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Abstract
Background: Arginine biosynthesis in Escherichia coli is elevated in response to nutrient limitation,
stress or arginine restriction. Though control of the pathway in response to arginine limitation is
largely modulated by the ArgR repressor, other factors may be involved in increased stationary
phase and stress expression.

Results: In this study, we report that expression of the argCBH operon is induced in stationary
phase cultures and is reduced in strains possessing a mutation in rpoS, which encodes an alternative
sigma factor. Using strains carrying defined argR, and rpoS mutations, we evaluated the relative
contributions of these two regulators to the expression of argH using operon-lacZ fusions. While
ArgR was the main factor responsible for modulating expression of argCBH, RpoS was also required
for full expression of this biosynthetic operon at low arginine concentrations (below 60 µM L-
arginine), a level at which growth of an arginine auxotroph was limited by arginine. When the
argCBH operon was fully de-repressed (arginine limited), levels of expression were only one third
of those observed in ∆argR mutants, indicating that the argCBH operon is partially repressed by
ArgR even in the absence of arginine. In addition, argCBH expression was 30-fold higher in ∆argR
mutants relative to levels found in wild type, fully-repressed strains, and this expression was
independent of RpoS.

Conclusion: The results of this study indicate that both derepression and positive control by RpoS
are required for full control of arginine biosynthesis in stationary phase cultures of E. coli.

Background
The biosynthesis and/or scavenging of arginine are impor-
tant during host colonization by uropathogenic
Escherichia coli. In urine, expression of the E. coli argCBH
operon and artJ, encoding a periplasmic transporter,
increases more than 10 fold [1] and 18 fold [2], respec-

tively. Synthesis of arginine is likely required during infec-
tion as the concentration of arginine found in urine is
below that necessary to support maximal growth of E. coli
[1]. Consistent with these data, infection challenge in a
murine model with E. coli strains carrying mutations in
the argC gene results in impaired proliferation in the kid-
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ney [1]. In enteropathogenic E. coli [3] arginine synthesis
and transport, together with arginine decarboxylase
(encoded by adiA), are important components of the cell's
acid resistance repertoire [3-5].

Under nutrient-limiting conditions, E. coli can potentially
utilize arginine as both a carbon and a nitrogen source [6].
Arginine is a precursor for the synthesis of polyamines,
putrescine and spermidine, which may reduce oxidative
damage to proteins and DNA [7,9]. In addition, in phos-
phate-starved cells, aerobic metabolism of arginine may
be an important physiological adaptation that is inti-
mately associated with cell survival [10]. Since arginine
contains 11% of the cell's nitrogen in stationary phase
[11], biosynthesis of this amino acid is likely important
under sub-optimal conditions.

Arginine is synthesized by a complex biosynthetic path-
way consisting of several operons and unlinked genes that
are controlled by ArgR [12] which represses by binding to

a conserved ARG box [13,14] to overlap with RNA
polymerase binding sites. Maximum derepression occurs
in the absence of arginine [12]. In contrast to most amino
acid biosynthetic genes, the expression of the arg biosyn-
thetic genes increases briefly during diauxic growth arrest
[15]. As this stress is similar to that imposed by nutrient
limitation, it is plausible that stationary phase regulators
participate in control of arginine biosynthesis. Several
enzymes required for arginine catabolism are controlled
by RpoS, an alternative stationary phase sigma factor [16],
including those encoded by astD [11,17], and cstC (astC)
[11,18]. Many of the members of the large RpoS regulon
are specifically expressed during the transition to station-
ary phase growth [19,20]. Although clearly required for
virulence in Salmonella [21], the role of RpoS in the patho-
genesis of E. coli is equivocal. RpoS controls many func-
tions that contribute to host adaptation, including
osmotic stress [22] and acid challenge [3]. In E. coli, how-
ever, RpoS mutants are not impaired in colonization of
the urinary tract [23] or gastrointestinal tract [24] in ani-

Location of operon fusions in strains used in this studyFigure 1
Location of operon fusions in strains used in this study. Arrows indicate the direction of transcription of genes.
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mal models. There are several different alleles of RpoS
found in natural populations of E. coli [25], and it is thus
possible that RpoS regulation may be strain specific.

In a previous study, we identified many independent
RpoS-dependent operon fusions [26]. Two of these
mapped to the argCBH operon and were of particular
interest because, unlike other RpoS-regulated functions
that we identified, this operon, when mutated, rendered
the cell auxotrophic. In this study, we have employed
these fusions as probes to examine regulatory controls on
transcription of the argCBH operon to identify how this
key biosynthetic pathway is activated.

Results
Characterization of argCBH operon fusions
In a large mutational screen, we isolated over 100 RpoS
dependent operon-lacZ fusions [26,27], many of which
were not known to require RpoS for expression. Two of
the isolated fusion mutations mapped to the argCBH
operon (Fig. 1) and were clearly RpoS-dependent on indi-
cator plates (Fig. 2). While both fusions were in argH; one
was intragenic and, as expected, rendered the cell auxo-
trophic for arginine (rsd1072) and the other fusion
(rsd1066) was located between the argH coding sequence
and a predicted transcriptional terminator (Fig. 1). Strains
carrying the rsd1066 fusion do not have an arginine auxo-
trophic phenotype (data not shown).

Since ArgR is a known regulator of argCBH [12], we con-
structed combinatorial argR and rpoS mutants to deter-
mine the relative contributions of each regulator to the
expression of the operon. Introduction of a deletion of
argR into a strain with an argCBH-lacZ fusion resulted in
high expression with or without RpoS (Fig. 2). It is likely
that RpoS-dependent expression of argCBH in the ∆argR
strains may be masked by strong derepression as a conse-
quence of loss of ArgR.

Growth phase dependence of argCBH expression
To test if the expression of the argCBH operon is induced
upon entry into stationary phase, expression of the
operon was assayed in rich media. During entry into sta-
tionary phase, expression of argCBH increased 7-fold in
wild type cultures, but only exhibited 3-fold increase in
the ∆rpoS mutant (Table 1). This indicates that argCBH
expression is not only growth phase-dependent but also is
affected by loss of RpoS. Expression of argCBH expression
was 14-fold higher in ∆argR mutants than in wild type
strains and in these mutants, was independent of RpoS
(Table 1).

Effect of exogenous arginine on argCBH expression
RpoS is likely an important factor in amino acid scaveng-
ing in stationary phase [28]. Amino acid biosynthesis
offers an alternative to the scavenging strategy. It is possi-
ble that the RpoS effect on argCBH expression is more pro-
nounced when arginine becomes limiting, as might be the
case in stationary phase. To test this, expression of the
operon was assessed in exponential phase cultures grown
in minimal media supplemented with various concentra-
tions of L-arginine. In strain HS1066 and its rpoS mutant
derivative, HS1066p, argCBH expression was found to be
inversely proportional to arginine concentration at
arginine concentrations less than 60 µM (Fig. 3). Arginine
biosynthetic genes, including argCBH, are normally
induced in response to arginine limitation [29]. However,
in exponential phase cultures, argCBH expression was
RpoS dependent only at arginine concentrations below 30
µM (Fig. 3). In stationary phase, argCBH expression was 2-
fold RpoS-dependent at all arginine concentrations tested
(data not shown).

Surprisingly, ∆argR mutants were impaired in growth on
minimal media even when supplemented with arginine,
strongly suggesting that these strains possessed an addi-
tional unidentified nutritional requirement. Intermedi-
ates in the arginine biosynthetic pathway are also
precursors in other pathways. For example, carbamoyl-
phosphate, the product of carbamoylphosphate syn-
thetase (encoded by the bi-cistronic operon carAB) is not
only a precursor of arginine but is also required for pyri-
midine biosynthesis [30]. Therefore, it is possible that the
derepression of arginine biosynthesis may deplete car-

Expression of argCBH-lacZ in WT, ∆rpoS, ∆argR and ∆rpoS-∆argR strains on LB plates containing X-GalFigure 2
Expression of argCBH-lacZ in WT, ∆rpoS, ∆argR and ∆rpoS-
∆argR strains on LB plates containing X-Gal.
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bamoylphosphate required for synthesis of pyrimidine
thus rendering ∆argR mutants auxotrophic for pyrimi-
dine. To test this, we examined the growth of ∆argR
mutants on minimal media supplemented with pyrimi-
dines relative to argR+ strains. As shown in Table 2, the
growth deficiency of ∆argR mutants could be completely
suppressed by the addition of pyrimidines (growth of
∆argR and wild type strains were equivalent in the pres-
ence of added pyrimidines). We also compared the gener-
ation time of argR+ and ∆argR strains on minimal media
with or without pyrimidines, and examined the average
colony size by plating the cells on minimal media plates.
As shown in Table 3, the generation time of ∆argR was
much greater than that of the argR+ strain, and this growth
impairment could be remedied by addition of pyrimi-
dines into the media. The growth requirement was not
absolute as some residual growth was observed in the
∆argR strain. Reduced growth could be due to either a uni-
form slow growth among cells or by the selection of sup-
pressor mutants which could overcome impairment by
acquiring advantageous mutations. The diameters of
∆argR deletion colonies were only one half that of argR+

colonies indicating ArgR is required for robust growth in
minimal media. Furthermore, the colony morphology
and size of all colonies were uniform, consistent with the
idea that growth results were a consequence of poor
growth of argR deletion mutants in general and were not
due to suppression by selected mutants. To ensure that
this was not a strain-specific phenotype, the ∆argR muta-
tion was transduced and tested in another common labo-
ratory strain, MG1655 and, as expected, the resultant
transductants were similarly found to be pyrimidine lim-
ited (data not shown). To exclude the possibility that an
uncharacterized mutation linked to the original operon
fusion mutation was responsible for the pyrimidine phe-
notype, we tested an independently constructed argR dele-
tion mutant from the Nara KO collection [31]. This strain
was similarly impaired in pyrimidine synthesis (data not
shown).

We further examined the pyrimidine requirement by
transforming an argR deletion mutant with an argR-con-

taining plasmid clone from the ASKA collection [31]. Col-
ony size of the ArgR-complemented argR deletion mutant
was more than twice that of the control strain after two
days growth on minimal media (0.76 ± 0.03 mm vs. 0.34
± 0.03 mm).

Effect of an astCADBE operon deletion on expression of 
argCBH
The astCADBE operon, encoding a set of enzymes respon-
sible in the arginine succinyltransferase (AST) pathway, is
RpoS-dependent and can be induced in nitrogen limited
environment especially when arginine is present [11]. It is
possible that RpoS affects argCBH expression through
AST-mediated depletion of intracellular arginine resulting
in increased derepression by ArgR. To test this possibility,
an astCADBE deletion mutant was constructed in strains
containing the argCBH-lacZ fusion, and the resultant
mutant was assayed in rich media. In exponential phase
there is not much expression difference in all these strains.
However, in stationary phase, the expression of argCBH in
∆ast mutation strain was nearly 2-fold (an increase of 18
units) higher than that in ∆rpoS ∆ast double mutation
strains (Fig. 4). Thus, the RpoS-dependence of argCBH in
∆ast deletion background is consistent with results
obtained using AST+ strains, and it is unlikely that RpoS-
modulated argCBH expression is indirectly induced by
arginine catabolism through the AST pathway. However,
the expression of argCBH in ∆ast mutant was slightly
lower (10% difference) than in the AST+ strain, indicating
that metabolism of arginine through the AST pathway
may have a slight overall effect on argCBH expression,
probably through modulation of ArgR.

The effect of exogenous arginine on growth
Since strains carrying a mutation in argH are auxotrophic
for arginine (HS1072 this study), these strains could be
used to establish the concentration at which this key
amino acid becomes growth limiting. Similarly, because
the operon fusion in strain HS1066 does not render the
cell arginine auxotrophic but is nonetheless ArgR depend-
ent, this strain can be used in parallel to assess ArgR-
dependent activation of the operon during arginine

Table 1: Expression of the argCBH operon in rich media. Wildtype, ∆rpoS and ∆argR strains harboring the rsd1066 operon lacZ-fusion 
to the argCBH operon were grown in LB media and assayed for β-galactosidase activity in exponential phase (OD600 = 0.3) and 
stationary phase (OD600 = 1.5) as described in Methods. All reported activities are the average of three independent determinations.

Strain Genotype β-Galactosidase (Miller Units)

Exponential Stationary

HS1066 WT 5.6 ± 0.34 38.4 ± 0.97
HS1066p ∆rpoS 6.1 ± 0.26 18.8 ± 0.15
HS2404 ∆argR 469 ± 18 553 ± 33
HS2405 ∆rpoS ∆argR 486 ± 32 712 ± 35
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restriction. Growth of E. coli was impaired at arginine con-
centrations less than 60 µM: below this level growth rate
was proportional to concentration of the limiting amino
acid. Growth yield was similarly affected (data not
shown). Derepression of argCBH expression was found to
occur at concentrations below 60 µM and, as expected,
was inversely related to arginine concentration (Fig. 5).
Limitation by the availability of intracellular arginine may
account for the reduced growth observed and, through
ArgR derepression, may also be partially responsible for
the increased expression of argH. Together, these data
indicate that argCBH regulation is tightly coupled to
arginine availability. At 60 µM, even though the cultures
were not arginine-limited with respect to growth, the lev-
els of argCBH were five fold higher than in fully repressed
cells. This suggests that, in nutrient-starved cells, argCBH
derepression would occur prior to potential growth
restriction by arginine limitation ensuring maximum
growth yield.

Northern analysis of argH expression
Although plate expression assays indicate that argH
expression is clearly RpoS-dependent (Fig. 2), the results
of reporter gene expression studies showed that RpoS
dependence was only 2-fold, somewhat less than that

found for most RpoS regulated genes [26]. To resolve this
discrepancy, we independently assessed expression of
argH in wild type and rpoS mutant cultures by Northern
analysis (Fig. 6). Consistent with reporter gene studies on
plates, expression of argH was much higher in stationary
phase cultures of the wild type strain than in the isogenic
rpoS mutant and was much lower in exponential phase
samples of both cultures. The hybridizing argH transcript
co-migrated with the 16S RNA leading to some interfer-
ence (Fig. 6). These results, in conjunction with the
reporter fusion studies, indicate that expression of argH is
both RpoS and stationary phase dependent in a wild type
strain and is thus similar to many other RpoS-dependent
genes [26].

Expression of Argininosuccinate lyase, the product of argH
To determine if RpoS and ArgR modulation of argH
expression results in changes in the level of the encoded
enzyme, we assayed exponential phase cultures of strains
deficient in the expression of these regulators for arginino-
succinate lyase activity. This was tested by growing cul-
tures in minimal media at suboptimal levels since the
RpoS effect was most pronounced when cells were slightly
starved for arginine (Fig. 3).

The specific ArgH activity in WT was about 4 fold higher
than that in rpoS- strain, while it was about 25 fold higher
in argR- strain compared with the WT (Table 4). These
results, together the lacZ expression and Northern data,
supports the idea modulation of argH expression by RpoS
is reflected at the level of protein synthesis.

Discussion
In this study, we examined RpoS-dependent control of
argCBH expression, and its modulation by ArgR and exter-
nal arginine in Escherichia coli. Using independently-iso-
lated mutants carrying operon fusions in different
positions within the argCBH region, we conducted expres-
sion studies of this biosynthetic operon by assaying
reporter gene fusions and by examining argH transcript
levels in both a wild type strain and an rpoS mutant by
Northern analysis. Since ArgR also regulates this operon
[12], we evaluated the relative contributions of both ArgR
and RpoS to its expression by constructing appropriate
double and single null mutants.

RpoS regulates many genes that play important roles in
stress resistance and energy metabolism [16], but a subset
of these RpoS-dependent genes including gabP [26], proP
[32], proU [33], gadAB [34] and ldcC [35] aid in amino
acid transport and utilization. In a previous genetic screen
for RpoS-dependent genes [26], we identified one mutant
that was auxotrophic for arginine and carried a mutation
that mapped to the terminal gene member of the argCBH
operon. To the best of our knowledge, this is the only

Expression of argCBH in isogenic wild type (❍) and rpoS mutant (●) strains in glucose minimal media supplemented with exogenous arginineFigure 3
Expression of argCBH in isogenic wild type (❍) and rpoS 
mutant (●) strains in glucose minimal media supplemented 
with exogenous arginine. Expression was tested in exponen-
tial phase (OD600 = 0.3)
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RpoS-modulated gene known which, when mutated,
renders the cell auxotrophic. As such, examining the regu-
lation of this operon may offer unique insight into RpoS-
controlled stationary phase physiology.

Our data showing that stationary phase expression of the
argCBH operon is affected by RpoS does not reveal
whether this effect is direct or indirect. In fact for many
members of the RpoS regulon such information has not
been established. Indirect regulation is known to be oper-
ant for at least some members, including gadA and gadB,
two glutamate decarboxylases that are among the most
highly RpoS-dependent genes based on microarray analy-
sis [27]. The expression of these genes depends on GadX,
a regulator whose growth phase dependent increase
expression requires RpoS [36].

RpoS can regulate its operon members directly (e.g. osmY
[37]) or indirectly (e.g. gadW by the RpoS-dependent
GadX regulator [38]). As RpoS dependence of argCBH was
not observed in ∆argR mutants, ArgR appears to be neces-
sary for RpoS-modulated expression of the operon. There
are at least two mechanisms that could explain the
increase in expression in stationary phase. In the first, as
RpoS activates expression of its large regulon, depletion of
intracellular arginine may result as a consequence of de
novo synthesis of stationary phase proteins. This may dere-
press the arginine biosynthetic pathway, resulting in an
increase in argCBH expression. Alternatively, increased

catabolism through the RpoS-dependent AST pathway
lower intracellular arginine and might also result in de-
repression of the operon. The latter explanation, however,
seems unlikely in view of the fact that RpoS modulation
of argCBH is not affected by deletion of the AST operon
(this study).

Using the arginine auxotroph (HS1072), we found that E.
coli becomes growth limited at arginine concentrations
below 60 µM. As derepression also occurs at these concen-
trations (this study), it appears that expression of the bio-
synthetic pathway is closely coupled to the biosynthetic
need for arginine. As the concentration of arginine in LB
media is about 60 µM [9], it is possible that our results
could be partially explained by depletion of arginine dur-
ing growth in late exponential phase. However, as supple-
mentation with exogenous arginine did not markedly
reduce stationary phase induction of the argCBH operon,
it is likely that other mechanisms, including control by
RpoS, ensure that this operon continues to be expressed
under nutrient limited conditions.

Surprisingly, maximum levels of argCBH expression in the
wild type strain were only one third of those found in an
isogenic ∆argR mutant suggesting that ArgR can be an
active repressor even in the absence of exogenous
arginine. This may be due to the fact that, even under star-
vation conditions, synthesized endogenous arginine can
be an effective co-repressor. Such control may be physio-

Table 2: Effect of exogenous supplemented pyrimidines on growth of ∆argR strains. Overnight cultures were grown in minimal media 
with exogenously-supplemented L-arginine (230 µM). Cultures were washed in arginine-free minimal media and replica-plated onto 
minimal plates supplemented with exogenous cytosine, thymine and uracil. Growth was scored after overnight incubation at 37°C. "-" 
no growth on the plates after 24 hours incubation

Strain Genotype Media

LB M9 + G M9 + G + P

HS1066 WT + + +
HS1066p ∆rpoS + + +
HS2404 ∆argR + - +
HS2405 ∆rpoS∆argR + - +

G, Glucose 
P, Pyrimidine- Cytosine, Uracil and Thymine added at 20 µg per ml

Table 3: Effect of ∆argR on culture growth in minimal media. Overnight cultures in LB were washed in minimal salts 3 times and 
subcultured at 1:1000 dilution into minimal media and grown at 37°C, 200 rpm, and samples were plated on minimal media to 
determine the average colony size.

Strain Genotype Media Generation Time (h) Average Colony (mm)

HS1066 argR+ M9 1.31 ± 0.12 1.21 ± 0.02
HS2404 ∆argR M9 2.14 ± 0.28 0.74 ± 0.02
HS1066 argR+ M9 + P 1.21 ± 0.07 1.30 ± 0.03
HS2404 ∆argR M9 + P 1.27 ± 0.23 0.73 ± 0.02

P, Pyrimidine- Cytosine, Uracil and Thymine added at 20 µg per ml
Page 6 of 12
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logically necessary as carbamoylphosphate, an arginine
precursor, is also required for pyrimidine biosynthesis.
Balancing these two pathways, arginine and pyrimidine
biosynthesis, under nutrient-limited conditions, is likely
an important physiological imperative, as complete dere-
pression of arginine biosynthesis, by deletion of argR,
causes cells to develop a partial requirement for exoge-
nous pyrimidine (this study). The need for de novo
arginine synthesis therefore appears to be balanced
against other biosynthetic requirements of the cell. he
multiple controls on carAB, including availability of
arginine, pyrimidines as well purines [39] ensure that the
synthesis of these macromolecule precursors is balanced
in actively growing cells.

Why might arginine biosynthesis be stationary phase
dependent? It is well established that nutrient scavenging
is an important survival mechanism in starved cultures
[40]. Arginine in particular is likely to be an important
metabolite in stationary phase cultures for several reasons.
As arginine represents 11 percent of the cells total nitro-
gen [11], it is potentially an important nitrogen reservoir
for starving populations. Arginine is also a potential pre-

cursor for the biosynthesis of polyamines which stabilize
and condense DNA during senescence [41] and protect it
against oxidative damage [7,8,42]. Finally, as de novo pro-
tein synthesis in non-growing stationary phase cells is
required for the expression of stationary phase adaptive
proteins, this may impose a significant biosynthetic
demand upon the cell both because there are many such
proteins produced (see [16] for review) and because some
of these are expressed to extraordinarily high levels. For
example, Dps, a highly RpoS-dependent DNA binding
protein [43], is almost undetectable in exponential phase,
but accumulates to 200,000 molecules per cell in station-
ary phase (approx. 5% of total cellular protein) [44].
Many genes are induced upon entry into stationary phase
and it is likely that this creates a high demand for amino
acids for de novo protein synthesis. The up-regulation of
amino acid biosynthetic operons such as argCBH may
provide a means to satisfy this demand in addition to
nutrient scavenging mechanisms including arginine trans-

Effect of astCADBE depleted arginine on argCBH expression in wild type, ∆rpoS, ∆ast ,and ∆rpoS ∆ast strainsFigure 4
Effect of astCADBE depleted arginine on argCBH expression in 
wild type, ∆rpoS, ∆ast ,and ∆rpoS ∆ast strains. Strains were 
grown in triplicate in LB rich media. Samples were taken in 
exponential phase (�, OD600 = 0.3) and stationary phase (■, 
OD600 = 1.5), and β-glactosidase activity was assayed as 
described in Methods.
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Effect of exogenous arginine on growth and argCBH expres-sionFigure 5
Effect of exogenous arginine on growth and argCBH expres-
sion. Growth rate and argCBH expression were determined 
using an arginine auxotrophic strain, HS1072 and an arginine 
prototrophic strain HS1066, respectively, at the indicated 
arginine concentrations. Overnight cultures were grown with 
appropriate antibiotics, sub-cultured into minimal media and 
maintained in exponential phase for at least 8 generations 
prior to the start of the experiment.
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port which is also a key factor in maintaining high
arginine levels in stationary phase cultures [45].

Biosynthetic regulons, particularly those required for
amino acid biosynthesis, are often controlled by a tran-
scriptional repressor (e.g. TrpR and ArgR). Though
argCBH operon is modulated by RpoS in stationary phase
cultures the dynamic range of this control was small in
relation to that exerted by ArgR. Interestingly, another
member of the ArgR regulon, astC, a member of the ast-
CADBE operon, is RpoS-dependent to a similar degree
[17]. These observations, in conjunction with the results
of this study, suggest that RpoS plays an important role in
coordinately regulating arginine metabolism in stationary
phase. Such control is likely effective because of the nature
of the pathway. ArgA-mediated synthesis of N-acetylgluta-
mate is the first committed step in the arginine biosyn-
thetic pathway and is controlled by 1) cumulative
feedback inhibition by arginine and 2) ArgR at the level of
transcription [12]. Since ArgC and ArgB catalyze early
steps in this pathway and ArgH catalyzes the final biosyn-
thetic reaction (Fig. 7), it is likely that control of these key
steps by ArgR/RpoS modulates the entire arginine biosyn-
thetic pathway.

While our studies employed a non-pathogenic E. coli K-12
strain, the results of this study may have relevance for E.
coli pathogenesis. For example, though urine is a good
growth media for uropathogenic E. coli [46], low concen-
tration of several key nutrients, including arginine [46]
and iron [2], can be limiting. As both transport [2] and
biosynthesis [1] of arginine are required for maximum
growth in urine and in minimal media containing restric-
tive levels of arginine, control of the functions for the
metabolism of this amino acid are likely critical for urovir-
ulence. As RpoS has now been implicated in both control
of biosynthesis (this study) and catabolism of arginine
[18], it will be useful, in future studies, to establish the rel-
ative importance of these metabolic functions in patho-
genesis.

Conclusion
In summary, argCBH expression is clearly controlled by a
finely balanced mechanism mediated by two signals: 1) a
general nutrient stress signal mediated, in part, by RpoS
and, 2) well known specific control through arginine-
dependent modulation of the ArgR repressor.

Methods
Bacterial strains, phage, and plasmids
All strains used are E. coli K-12 derivatives. The bacterial
strains, phage and plasmids used in this study are listed in
Table 5.

Media and chemicals
All chemicals were supplied by either Sigma Chemical or
Gibco BRL. Cultures were routinely grown in Luria-Ber-
tani (LB) media and in M9 minimal media [47]. The anti-
biotics used were ampicillin (100 µg ml-1),
chloramphenicol (25 µg ml-1), kanamycin (50 µg ml-1),
tetracycline (15 µg ml-1), and streptomycin (100 µg ml-1).

Growth conditions
All cultures were grown in triplicate from independently
isolated colonies. Cell growth was monitored spectropho-
tometrically (Novaspec® II spectrophotometer, Pharmacia
LKB Biochrom Ltd., Cambridge, England) by measuring
optical density at 600 nm (OD600). Expression studies in
rich media were conducted using cultures maintained in
early exponential phase (OD600 of < 0.3) in antibiotic-free
LB media for at least 8 generations, prior to the start of the
experiment. Sub-cultures with a starting OD600 of 0.01
were grown in LB at 37°C and agitated at 200 rpm.

To quantify the RpoS dependence of argCBH expression
in relation to exogenous arginine concentration in mini-
mal media, overnight minimal media cultures (0.4% glu-
cose) were inoculated from well-isolated colonies on
minimal media plates (0.2% glucose) and grown with
appropriate antibiotics. To ensure complete repression of

RpoS dependent expression of argH in exponential and sta-tionary phase determined by Northern analysisFigure 6
RpoS dependent expression of argH in exponential and sta-
tionary phase determined by Northern analysis. RNA was 
extracted from cultures grown in LB to OD600 = 0.3 for 
exponential phase (E) and OD600 = 1.5 for stationary phase 
(S) using the hot phenol method (as described in Methods). 5 
µg of RNA was loaded in each lane. Signal intensity was quan-
tified by densitometry and normalized to an arbitrary value of 
10 for expression of the operon in stationary phase in the 
wild type strain.

Lane:        1            2            3           4

Phase:      E         S         E         S

WT rpoS

Growth

16s

23s

argH
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arginine biosynthesis, the overnight cultures were supple-
mented with 230 µM L-arginine. The cultures were diluted
(1 in 1000) and maintained in early exponential phase (as
described above) prior to the start of experiments in anti-
biotic-free minimal media supplemented with 230 µM L-
arginine. At an OD600 of 0.3, cultures were placed on ice
for 2 min and then centrifuged for 10 min at 4000 × g at
room temperature. The supernatant was decanted and the
resulting cell pellets washed twice with arginine-free min-
imal media to remove remaining exogenous arginine. The
arginine-free cell pellets were re-suspended in minimal
media to the same optical density as collected. A series of
sub-cultures with a starting OD600 of 0.05 were made into
minimal media supplemented with various concentra-
tions of exogenous L-arginine. The sub-cultures were incu-
bated at 37°C and agitated at 200 rpm. For each
concentration of L-arginine, samples were taken in mid-
exponential phase (OD600 of 0.3) and assayed for β-galac-
tosidase activity

Enzyme Assays
β-galactosidase activity was assayed as previously
described by Miller [47]. ONPG was used as the substrate,
and activity was expressed in Miller units [47]. All cultures
were grown in triplicate from independent colony isolates
(biological replicates) and all assays were performed in
duplicate.

Argininosuccinate lyase (ASL) activity was determined by
measuring the absorbance of fumarate hydrolyzed from
argininosuccinate at OD240 nm [48]. Cell extracts were pre-
pared by sonication [49]. The reaction mixtures contain-
ing 10 ug/ml protein, 1.0 mM argininosuccinate in 50
mM potassium phosphate buffer (pH7.5) were moni-
tored photometrically at OD240 nm. One unit of ASL activ-
ity corresponds to 1 nmole L-argininosuccinate
hydrolysized per min at pH 7.5 and 37°C.

Construction of ∆argR and ∆astCADBE deletion mutants
The one-step chromosomal gene inactivation procedure
of Datsenko and Wanner [50] was used to generate precise
∆argR and ∆astCADBE deletion mutations. The mutation

was transduced [47] into other strains using P1vir trans-
duction (see Table 5).

The pKD3 plasmid was used as a template to amplify the
PCR fragments used for replacement of the argR and ast-
CADBE target genes. Primers were designed such that the
resulting PCR product includes the Cmr cassette from

The arginine biosynthetic pathwayFigure 7
The arginine biosynthetic pathway. Note that ArgF and ArgI 
are ornithine transcarbamylase, while the carAB operon 
encodes subunits of carbamoylphosphate synthase. Adapted 
from EcoCyc: Encyclopedia of Escherichia coli Genes and 
Metabolism http://biocyc.org/ecocyc/.

L-glutamate

N-acetyl-L-glutamate

N-acetylglutamyl-phosphate

N-acetylglutamate

semialdehyde

N-αααα-acetylornithine

L-ornithine Carbamoylphosphate

L-glutamine

Citrulline

L-arginino-succinate

L-ARGININE

N-acetylglutamate synthase

(argA)

N-acetylglutamate kinase

(argB)

N-acetyl-γ-glutamyl-phosphate
reductase

(argC)

Acetylornithine aminotransferase

(argD)

Acetylornithine deacetylase

(argE)

Carbamoylphosphate

synthase

(carA carB)

Ornithine transcarbamylase

(argF, argI )

Argininosuccinate synthetase

(argG)

Argininosuccinate lyase

(argH)

PYRIMIDINE
Biosynthesis

Table 4: Specific argininosuccinate lyase (ASL) activity in exponential culture of WT, rpoS-, and ∆argR strains. Cultures were grown in 
M9 minimal media supplemented with 30 µM L-arginine and harvested at OD600 nm = 0.3. Cell extracts were assayed as described in the 
Methods section. ASL enzyme assay values were corrected for the low background levels of non-specific activity in the argH- mutant.

Strain Genotype Argininosuccinate lyase (U/
mg protein)

Per cent of wild type

GC4468 WT 6.50 ± 0.083 100
GC122 rpoS- 1.53 ± 0.86 24
HS2404 ∆argR 159.6 ± 22.0 2,455
HS1072 argH-lacZ 0 0
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pKD3 flanked by sequences adjacent to the target reading
frame in the MG1655 chromosome. The PCR primers
used for argR were: forward 5'-CAATAATGTTG
TATCAACCACCATATCGGGTGACTTGTGTAGGCT-
GAAGCTGCTTC-3' and reverse 5'-
ACATTTTCCCCGCCGTCAGAAACGACGGGGCAGAGA-
CATATGA ATATCCTCCTTAG-3'; primers used for creating
astCADBE deletion were: forward 5'-ACTTAATACCCGCA-
GAATGATTTCTGCGGGTAAGTAGTGTAGG CTGGAGCT-
GCTTC-3' and reverse 5'-
CATATAAATAACGAATTATTTACTGTA GAGGTCGCT-
CATATGAATATCCTCCTTAG-3'. The bold text corre-
sponds to target gene flanking sequences, and normal text
represents DNA sequences of the Cmr cassette. The dele-
tion generated the entire target coding sequence.

Incorporation of the Cmr cassette into the MG1655 chro-
mosome was confirmed by PCR using genomic DNA as a
template and confirmational primers. The confirmational
forward primers used were the forward primers (as
described above). The reverse confirmational primer for
argR was 5'-TGTCGCA GTAAAACGCACTA-3', for ast-
CADBE was 5'-TTATACGCAAGGCGACAAGG-3'.

All primers were synthesized by MOBIXLab, McMaster
University (Hamilton, ON).

RNA Isolation and Northern Analyses
RNA was isolated from cultures grown in LB using the hot
phenol method [51]. Primers to the argH gene (5'-CGGT-
TCAAACAATTCAACGA-3' and 5'-GCAGCTTTTT-
GCCTAACTGG-3') were used to PCR-amplify a DNA
probe for hybridization studies to examine stationary
phase and RpoS dependence of argH expression. RNA
samples were prepared, separated by electrophoresis and
hybridized as previously described [26]. Probes were pre-
pared and radioactively labeled by PCR as described in
[52]. Densitometric analysis of the bands was performed
using a Storm® (Amersham Biosciences, Inc., Baie d'Urfe,
QC) gel and blotting imaging system with ImageQuant™
v 5.2 (Amersham Biosciences, Inc.).
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Table 5: E. coli strains and bacteriophage used in this study.

Strains Genotype Source/Reference

MG1655 Prototrophic E. coli K-12, F- λ-rph CGSC, Yale University
GC4468 ∆lacU169 rpsL
GC122 as GC4468 but rpoS13::Tn10 [49]
HS1066 as GC4468 but argH+-λplacMu53[Φ(argH-

lacZ)66](rsd1066)
[26]

HS1066p as HS1066 but rpoS13::Tn10 [26]
HS1072 as GC4468 but argH--λplacMu53[Φ(argH-

lacZ)72](rsd1072)
[26]

HS1072p as HS1072 but rpoS13::Tn10 [26]
HS2401 as MG1655 but ∆argR::cat This study
HS2402 as GC4468 but ∆argR::cat P1(HS2401)×GC4468→CmR

HS2403 as GC122 but ∆argR::cat P1(HS2401)×GC122→CmR

HS2404 as HS1066 but ∆argR::cat P1(HS2401)×HS1066→CmR

HS2405 as HS1066p but ∆argR::cat P1(HS2401)×HS1066p→CmR

HS2406 as HS1072 but ∆argR::cat P1(HS2401)×HS1072→CmR

HS2407 as HS1072p but ∆argR::cat P1(HS2401)×HS1072p→CmR

HS3006 As HS1066 but ∆astCADBE::cat This study
HS3006p As HS3006 but rpoS13::Tn10 P1(HS3006)×HS1066p→CmR

B) Phage
P1vir generalized transducing phage Laboratory stock
C) Plasmids
pKD3 Template plasmid for gene disruption, cat is 

flanked by FRT sites.
[50]

pKD46 λ Red recombinase expression plasmid under 
control of an araC-ParaB inducible promoter.

[50]

pArgR Derivative of pCA24N H. Mori [31]
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