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Abstract
Background: The nontypeable Haemophilus influenzae (NTHi) are associated with a spectrum of respiratory mucosal
infections including: acute otitis media (AOM); chronic otitis media with effusion (COME); otorrhea; locally invasive
diseases such as mastoiditis; as well as a range of systemic disease states, suggesting a wide range of virulence phenotypes.
Genomic studies have demonstrated that each clinical strain contains a unique genic distribution from a population-based
supragenome, the distributed genome hypothesis. These diverse clinical and genotypic findings suggest that each NTHi
strain possesses a unique set of virulence factors that contributes to the course of the disease.

Results: The local and systemic virulence patterns of ten genomically characterized low-passage clinical NTHi strains
(PittAA – PittJJ) obtained from children with COME or otorrhea were stratified using the chinchilla model of otitis media
(OM). Each isolate was used to bilaterally inoculate six animals and thereafter clinical assessments were carried out daily
for 8 days by blinded observers. There was no statistical difference in the time it took for any of the 10 NTHi strains to
induce otologic (local) disease with respect to any or all of the other strains, however the differences in time to maximal
local disease and the severity of local disease were both significant between the strains. Parameters of systemic disease
indicated that the strains were not all equivalent: time to development of the systemic disease, maximal systemic scores
and mortality were all statistically different among the strains. PittGG induced 100% mortality while PittBB, PittCC, and
PittEE produced no mortality. Overall Pitt GG, PittII, and Pitt FF produced the most rapid and most severe local and
systemic disease. A post hoc determination of the clinical origins of the 10 NTHi strains revealed that these three strains
were of otorrheic origin, whereas the other 7 were from patients with COME.

Conclusion: Collectively these data suggest that the chinchilla OM model is useful for discriminating between otorrheic
and COME NTHi strains as to their disease-producing potential in humans, and combined with whole genome analyses,
point the way towards identifying classes of virulence genes.
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Background
Haemophilus influenzae is a gram-negative coccobacillus
that is an obligate resident of the human respiratory
mucosa [1,2]. Numerous studies have suggested that H.
influenzae, present in the nasopharynx of the majority of
children and adults [3-5], is a common cause of superin-
fection following upper respiratory viral infections [6-8].
The H. influenzae display multiple pathogenic instru-
ments, including redundant heme acquisition mecha-
nisms, IgA proteases, direct invasion of host columnar
epithelial cells, and the release of a host of adhesins and
proteins capable of functionally impairing the mucocili-
ary escalator [7,9-11]. The presence of a polysaccharide
capsule by some strains has provided for the division of
the species into typeable (serotypes, a-f) and nontypeable
(NTHi) isolates [12]. The NTHi are frequently recovered
from otitis media (OM) effusions and from the sputum
and lung biopsy specimens of patients with cystic fibrosis,
chronic bronchitis, and chronic obstructive pulmonary
disease. Moreover, direct cellular invasion by NTHi may
play a role in chronic sinopulmonary infections. H. influ-
enzae type b (Hib), prior to the introduction of highly effi-
cacious conjugate vaccines in the late 1980's, was
responsible for 95% of the invasive disease associated
with this species [13,14]. Emerging evidence has linked
the NTHi to invasive disease suggesting that some of the
NTHi strains may be evolving to fill the niche previously
occupied by Hib [15]. In this study of twenty invasive
NTHi strains, 12 of which were from adult or adolescent
patients, 18 distinct sequence types were identified indi-
cating that this is not a clonal phenomenon.

Clinical phenotyping studies indicate that there is a broad
range of disease symptoms that can be triggered by the
NTHi, however the genetics of the virulence mechanisms
underlying these myriad phenotypes are just starting to be
elucidated [16-21]. Like all infectious processes, NTHi dis-
ease results from a set of complicated host-pathogen inter-
actions [22,23], however, in the case of the NTHi this is
compounded by their documented genomic heterogene-
ity [7,24,25]. The laboratory strain Rd was the first free-liv-
ing organism to have its genome sequenced [26], however
NTHi diversity studies have demonstrated that each clini-
cal isolate is genomically unique [2,24,25]. This diversity
triggered the development of the distributed genome
hypothesis [25,27,28] which posits that at the population
level there is a supragenome which is multiple times the
size of the genome of any single bacterium, and that each
strain contains a unique subset of the contingency genes
that make up the supragenome. This high degree of
genomic plasticity among strains, polyclonal nasopharyn-
geal colonizations [29], and the possession of autocompe-
tence and autotransformation mechanisms provide the
NTHi collectively with the ability to continually generate

new forms, some of which will have novel combinations
of virulence traits.

The NTHi are responsible for greater than 30% of all OM
cases which is the most frequent complaint for emergency
department and primary care physician visits by children
less than 16 years of age worldwide – accounting for some
25,000,000 annual physician encounters [30]. Moreover,
OM can be complicated by direct invasion into adjacent
organs causing mastoiditis and/or meningitis [31,32]. An
understanding of the genetic repertoire of the NTHi asso-
ciated with OM and its complications will aid in the
development of prevention and treatment strategies rang-
ing from vaccines to antimicrobials [6,25,33].

In the current study we have used the chinchilla (Chin-
chilla laniger) model of OM to investigate differences in
the clinical phenotypes of 10 NTHi strains obtained from
patients with chronic OM with effusion and otorrhea.
Studies at our institution and others have demonstrated
the applicability of the chinchilla model of OM to human
disease as it provides an inexpensive, reproducible mid-
dle-ear infection in nearly 100% of inoculated animals
that has yielded numerous insights into the molecular
pathophysiology and microbiology of mammalian mid-
dle ear disease [34-41].

Results
Differences in rapidity and severity of otologic signs
The first criterion we evaluated was days to the develop-
ment of unambiguous otologic signs (local disease)
which we defined as a score of 2 or higher based upon the
otologists comments that the difference between 0 and 1
(Table 1) was often difficult to discern. Using this crite-
rion there was no statistical difference among the strains
with respect to rapidity of local disease onset (Figure 1).
However, the variability in the amount of time for each
strain to induce its maximum otologic scores (i.e. how
many days following infection did it take before the ani-
mals exhibited their most severe local signs) was highly
statistically significant; an ANOVA analysis of these data
produced a p value = 0.00087. A scatterplot of these data
indicates that strains PittFF, PittGG, and PittII demon-
strated the most rapid onset of severe local signs (Figure
2). Moreover the differences in the mean maximal oto-
logic scores among the 10 strains were significantly differ-
ent for each of the first five days following infection, after
which the high mortality rates for the more systemically
virulent strains made such analyses problematic given the
missing data (Table 2). Similarly, it was determined that
the mean maximal otologic score per animal, regardless of
day on which it was recorded, induced by each of the 10
NTHi strains was statistically significant; ANOVA analysis
produced a p value = 0.022 (Figure 3).
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Differences in rapidity and severity of systemic signs
An ANOVA analysis of the differences among the strains
with respect to the rapidity of the development of the first
signs of systemic disease produced extremely highly sig-
nificant results: p = 2.5 × 10-7. However, this figure actu-
ally underestimates the real differences among the strains
as animals that never developed systemic signs were
excluded from the analysis. A scatterplot of these data
demonstrate that four, three, two, one, and one of the ani-
mals inoculated with strains PittBB, EE, CC, AA, and DD,
respectively, never evidenced any systematic signs and are
therefore not plotted in Figure 4. This figure also shows
that PittGG, II, and JJ induced systemic signs in 100% of
the animals within 24 hours. The maximum severity score
per animal is detailed in Figure 5 and ANOVA demon-
strated that the ten strains did not induce equivalent max-
imum systemic severity (p = 2.2 × 10-5.). There was weak
correlation between rapidity of onset of systemic illness
and the maximal severity of that illness in any animal
(Spearman's rank correlation rho = -0.36 with p = 0.011).
Finally we determined that there was a weak correlation

between otologic and systemic severity in the animals
(Spearman's rank correlation rho = 0.28 with p = 0.029)

Differences in mortality
The mortality of the chinchillas was highly correlated with
the inoculating strains. All of the animals infected with
PittGG succumbed, and two thirds of the animals infected
with PittFF and PittII also died, whereas none of the ani-
mals infected with PittBB, PittCC, or PittEE died (Table 3).

Rapidity of local disease onsetFigure 1
Rapidity of local disease onset. Scatterplot showing the 
number of days it took for chinchillas inoculated with the 10 
clinical NTHi strains to develop moderate or worse (score 
=/> 2) local (otologic) disease. X-axis = the clinical NTHi 
strains (PittAA-PittJJ, left to right); Y-axis = the days post 
inoculation that moderate or worse local disease developed.
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Table 2: Statistical significance of the mean maximum 
differences in otologic scores induced by 10 clinical NTHi strains 
(PittAA – PittJJ) following transbullar inoculation into 
chinchillas.

Days Post Inoculation p value

Day 1 0.0005825
Day 2 0.003254
Day 3 0.000005038
Day 4 0.004122
Day 5 0.02772*

* Due to extensive mortality beginning on day 5 associated with the 
more systemically virulent strains, there are many data points missing 
which artificially lowers the p value as evaluations could not be 
performed on dead animals.

Table 1: Scoring system to quantify Haemophilus influenza [NTHi] pathogenicity in the CGS-chinchilla model.

Otologic Score 0 1 2 3 4

Degree of 
otoscopic changes 
(inflammation)

None Mild Moderate Frank purulence Tympanic 
membrane rupture

Systemic Score 0 0.5 1 2 3 4

Systemic 
description

normal Slightly lethargic 
Upright and steady 
on feet Immediately 
responds to 
stimulation by 
actively moving 
around cage Eating 
and drinking

Slightly lethargic Upright 
and steady on feet Head 
and ears down Responds 
by actively moving 
around cage rapidly when 
stimulated by voice or 
touch Eating and drinking 
Eyes 1/2 open

Moderately lethargic 
Slightly ataxic Able 
to keep self upright 
Moving around cage 
slowly only when 
stimulated by voice 
or touch Eating 
treats and drinking 
water

Same as 2 but not 
eating or drinking 
Supportive 
treatment given 
(fluids and 
Buprenex)

Extremely lethargic 
Extremely ataxic 
Not able to 
maintain an upright 
position Barely 
moving around cage 
Dyspnea Sacrificed
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A Fisher's exact test for these count data yielded a highly
significant p-value = 0.00019, and Kaplan-Meyer plots of
these data indicate the increased rapidity and percentages
of death associated with the PittGG, PittII and PittFF com-
pared with the other seven strains. (Figure 6). A complete
analysis of strain pairwise comparisons for differences in
mortality demonstrated that PittGG was statistically more
likely to be associated with death than PittBB, or PittCC,
or PittEE (p-values = 0.0039), or PittAA and PittJJ (p-val-
ues = 0.019). However, after the application of a Bonfer-
roni correction none of these values reached statistical
significance due to the relatively small cohort sizes and
the large number of tests performed (n = 45).

PCR-based analyses of specimens
Upon death all of the chinchillas were evaluated for NTHi
DNA using a PCR-based assay [40]. Microbial culture was
not employed because according to the IACUC protocol
all animals that had shown signs of systemic or invasive
disease were treated with antibiotics, which we have pre-
viously demonstrated in the chinchilla model, will render
cultures uniformly negative in spite of active bacterial
infections [37]. Middle-ear effusions, or lavages if there
was no frank effusion, were recovered and assayed for H.
influenzae DNA and established that all of the animals had

been productively infected including those with minimal
local and absent systemic signs.

Clinical origins of the NTHi strains
After completion of the animal studies and the statistical
analyses, a post hoc inquiry was made to determine the
exact clinical origins of the 10 NTHi strains under evalua-
tion. Although all strains were derived from pediatric mid-
dle-ear specimens, PittGG, PittFF, and PittII, the
consistently most virulent strains both otologically and
systemically were identified as being otorrheic in origin,
having been isolated from children with a perforated tym-
panic membrane, whereas the other seven were obtained
from patients undergoing tympanostomy and tube place-
ment for COME, a less virulent disease.

Global comparative genomics of the NTHi strains
The entire genomes of nine of the ten NTHi clinical strains
(PittDD was excluded due to incompleteness of the
genomic data) that were compared with respect to disease
phenotype in this study were subjected to global analyses
to determine their overall levels of genic relatedness along
with seven other clinical NTHi strains, the laboratory
strain Rd and a serotype b strain using the unweighted
pair group method algorithm (Figure 7). It can be seen at
this global level of comparison that strains do not cluster

Maximum otologic score per animalFigure 3
Maximum otologic score per animal. Scatterplot show-
ing the maximum otologic severity – regardless of time – 
recorded for each of the chinchillas inoculated with the 10 
clinical NTHi strains. X-axis = the clinical NTHi strains (Pit-
tAA-PittJJ, left to right); Y-axis = the otologic clinical score 
based upon the criteria in Table 1.
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Rapidity of most severe local diseaseFigure 2
Rapidity of most severe local disease. Scatterplot show-
ing the number of days it took for chinchillas inoculated with 
the 10 clinical NTHi strains to develop their maximum (most 
severe) otologic score – regardless of what that score was. 
X-axis = the clinical NTHi strains (PittAA-PittJJ, left to right); 
Y-axis = the days post inoculation that moderate or worse 
local disease developed.
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overall by clinical phenotype with the exception of PittGG
and PittFF which turned out to be serial isolates from the
same patient and do not have any significant genic differ-
ences, but only allelic differences. PittGG/FF do not clus-
ter with the other invasive strains including PittII from
this study and R2866 from a published study [17]. Simi-
larly the COME strains do not cluster together when
observed from a global genomic viewpoint.

Discussion
This in vivo comparative study of the propensity of ten
clinical NTHi strains to induce otologic and systemic dis-
ease in the chinchilla following transbullar inoculation
clearly demonstrates that different strains have varying
abilities to cause both local and systemic disease. This is
the first demonstration of the utility of chinchilla model

of OM to distinguish among multiple NTHi clinical
strains with respect to each one's myriad virulence param-
eters. These findings were not wholly unsuspected in light
of the fact that each of these strains has been demon-
strated to contain a different subset of distributed genes
from the NTHi supragenome [25], nonetheless when you
combine the fact that the functions of most of these novel
genes are unknown with the observation that the chin-
chilla is not a natural host of the NTHi it was not obvious
either. It is of particular interest that this disease model
was able to distinguish, when evaluated in a blinded man-
ner, between strains of COME origin and invasive strains
of an otorrheic origin. The otorrheic strains, PittGG, PittFF
and PittII, consistently produced the most rapid and
severe otologic and systemic signs and produced a com-
bined mortality of 77.8% (14/18), whereas the seven
COME strains only had a combined mortality of 14.3%
(6/42). Strains HH and JJ, which are of the same MLST

Table 3: Survival and mortality of chinchillas inoculated with 10 different clinical NTHi strains

Strain PittAA PittBB PittCC PittDD PittEE PittFF PittGG PittHH PittII PittJJ

Fate

Survived 5 6 6 4 6 2 0 4 2 5
Died 1 0 0 2 0 4 6 2 4 1

Rapidity of systemic disease onsetFigure 4
Rapidity of systemic disease onset. Scatterplot showing 
the number of days it took for chinchillas inoculated with the 
10 clinical NTHi strains to first develop their maximum 
(most severe)significant systemic signs (systemic score ≥1 – 
regardless of what their eventual maximum severity was. X-
axis = the clinical NTHi strains (PittAA-PittJJ, left to right); Y-
axis = the days post inoculation that the first signs of sys-
temic disease developed.
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Maximum systemic severityFigure 5
Maximum systemic severity. Scatterplot showing the 
maximum systemic severity – regardless of time – recorded 
for each of the chinchillas inoculated with the 10 clinical 
NTHi strains. X-axis = the clinical NTHi strains (PittAA-Pit-
tJJ, left to right); Y-axis = the systemic clinical score based 
upon the criteria in Table

AA BB CC DD EE FF GG HH II JJ

0

1

2

3

4

Strain

S
ev

er
ity

 s
co

re
Page 5 of 10
(page number not for citation purposes)



BMC Microbiology 2007, 7:56 http://www.biomedcentral.com/1471-2180/7/56
type [25], a measure of the relatedness of core metabolic
genes, belong to completely different clades when evalu-
ated by shared distributed genomic characters (Figure 7).
Interestingly Pitt JJ and PittII, respectively COME and
invasive strains, cluster most closely together in terms of
shared distributed genes. The fact that both of these
strains are associated with rapid systemic disease onset,
but that only PittII induces severe systemic disease sug-
gests that careful analyses of these two strains may provide
candidate genes associated with systemic severity or limit-
ing systemic severity. PittAA, which is clearly the most
genomically unique of the phenotyped strains, produces
local and systemic clinical profiles nearly identical with
PittBB, CC and EE. Taken together, the disease phenotype
data and the global-level comparative genomic data sug-
gest that it is not possible to predict disease phenotype
based on simply viewing the degree of overall genic relat-
edness. This is not a surprising finding as the mean
number of genic differences among each of the possible
strain pairs is > 350 (data not shown), and the number of
genes that are associated with each of the various parame-
ters of clinical virulence is most likely a small fraction of
this number. We are pursuing a two-pronged approach to
this problem of identifying disease genes associated with
specific virulence phenotypes. In the first case once the
point is reached where sequencing additional NTHi
strains does not materially increase the size of the suprage-
nome we will do quantitative trait loci (QTL)-like genic
association studies using an exhaustive distributed
genome chip to interrogate hundreds of clinically charac-
terized strains. In the second case we will perform metab-
olomic reconstructions of multiple strains grouped by
virulence phenotype to identify shared pathways.

Little is known of what specific genotypic features are
important for the development of local and systemic dis-
ease among the NTHi. Erwin et al (2005) in a study of 17
invasive NTHi strains concluded that invasive isolates are
genetically and phenotypically diverse, but that some loci
are frequently found in association [17]. The systemically
virulent PittGG/FF strains examined in the current study
contain the hif operon which encodes a pilus gene cluster
that mediates adherence to sialic acid-containing lactosyl-
ceramide structures on epithelial cell surfaces [49]; these
genes have previously been implicated as being more
prevalent in throat isolates than COME isolates and are
nearly ubiquitous among the invasive type b strains [50].
Most NTHi strains associated with chronic disease includ-
ing PittAA and PittJJ do not contain the hif operon, but
PittAA contains one of the hmw cassettes (HMW1A), how-
ever, Pitt JJ is lacking all of the hmw genes as well; which
are much more rarely found in invasive strains as these
proteins mediate adherence to the respiratory epithelial
cells. Similarly the lic genes which encode LOS moieties,

Degree of genic sharing of distributed or non-core genesFigure 7
Degree of genic sharing of distributed or non-core 
genes. Dendrogram developed using the unweighted pair 
group method algorithm demonstrating the degree of genic 
sharing of distributed or non-core genes [26,28] which are 
defined as the set of genes not universally present among all 
strains of the species. The figure compares 15 NTHi strains, 
which include 9 of the strains phenotyped in the current 
study (PittDD was omitted due to incomplete genomic data 
and PittFF and PittGG collapse to a single strain using this 
method) and the laboratory strain Rd. The sequence for the 
86028NP strain has been previously published [18], and the 
unannotated sequences for the R2866 and R2846 NTHi 
strains were obtained from Genbank (accession #s 
NZ_AADP00000000, and NZ_AADO00000000, respec-
tively) and used with permission of the depositing authors. 
The X-axis lists the number of genic differences between 
strains; y-axis lists the H. influenzae strains. Strain 86028NP is 
a nasopharyngeal (NP) isolate obtained from a patient suffer-
ing from OM; R2866 is an invasive strain; CHSHi22121 is an 
NP isolate from a well child; R2846 is an COME isolate; 
CGSHiR3021 and CGSHi22421 are NP isolates from healthy 
children; and CHSHi3655 is an OME strain.
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Differences in mortalityFigure 6
Differences in mortality. Kaplan-Meyer plots showing the 
differences in mortality induced by the 10 NTHi strains, Pit-
tAA-PittJJ. X-axis = time in days following inoculation; Y-axis 
percentage of surviving animals.

0 2 4 6 8

0.
0

0.
4

0.
8

AA

days

0 2 4 6 8

0.
0

0.
4

0.
8

BB

days

0 2 4 6 8

0.
0

0.
4

0.
8

CC

days

0 2 4 6 8

0.
0

0.
4

0.
8

DD

days

0 2 4 6 8

0.
0

0.
4

0.
8

EE

days

0 2 4 6 8

0.
0

0.
4

0.
8

FF

days

0 2 4 6

0.
0

0.
4

0.
8

GG

days

0 2 4 6 8

0.
0

0.
4

0.
8

HH

days

0 2 4 6 8

0.
0

0.
4

0.
8

II

days

0 2 4 6 8

0.
0

0.
4

0.
8

JJ

days
Page 6 of 10
(page number not for citation purposes)



BMC Microbiology 2007, 7:56 http://www.biomedcentral.com/1471-2180/7/56
including phosphoryl choline, have been previously asso-
ciated with chronic disease, but are often absent from
invasive strains [17,51]; among the chronic strains in the
current study PittBB and PittEE contained genes from this
cluster whereas PittAA and PittJJ did not.

To control for the small sample sizes and minimize bias
in the current study we used very conservative statistical
analyses and employed a single highly qualified individ-
ual to perform all of the otologic evaluations in a blinded
manner. In addition we varied daily the order in which
the animals were evaluated. The fact that our intra-strain
variability was significantly less than our inter-strain vari-
ability strongly suggests that the model performed as
expected. These findings together with the model's ability
to differentiate the otorrheic strains from the COME
strains and its phenotypic clustering of PittFF and PittGG
which we subsequently determined were by far the most
similar strain-pair genotypically augers well for the con-
tinued use of this model for characterizing NTHi clinical
strains.

Conclusion
This study provides validation of the discriminatory
power of the chinchilla-NTHi-induced otitis media model
for use as a tool in stratifying disease phenotypes of
COME- and otorrhea-derived NTHi-isolates. In the cur-
rent study, significant differences were demonstrated both
with respect to local and systemic virulence parameters
among a set of 10 low-passage clinical NTHi isolates.
Moreover, the three strains that induced the most rapid
and severe systemic disease, as well as the most rapid
onset of local disease were determined post hoc to have
been isolated from a more clinically aggressive disease
condition. We will be performing whole genome evalua-
tions of these strains using an NTHi supragenome chip
composed of all identifiable NTHi genes derived from a
project to sequence 40 geographically and clinically
diverse NTHi strains in their entirety.

Identification of the genetic bases for the various virulence
phenotypes including chronic persistence, local invasive-
ness, and systemic illness will have important implica-
tions for vaccine and antimicrobial development. With
increasing knowledge of the diversity of the individual
NTHi genomes [2,17,25,29,52-54], and the size of the
NTHi supragenome [25,27], additional studies of pheno-
typic diversity will be needed to clarify the role of individ-
ual genic elements as well as various combinations of
discrete genic elements. It is becoming clear that NTHi
recovered from disease states are genotypically different
from those harvested from carrier states [17,18,54]. Con-
ceivably, genetic heterogeneity among the NTHi com-
bined with auto-competence processes may provide the
necessary genetic reservoir and the means for the develop-

ment of novel virulent strains in vivo via recombination
between commensal residents and infecting pathogens.

Methods
Bacterial strains and culture
Ten NTHi strains (PittAA-PittJJ) were obtained through
the Clinical Microbiology Laboratory of Children's Hospi-
tal of Pittsburgh that had been isolated from children with
either chronic otitis media with effusion (COME) or otor-
rhea [25]. All strains were cultured in brain heart infusion
broth (Becton Dickinson, Sparks, MD) supplemented
with 10 µg/ml hemin (Fisher Scientific, Pittsburgh, PA), 2
µg/ml NAD (Sigma, St. Louis, MO) and 20-µg/mL thia-
mine HCl (Sigma), and grown at 37°C in a humidified
5% CO2 environment. All isolates were received as first
plate specimens on chocolate agar. Each strain was grown
up once in supplemented BHI from a single colony picked
from the chocolate agar plate to mid-log phase and then
used to make a large number of freezes using a 1:1 mixture
of a glycerol salts solution (40 mM KCl, 40 mM NaCl, 1
mM MgSO4, 65% glycerol v/v). For subsequent cultures a
scraping from one of the still frozen glycerol freezes was
inoculated directly into supplemented BHI. Upon
sequencing the clinical strains PittFF and PittGG, which
was accomplished subsequent to our phenotypic charac-
terizations and after the first draft of this paper was writ-
ten, we determined that they contained essentially the
same genomic content, i.e. there were no genic differences
between the two strains, only some allelic differences that
have not been confirmed. Thus, a more detailed analysis
of their origins was conducted that revealed they were
sequential otorrheic isolates from the same patient most
likely made on consecutive days. The COME strains were
obtained at the time of myringotomy and tube placement
and the otorrheic strains were isolated from drainage
through a perforated tympanic membrane. The Allegheny
County Public Health Laboratory and the New York State
Department of Health's Wadsworth Laboratory identified
all 10 strains as nontypeable [25] and these findings were
confirmed using a PCR-based capsular typing methodol-
ogy [24,42,43].

Induction of OM in the chinchilla and experimental design
All experiments were conducted with the approval of the
Allegheny Singer Research Institute's Institutional Animal
Care and Use Committee (IACUC). Young adult chinchil-
las (C. laniger, 400–600 gm; McClenahan Chinchilla
Ranch, New Wilmington, PA) were obtained free of mid-
dle-ear disease as culls from the fur industry. After a 7 day
acclimation period, the animals were anesthetized on
experimental day 0 by intramuscular injection of 0.1 ml of
a solution of ketamine hydrochloride 100 mg/ml, xyla-
zine hydrochloride 30 mg/ml and acepromazine 5 mg/
ml. After anesthesia was confirmed (abolishment of eye-
blink reflex), 0.1 ml of a 105 colony forming units (CFU)/
Page 7 of 10
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ml NTHi culture was injected bilaterally through the tym-
panic bullae using a 0.5 in, 27-gauge needle on a 1 ml
syringe. Each of the 10 strains was used to infect six chin-
chillas.

Animals were monitored daily for seven days for signs and
severity of local (otologic) and systemic disease using the
criteria in Table 1. All evaluations were performed by
observers who were blinded with regard to the inoculating
strains. Local disease was evaluated via a single otoscopist
[JCP] to ensure uniformity. Hence for each animal three
scores were recorded: otoscopy score for right ear, otos-
copy score for left ear and systemic score. From the col-
lected data we determined measures relating to rapidity of
local disease: 1) days to first significant otologic score; and
2) days to maximum otologic score. Systemic evaluations
included rapidity of onset, maximum severity of disease,
and mortality.

Following sacrifice H. influenzae-specific PCR [40] was
performed on autopsy specimens to verify the causative
organism as NTHi.

Statistical analyses
All analysis was performed by using the scores that were
recorded daily for each ear and for each animal in the case
of the systemic severity. The data was not transformed.
Nevertheless, for each animal, the maximum of the left
and right ear score was used. Thus the data were consid-
ered independent at the level of each animal. Statistical
analysis was performed using R: A Language and Environ-
ment for Statistical Computing (R Development Core
Team, Vienna, Austria, 2006) [44]. For each parameter
referred to in the text, one-way analysis of variance
(ANOVA) was performed with the null hypothesis being
that the parameter was equal amongst all 10 strains of
infecting bacteria. Significance was defined as p < 0.05.
Repetition of the analysis by the non-parametric Kruskal-
Wallis test yielded similar results. When the null hypoth-
esis was rejected Tukey multiple comparisons of means
test was performed so that the mean of each strain could
be compared to every other strain.

Mortality was primarily evaluated by determining the
number of animals that were sacrificed prematurely by
each infecting strain. The 10 strains were compared by the
Fisher's Exact Test for Count Data in which the null
hypothesis was that the number of animals dying prema-
turely was equal amongst all strains. Pairwise comparison
of proportions was used to explore the premature mortal-
ity of each strain in contrast to the each of the others. Since
the sample size for each strain was small, and the Bonfer-
roni correction was used, the null hypothesis could not be
rejected for any specific pairing.

Global genic comparisons and gene possession-based 
phylogenetic tree building among H. influenzae strains

Each of the H. influenzae clinical strains that were evalu-
ated for disease phenotype in the chinchilla OM model
was also subjected to whole genome sequencing using the
454 LifeSciences pyrosequencing technology. In addition,
several additional H. influenzae clinical strains were
sequenced and included in the analysis to provide a per-
spective on the relative relatedness of the strains in this
analysis compared to the overall species-level diversity.
Gap closure experiments to join assembled contigs were
designed by a custom Perl script, and PCR primers were
designed by Primer3 [45]. Coding sequences for all 17
strains in the analysis, including those previously anno-
tated, were identified by the AMIgene microbial gene
finder adjusted to low-GC parameters and trained on the
Rd KW-20 genome to ensure that all subsequent gene
cluster analyses began with a common annotation [46].
Each pair of genes within each genome and among all
genomes was examined for protein homology by align-
ment of six-frame nucleotide translations to predicted
protein sequences. Alignments were generated by
tfasty34, part of the Fasta v3.4 package [47]. Six-frame
translations were employed to minimize the impact of
frame-shift artifacts. Each gene was also aligned against
the full nucleotide sequence of the 17 genomes by
fasta34. Genes were clustered based on homology using a
single-linkage algorithm. A link was defined by a signifi-
cant tfasty match between genes which exceeded an iden-
tity threshold of 70% and covered at least 70% of the
shorter gene. The asymmetric length criterion was chosen
to insure that any fragmented genes would cluster with
the full length version of the gene. A side-effect of this cri-
terion is that multi-domain proteins will fuse with pro-
teins which are composed of a subset of those domains.
Significant fasta matches between genes and genomic
sequence were used to identify sequence conservation
between a gene cluster and a strain. A gene possession-
based phylogenetic tree of the 17 strains was constructed
by defining the distance between a pair of genomes i and

k to be  where gn, i = 1 if gene n is present

in strain i and 0 otherwise. The strains were clustered
based on the distance metric by the unweighted group
average method implemented in clustering utilities [48]
which results in a tree that shows relationships based
upon the number of non-core genes that each strain pair
has in common. Non-core genes are defined as genes that
are present in only a subset of strains, as opposed to core

g gn i n k
n

, ,−∑
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genes which are universally present among all strains of a
species. The grouping of gene clusters into core and non-
core genes simply reflects the distribution of each cluster
relative to all sequenced strains. The genomic sequences
of the NTHi clinical strains that were evaluated phenotyp-
ically in this study are in the process of being submitted to
Genbank as part of a separate study (Hogg et al submit-
ted).
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