal media at a starting OD600 nm of 0.05.
Cultures were incubated at 37°C and sampled every hour. This
experiment was performed in triplicate.

both acid phosphatase and phytase activities [34,35], was
substantially decreased in Suc** mutants to about 25% of
the expression level in isogenic wild type strains (Figure
1B).

Growth of VTEC strains and derivative Suc** mutants
under aerobic and anaerobic conditions

Effective utilization of succinate as a carbon source
depends on the availability of an external electron recep-
tor such as oxygen. However, in the human intestine, low
oxygen tension permits E. coli to grow by fermentation or
respiration using an alternative electron acceptor. As
nitrate is readily available in the human intestine (14
pmol/kg [36]) and can be readily utilized by intestinal
bacterial flora including E. coli [37,38] we examined suc-
cinate selection using this alternate electron receptor.
Interestingly, host nitrate synthesis can be stimulated in
response to infections caused by gastroenteric pathogens
[38]. To test if selection for loss of RpoS can occur under
low oxygen conditions, cultures were grown in anaerobic
jars (see Methods). We first compared the anaerobic
growth of wild type and aerobically-selected Suc+*
mutants on glucose and succinate plates. Wild type
EDL933 grew as well as an isogenic rpoS knockout mutant
and derivative Suc** mutants on glucose, while the rpoS
and Suct* mutants grew much better than wild type on
succinate under both aerobic and anaerobic conditions
(Figure 2). The growth of Suct* mutants was similar to
that of the control rpoS null mutant under all conditions
tested.

All VTEC strains were then tested for selection on succi-
nate under anaerobic conditions. As under aerobic condi-
tions, Suc** mutants could be selected from all tested
strains, except for CL3, R82F2 and N99-4390. Most (87%)
of the Suc*+ had reduced catalase activity. We sequenced
the rpoS region of 15 Suc** mutants isolated from EDL933
and found mutations in rpoS, resulting in impaired RpoS

http://www.biomedcentral.com/1471-2180/9/118
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Growth of EDL933 and derivative Suc** mutants on
M9 glucose (Glu) and succinate (Suc) media. Colony
size (diameter) was determined under a light microscope at
40% magnification.

function, in 13 mutants while the rpoS gene in the other
two Suc** mutants remained unchanged (data not
shown).

Expression of virulence-related traits, RDAR and cell
adherence

Mutations in rpoS may affect virulence factor expression in
pathogenic strains [39,40]. To test this, we examined two
virulence-related traits, the RDAR morphotype and cell
adherence. Extracellular components, such as curli fim-
briae and cellulose, are correlated with biofilm formation
and virulence in Salmonella sp. and E. coli strains [41-43].
The expression of curli and cellulose can be visualized by
staining with Congo Red dye to produce a red, dry and
rough morphotype (RDAR) [43,44]. Biosynthesis of both
curli and cellulose is positively regulated by RpoS through
a transcriptional regulator CsgD in E. coli K12 [45,46].
However, to our knowledge, the role of RpoS in expres-
sion of RDAR has not been previously tested in patho-
genic E. coli isolates. Wild type EDL933 exhibited a more
pronounced RDAR morphotype than an isogenic rpoS
null deletion mutant and Suc** mutants (Figure 3A), sug-
gesting that RpoS is important for RDAR development.
Similar results were also obtained for other VTEC strains
(data not shown). Cell adherence assays were performed
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Figure 3

Virulence-related traits, RDAR and cell adherence. (A) Development of RDAR morphotype is impaired in Suc**
mutants. Cells were replica-plated on CR (Congo Red) plates and incubated at 25°C for 48 h. (B) Cell adherence to epithelial
cells. The adherence was expressed as the percentage of cells surviving the washing process. rpoS designates the constructed
rpo$ null-deletion mutant.
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using human liver epithelial cell HepG2. The adherence of
wild type EDL933 to HepG2 cells in tissue culture was
two-fold higher than that of rpoS and Suc++ mutants (P <
0.05) (Figure 3B), indicating that Suct** mutants are
impaired in cell adherence due to loss of RpoS function.
This is consistent with previous results that over-expres-
sion of RpoS stimulates cell adherence [47].

Suc** mutants with an intact RpoS function (rpoS*)

During the screening for the Suc** phenotype, we found
that a small proportion of Suct mutants from strains
EDL933 (8%), CL106 (16%), and EC6-484 (33%) were
catalase-positive, a presumptive indication that RpoS was
functional. To confirm this, we sequenced the rpoS region
of five such Suct mutants (three aerobically isolated and
the other two anaerobically isolated) of strain EDL933. As
expected, there was no mutation in the 7poS gene in these
mutant strains. However, these grew much better than
wild type when grown on succinate (generation time: 240
+ 31 min) and fumarate (generation time: 306 + 33 min)
(Table 3). These data suggest that non-rpoS mutations are
a minor component in the poor carbon selection process.

Effect of the rpoS mutation on metabolism by Phenotype
Microarray analysis

RpoS is known to negatively control many genes involved
in metabolism [10,12,48], and therefore, mutations in
rpoS are likely to exert pleiotropic effects on metabolism.
To test this, we compared wild type MG1655 and its deriv-
ative rpoS deletion mutants [12] using Phenotype Micro-
array analysis (Biolog, Hayward, CA). The rpoS mutants
exhibited better respiration on 8 carbon sources and 92
nitrogen sources but less respiration on four carbon
sources and one nitrogen source (Table 4). The substantial
impact of rpoS mutations on nutrient utilization suggest
that the beneficial effect of loss of RpoS in one selection
condition may be extended to other conditions as well.

http://www.biomedcentral.com/1471-2180/9/118

Enhanced growth of Suc** (rpoS* and rpoS-) mutants is
not limited to the TCA cycle intermediates

To extend the phenotype screening results to pathogenic
E. coli, we tested the growth of EDL933 and derivative rpoS
and Suc** (rpoS+ and rpoS-) mutants on selected carbon
sources (20 mM each) that best supported differential res-
piration of rpoS mutants relative to wild type (Figure 4).
Glucose and succinate were also tested as controls for
comparison. As expected, compared with wild type, the
rpoS and Suc** mutants grew similarly on glucose but
much better on succinate. Among the Biolog compounds
tested, the rpoS and Suct** mutants, including the
Suct*(rpoS+) mutants, grew better than wild type on D-
glucuronic acid or glutamine as the sole carbon source.
However, none of these strains could grow on threonine
or proline as the sole carbon source, which is likely due to
differences in strain background and experimental condi-
tions. The enhanced growth of mutants on D-glucuronic
acid and glutamine confirmed that mutations selected on
succinate have pleiotropic effects on utilization of other
nutrient sources.

Discussion

Understanding how pathogens adapt and mutate in
response to growth environments is critical in deciphering
many of the unknowns regarding pathogenesis, such as
the emergence of new pathogens, the increased resistance
to antibiotics, and the long-term persistence in host envi-
ronment. In this study, we report that a metabolic selec-
tion mechanism for loss of RpoS, a central stress and
adaptation regulator, in representative verocytotoxin-pro-
ducing E. coli strains, may be responsible for the occur-
rence of rpoS mutations among pathogenic E. coli isolates.
In surveying the rpoS gene among E. coli isolates, we found
many mutations in rpoS, some of which result in loss of
RpoS function. Among the VTEC strains tested, most grow
poorly on succinate (like laboratory K12 strains) but some

Table 4: Phenotypic Microarray (PM) analyses of growth changes resulted from rpoS mutations.

Carbon source PM-value Nitrogen source PM-value
B-Methyl-D-Glucuronic Acid 102 Gly-Phe-Phe 157
L-Galactonic Acid-g-Lactone 98 Guanosine 137
L-Threonine 92 Nitrite 133
L-Alaninamide 70 D-Valine 125
L-Glutamine 67 Phe-b-Ala 124
L-Proline 66 L-Tyrosine 124
D-Trehalose 64 Tyr-Phe 120
D-Saccharic Acid 50 Phe-Phe 119
Propionic Acid -51 Tyr-lle 118
Glycyl-L-Proline -69 L-Glutamic Acid 113
a-Keto-Butyric Acid -86 Ser-GIn -67
a-Hydroxy-Butyric Acid -110

PM-value shows the growth difference between WT and rpoS mutants on these nutrients as carbon or nitrogen sources. Positive values show
phenotypes gained in rpoS mutants while negative values show phenotypes lost because of rpoS mutations. In total, rpoS mutants grew better on 92

nitrogen sources tested, and the top 10 are listed.
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Figure 4

Growth of EDL933 and derivative mutants on differ-
ent carbon sources. "ND": not detected. Cells were
grown in LB media to ODy, 0.6, washed and inoculated to
fresh media to a starting ODyy0f 0.05. Cultures were then
grown at 37°C with vigorous shaking (200 rpm) and sampled
every hour for 10 hours to monitor growth. D-glucuronic
acid, threonine, glutamine or proline were added to M9 min-
imal media as the sole carbon source to a final concentration
of 20 mM.

strains grow well. Those that grow poorly all have intact
rpoS. In contrast, strains that grow well on succinate can be
distinguished into two groups, one with intact rpoS and
the other with truncated rpoS. The difference in utilization
of succinate and rpoS status of these natural isolates is
likely the result of certain selection that has occurred in
natural environments. By testing growth-enhanced
mutants (Suc++) selected from strains with intact rpoS on
succinate, we identified two groups of mutants, one with
impaired RpoS while the other with functional RpoS, a
finding that is in agreement with the two parallel groups
found in natural VTEC isolates. This correlation provides
support that metabolic selection is a natural process rele-
vant to pathogenic strains.

Most of the selected Suct+ mutants had lost RpoS func-
tion, confirmed by both DNA sequencing and Western

http://www.biomedcentral.com/1471-2180/9/118

analyses. The positive selection pressure for rpoS muta-
tions may result from the known negative effect of RpoS
on a large group of genes including those in the TCA cycle
[10,12,48,49]. In E. coli, the number of sigma factors
greatly exceeds the number of RNA core polymerase, and
thus there is a strong competition among sigma factors for
binding to the core polymerase [50]. Genes involved in
the TCA cycle are primarily transcribed by RpoD, the veg-
etative sigma factor [50]. The absence of RpoS, caused by
rpoS mutation or low levels of expression, may thus result
in an increase in RpoD-associated RNA polymerase,
thereby leading to enhanced expression of the TCA cycle
genes [12,51,52].

Mutations in rpoS result in substantial phenotypic modifi-
cation. A previous study using similar Biolog screening
technology has shown that the mutation of rpoS stimu-
lates metabolism of about 20 carbon compounds in some
E. coli strains but only has a minor effect in MG1655 [22].
By comparing respiration rates instead of final OD
employed in the previous study, we extended previous
results and found that the respiration of the rpoS deletion
mutant [12] increased in over 100 new compounds com-
pared with wild type MG1655. Thus, we suggest that
RpoS, known as a master stress regulator, can be also envi-
sioned as a central metabolism repressor, whose inactiva-
tion results in enhanced nutrient utilization abilities.
RpoS, therefore, is a critical control in cellular fitness,
which can be defined as better survival or growth depend-
ing on environmental conditions. During stress condi-
tions, activation of RpoS promotes survival by protecting
cells from multiple stresses. During growth on poor car-
bon sources, however, mutating RpoS results in better
growth by conferring cells enhanced metabolic abilities.
In either case, cell fitness is effectively achieved through
modulation of a single factor, RpoS.

What are the potential effects for loss of RpoS in patho-
genic E. coli? On one hand, mutations in rpoS in Suct+
mutants may attenuate RpoS-mediated stress resistance
and virulence functions. Suc** mutants were deficient in
RDAR morphotype development, an indicator for expres-
sion of extracellular components that are important for
bacterial pathogenesis [41]. We also found that adherence
to epithelial cells was impaired in rpoS and Suc** mutants,
indicating a decrease in pathogenesis. On the other hand,
because rpoS mutants can better utilize non-preferred car-
bon sources [23], rpoS mutations may help E. coli compete
with other bacteria in the human intestine, a highly-com-
petitive environment harboring at least 1,000 different
species [53]. It has been reported that rpoS mutants out-
compete wild type strains in colonizing mouse intestine
[54]. Although mutations in rpoS may increase the sensi-
tivity of E. coli cells to exogenous stresses (due to the loss
of protective functions such as catalase), enhanced metab-
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olism of less-preferred carbon sources may offset this defi-
ciency and lead to, on the whole, selection for rpoS
mutations even in a competitive environment [52]. This
has led to the proposal by Ferenci and co-workers that the
loss of RpoS may be viewed as an increase in metabolic fit-
ness at the expense of a loss of protective functions [55].
A slightly different scenario may be operant in VIEC
strains where loss of pathogenic functions, such as curli
fimbriae, may occur during selection for enhanced meta-
bolic fitness (this study), even in the host environment
where rpoS mutants can be isolated [21]. It is also impor-
tant to note that mutants of rpoS were isolated at a low fre-
quency close to spontaneous mutation frequency (10-8),
suggesting that naturally occurred rpoS mutants would
constitute, at least initially, only a small fraction of E. coli
population unless there is a prolonged strong selective
condition (i.e., poor carbon source).

Although loss of RpoS appears to be the usual conse-
quence of selection for metabolic fitness, clearly other
mutation(s) can also occur and result in an enhanced
growth phenotype (e.g., five of 30 EDL933-derived Suc**
mutants characterized did not acquire mutations in poS).

http://www.biomedcentral.com/1471-2180/9/118

The occurrence of non-rpoS mutations may be strain-spe-
cific, since such mutations could not be selected from K12
strains [23] or from some of the tested VTEC strains in this
study. The non-rpoS mutations may represent another
adaptation strategy of E. coli in natural environments, in
which metabolic fitness is achieved without the cost of
RpoS-controlled stress resistance system (Figure 5). Of the
ten tested wild type VTEC strains, three grew well on suc-
cinate, among which two strains (CL3 and R82F2) are
RpoS+ and one (N99-4390) is RpoS-. It is possible that
both 7poS and non-rpoS mutations for enhanced growth
could have occurred in nature among E. coli isolates.
Given the importance of RpoS in cell survival, growth-
enhanced mutations that retain RpoS functions may be
better preserved among E. coli natural populations. Using
representative natural commensal E. coli isolates from the
ECOR collection [56], we recently found that seven of ten
wild type ECOR strains can utilize succinate well; six of
them were RpoS+ and one was RpoS- (Dong and Schell-
horn, unpublished data).

w ) Wl
Nutrient e Stress
limitatio ﬁg
w O W) W) W ()
v i W) w3
v () WO Nutrient v W
) limitation boae o =
Ancestral

E. coli
RpoS+ Suc~

Figure 5

w0 Ancestral E. coli RpoS+ Suc~
waam E. coli RpoS- Suc+
wa@ E. coli RpoS+ Suc+*

Dynamic view of RpoS status and metabolic fitness in natural E. coli populations. It is postulated that the ancestral

E. coli strain possesses a functional rpoS allele (RpoS*) but cannot grow well on poor nutrient sources (Suc~). Upon exposure

to nutrient limitation, mutants (Suc**) exhibiting enhanced metabolic activity can be selected and become dominant among the
population. These mutants consist of two groups, RpoS* and RpoS-. Under stress conditions, however, the proportion of RpoS-
mutants decreases because of the loss of protection by RpoS-controlled functions, and the abundance of strains with functional
RpoS increases. Because cells likely are constantly facing selection between nutrient limitation and stress in nature, the popula-
tion of E. coli isolates is in a dynamic status in terms of RpoS function and metabolic fitness.
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Conclusion

In summary, non-preferred carbon sources can select for
rpoS mutations in pathogenic VTEC E. coli strains. The
resultant Suct* mutants also exhibited growth advantages
on succinate minimal media under anaerobic conditions
with nitrate as a respiratory electron receptor. Suc**
mutants harboring rpoS mutations were impaired in the
development of RDAR morphotype and the ability of
adherence to epithelial cells. Heterogeneity of rpoS as a
result of the selection may thus contribute to differences
in pathogenesis among pathogenic E. coli strains.

Methods

Bacterial strains, media, and growth conditions
Pathogenic strains examined in this study are listed in
Table 1. Strains were routinely grown in Luria-Bertani
(LB) broth aerobically at 37°C with shaking at 200 rpm.
Cell growth was monitored spectrophotometrically at 600
nm. M9 minimal media was supplemented with glucose
(0.4% wt/vol), succinate (1%), fumarate (1%) or malate
(1%) as a sole carbon source [57]. Media was supple-
mented with ampicillin (100 pg/ml) and chlorampheni-
col (25 pg/ml) as indicated. All chemicals and media were
supplied by Invitrogen, Fisher Scientific, or Sigma-
Aldrich. The generation time was determined using expo-
nential phase cultures (g = t/(3.3 (log N-log N;)); g = gen-
eration time; t = time of exponential growth; N, = initial
cell number; N = final cell number) [58].

HepG2 cell growth

HepG2 cells were grown at 37°C in 5% CO, in Dulbecco's
modified Eagle's medium (DMEM) supplemented with
10% (v/v) heat-inactivated fetal bovine serum (FBS).

Selection of Suc** mutants

Cultures were inoculated into LB broth from single colo-
nies. After overnight incubation, cells were washed 3
times with M9 minimal salts to eliminate media carry-
over, plated on succinate minimal media (approximately
10° cells) and incubated at 37°C for 48 h. Several large
colonies (Suct+) from each plate were picked and purified
by serial streaking on succinate plates. The selection for
Suct* mutants was performed in triplicate using inde-
pendent colonies to ensure isolated mutants were not
clones descended from single variants. Three independent
mutants, selected from independently-grown cultures of
each strain, were sequenced using rpoS flanking primers as
described below.

Amplification of the rpoS region and sequencing

The rpoS region of wild type strains and putative rpoS
mutants that were catalase-deficient was amplified using
primers FP1 (CAACAAGAAGTGAAGGCGGG) and RP1
(TGGCCTITCTGACAGAT GCITAC) by whole colony
PCR. A single colony from each strain was resuspended

http://www.biomedcentral.com/1471-2180/9/118

into 30 ul ddH,0, heated at 95°C for 5 min, and 4 pl was
used in a standard 20 ul PCR reaction. PCR products were
purified by QIAquick Purification Kit (Qiagen, Inc.) and
sequenced by MOBIX lab (McMaster University).

Construction of EDL933 rpoS deletion mutant

A precise rpoS deletion mutant of EDL.933 was constructed
using the Red recombination system [59], and served as a
negative control for the following experiments. The rpoS
gene was replaced by homologous recombination with
the chloramphenicol resistant gene cat, which was ampli-
fied using pKD3 plasmid (the template) and primers FP2
(CCTCGCTTGAGACTG GCCITICTGACAGATGCT-
TACGTGTAGGCTGGAGCTGCTTC) and RP2 (ATGTITC
CGTCAAGGGATCACGGGTAGGAGCCACCITCATAT-
GAATATCCTCCTTAG). The cat gene was further removed
from the chromosome by recombination with the FLP
recombinase. The resultant mutant lost the entire rpoS
ORF. The mutation was confirmed by PCR using primers
flanking the deleted region.

Catalase assay

Native polyacrylamide gel electrophoresis (PAGE) was
performed to examine the catalase activity in selected
Suct* mutants. Overnight cultures were harvested by cen-
trifugation at 4,000 x g for 15 min at 4°C, and washed
three times in potassium phosphate buffer (50 mM, pH
7.0). Cells were resuspended to OD, ,,, = 15 in potas-
sium phosphate buffer (50 mM, pH 7.0) and disrupted by
sonication using a Heat Systems sonicator (Misonix, Inc.,
Farmingdale, New York). Cell debris was removed by cen-
trifugation for 15 min at 12,000 x g at 4°C. Protein con-
centration was determined by the Bradford assay using
bovine serum albumin as a standard [60]. Ten pg of each
protein sample were loaded on a 10% native polyacryla-
mide gel and resolved at 160 V for 50 min. The gel was
then stained with horseradish peroxidase and diami-
nobenzidine as described by Clare et al. [61]. Parallel gels
were stained with Coomassie Blue R-250 to verify equal
protein loading. Plate catalase assays were used to qualita-
tively test the Suc** mutants for loss of catalase activity by
dropping 10 pl of 30% H,O, on the plates, an indicator
for rpoS status because catalase production is highly-RpoS
dependent [30].

Western blot analysis

Protein samples were prepared as described for catalase
staining. Samples (10 ug) were boiled for 5 min, loaded
on a 10% SDS-PAGE gel, and fractioned at 160 V for 50
min. Protein samples were then transferred from the gel
onto a PVDF membrane by electrophoresis at 90 V for 1 h.
The PVDF membrane was incubated with anti-RpoS (a gift
from R. Hengge, Freie Universitit Berlin) or anti-AppA
sera (a gift from C.W. Forsberg, University of Guelph) and
secondary antibody of goat anti-rabbit immunoglobulin
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(Bio-Rad). Signals were detected using enhanced chemilu-
minescence (Amersham Bioscience).

Growth under aerobic and anaerobic conditions

Culture samples were collected after overnight incubation
in LB media, and washed 3 times in M9 salts. To obtain
isolated mutant colonies, serial dilutions were plated on
M9 minimal media with either glucose (0.4%) or succi-
nate (1%) as the sole carbon source, and incubated for 72
h at 37°C under aerobic or anaerobic conditions as indi-
cated. Anaerobic conditions were maintained in Brewer
anaerobic jars (Becton Dickinson) using the BBL GasPak
anaerobic system as described previously [62]. Potassium
nitrate (40 mM) was supplemented to all the media to
provide an electron receptor for respiration under anaero-
bic conditions [62]. The diameter of individual colonies
was determined at 40x magnification.

Test of pathogenicity-related traits

(a) RDAR morphotype

To visualize RDAR (red, dry and rough) cell morphotype
[44], a single colony of each strain was resuspended in
non-salt LB media (1% tryptone and 0.5% yeast extract)
in a 96-well microtiter plate, transferred to Congo Red
(CR) plates (non-salt LB media with 1.5% agar, 40 nug/ml
of Congo Red dye, and 20 pg/ml of Coomassie Blue R-
250) by replica plating, and grown at 25°C for 48 h [44].

(b) Adherence assay

Quantitative adherence assays were performed as
described by Torres and Kaper [63]. Wild type E. coli
EDL933 and derivative rpoS and Suc+* mutants were tested
for adherence to human liver epithelial HepG2 cells. Con-
fluent HepG2 cultures grown in DMEM were incubated
with 108 CFU E. coli overnight grown cells for 6 h at 37°C
in 5% CO,. Adhered E. coli cells were washed with PBS
buffer, released by 0.1% Triton X-100 and enumerated by
serial plating on LB media. The adherence is reported as
the percentage of cells that remain adherent following the
washing process. The statistical significance of differences
between treatment groups was determined using an
unpaired Student's t-test [64].

Phenotype Microarray analysis

To assess the effect of RpoS on metabolism, we compared
wild type MG1655 E. coli strain and a derivative null-rpoS
mutant [12] using a commercial high-throughput pheno-
type screening service, Phenotype Microarray (PM) analy-
sis (Biolog, Hayward, CA), that permits evaluation of
about 2,000 cellular phenotypes including utilization of
carbon, nitrogen, phosphate and sensitivity to various
stresses [65,66]. PM analysis assesses substrate-dependent
changes in cell respiration using tetrazolium as an elec-
tron acceptor and has been widely used to test growth
phenotypes [67-69].

http://www.biomedcentral.com/1471-2180/9/118

Sequence alignment

The rpoS sequences of VTEC E. coli strains and isolated
mutants were aligned by ClustalW [70] and graphically
depicted using Vector NTI 10 (Invitrogen, Carlsbad, CA).
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