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Mycobacterium bovis BCG infection severely
delays Trichuris muris expulsion and co-infection
suppresses immune responsiveness to both
pathogens
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Abstract

Background: The global epidemiology of parasitic helminths and mycobacterial infections display extensive geographical
overlap, especially in the rural and urban communities of developing countries. We investigated whether co-infection with
the gastrointestinal tract-restricted helminth, Trichuris muris, and the intracellular bacterium, Mycobacterium bovis (M. bovis)
BCG, would alter host immune responses to, or the pathological effect of, either infection.

Results: \We demonstrate that both pathogens are capable of negatively affecting local and systemic immune responses
towards each other by modifying cytokine phenotypes and by inducing general immune suppression. T. muris infection
influenced non-specific and pathogen-specific immunity to M. bovis BCG by down-regulating pulmonary TH1 and Treg
responses and inducing systemic TH2 responses. However, co-infection did not alter mycobacterial multiplication or
dissemination and host pulmonary histopathology remained unaffected compared to BCG-only infected mice.
Interestingly, prior M. bovis BCG infection significantly delayed helminth clearance and increased intestinal crypt cell
proliferation in BALB/c mice. This was accompanied by a significant reduction in systemic helminth-specific TH1 and TH2
cytokine responses and significantly reduced local TH1 and TH2 responses in comparison to T. muris-only infected mice.

Conclusion: Our data demonstrate that co-infection with pathogens inducing opposing immune phenotypes, can have
differential effects on compartmentalized host immune protection to either pathogen. In spite of local and
systemic decreases in TH1 and increases in TH2 responses co-infected mice clear M. bovis BCG at the same rate as
BCG only infected animals, whereas prior mycobacterial infection initiates prolonged worm infestation in parallel
to decreased pathogen-specific TH2 cytokine production.
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Background

Tuberculosis (TB) is most prevalent in resource-poor
countries and factors such as genetic susceptibility,
malnutrition and circulating strain differences have been
implicated as determinants of TB disease development
in these regions [1,2]. Compelling evidence demonstrates
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that many of these factors increase disease risk partly
though the induction of host immune dysregulation and
ultimately affect host control of Mycobacterium tubercu-
losis (M. tb) proliferation [3]. The high prevalence of
parasitic helminth infections in TB affected communi-
ties, has highlighted co-infection as another risk factor
compromising host immunity and thus a potential deter-
minant for development of TB [4,5]. In support of this
theory, several reports indicated that TB patients are
commonly found to be co-infected with helminth spe-
cies such as Trichuris trichiura and Ascaris lumbricoides
[6] and present with increased total and helminth-
specific serum immunoglobulin E (IgE) [7].
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Host control of mycobacterial or helminth infections
largely rely on the induction of appropriately polarized
immune responses. Protective immune responses to M. th
infection are associated with enhanced T helper 1 (TH1)
type cellular immunity and the production of characte-
ristic TH1 cytokines such as tumor necrosis factor alpha
(TNF-a), interferon-gamma (IFN-y) and interleukin-12
(IL-12) [8]. Conversely, protection against most helminths
requires a T helper 2 (TH2) type cellular immune re-
sponse with production of distinct TH2 cytokines such as
IL-4, IL-5, IL-13 and IL-9 [9,10]. Since TH1 and TH2
immune responses have the ability to concurrently down-
regulate each other, a state of co-infection could result
in inappropriate protective host immune responses to
either infections [11]. Furthermore, both pathogens
have the potential to induce regulatory T cell (Treg)
responses associated with production of immune sup-
pressive cytokines such as IL-10 and transforming growth
factor beta (TGF-f) [10-13].

In line with the TH1/TH2 dichotomy, hypotheses con-
cerning helminth-mycobacterial co-infection postulate
that a helminth-induced TH2 immune bias could inhibit
development of protective cellular immune responses to
M. tb, increase mycobacterial proliferation or lead to the
failure of vaccine strategies against TB [14,15]. This theory
is supported by numerous studies which have reported a
reduction in TH1 responses to be associated with poor
outcomes in TB patients [16] and latently infected individ-
uals [17] with concurrent helminth infection. Helminth-
induced regulatory (Treg) responses such as TGF-f and
IL-10 production have also been implicated in S. mansoni-
induced progression to active TB of HIV-1 infected
Ugandans [18]. It was also established that deworming of
helminth-infected individuals restores cellular immune
responses to mycobacterial purified protein derivatives
(PPD) [19-21]. Similarly, deworming of helminth-infected
Ethiopians immigrants in Israel resulted in increased
cellular immune responses against HIV- and M. tb-specific
antigens compared to untreated individuals [22], suggest-
ing deteriorating immune responses and poor clinical
outcomes in helminth-infected individuals might not be a
result of inadequate nutrition or sanitation. Several reports
have also indicated helminth-mediated modulation of
vaccine responses. Children with prenatal sensitization
to filariae and schistosomes were reported to display a
down-regulation in THI responsiveness to BCG vaccin-
ation [23] and animal co-infection models have further
demonstrated that a pre-existing infection with a lung-
migrating helminth, can inhibit development of protective
innate anti-TB responses by inducing the IL-4 receptor
pathway and accumulation of alternatively activated
macrophages [24]. In summary, most reports indicate
that helminth infection significantly affects TB suscepti-
bility. In contrast, very little data addressing the effect
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of mycobacterial infection on host immunity to hel-
minth infections are available.

In the current study, we assessed the influence of co-
infection on immune responses against the individual
pathogens. We established a BALB/c co-infection model
using Mycobacterium bovis (M. bovis) BCG and the gas-
trointestinal tract-restricted rodent helminth, Trichuris
muris (T. muris) as TH1 and TH2 pathogenic assaults, re-
spectively. The M. bovis BCG murine infection model is
routinely used for studying anti-mycobacterial responses
during latency as the associated immune response is simi-
lar to that induced during human M. tb infection [25],
whereas T. muris infection serves as a well described
model for gastrointestinal tract restricted human soil-
transmitted helminth (STH) infection [26]. We explored
the possibility that concurrent infection with two patho-
gens, normally cleared by mice during single pathogen
infection, might lead to mutually inhibitory immune
dynamics and subsequent uncontrolled infection.

Methods

Animals

Specified pathogen free (SPF) female BALB/c mice (WT
and IL-4 knock-out strains) between 6-8 weeks of age,
were kept at the Faculty of Medicine and Health Sciences
Animal Unit, Stellenbosch University (SU; South Africa)
under conditions compatible with the SU guidelines for
the care of animals. All procedures were approved by the
SU Animal Ethics Board [Project license: 2003/186/p].

Parasite enumeration and antigen preparation

T. muris eggs were donated by Allison Bancroft (Univer-
sity of Manchester, UK). Egg propagation in BALB/c IL-4
knock-out mice (gift from Frank Brombacher, University
of Cape Town, South Africa), helminth collection, and
excretory/secretory (E/S) antigen preparations, were
performed as described previously [27,28]. Helminth
burdens were determined by quantification of intestinal
adult worms by examining faecal matter under a dissec-
tion microscope. Mycobacterium bovis BCG Pasteur
(donated by Robin Warren, SU, South Africa) was prop-
agated to logarithmic growth phase in Middlebrook
7H9 (Difco) liquid culture, supplemented with 0.2% gly-
cerol, 0.05% Tween 80 and 10% albumin-dextrose-catalase
(ADC, Merck) at 37°C. Bacterial proliferation was assessed
by manual counting of colony forming units (CFU) from
serial dilutions of homogenized lungs and spleens, plated
on Middelbrook 7H11 (Difco) agar plates supplemented
with 0.2% glycerol and 10% oleic acid-albumin-dextrose-
catalase (OADC, BD Biosciences).

Co-infection protocol
Two infection protocols were used during this study.
Each experiment consisted of 3 groups of 5-10 animals



Nel et al. BMC Microbiology 2014, 14:9
http://www.biomedcentral.com/1471-2180/14/9

per group. Groups included M. bovis BCG-T. muris co-
infected, BCG-only infected and 7. muris-only infected
mice. The first protocol (Figure 1A) was intended to
establish a chronic, low grade M. bovis BCG infection
that was subsequently followed by a TH2-inducing
T. muris infection. Mice were infected intranasally (i.n.)
with 1-5 x 10> CFU BCG bacilli per mouse or an equal
volume of PBS. Briefly, mice were lightly anesthetized by
intraperitoneal (i.p.) injection of a 200 pl mixture consist-
ing of Ketamine (12 mg/ml Anaket-V, Centaur Labs) and
Xylazine (1.6 mg/ml, Rompun, Bayer). Mice were gently
lifted by the loose skin at the throat, and kept upright with
its head tilted back and the nose pointed up. Using a pip-
ette with a sterile tip, 40 ul of the declumped mycobacter-
ial suspension was applied to the nostrils. Animals were
maintained upright for another 30 seconds to ensure
complete delivery to the respiratory system. Six weeks
(day 42) later, mice were infected under light anaesthesia
intragastrically (i.g.) with 200-250 (low dose) or 500—-600
(high dose) embryonated 7. muris eggs or an equal vol-
ume of PBS. At week 9 (day 63), mice were culled and the
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Figure 1 Experimental design. (A) BALB/c mice were infected i.n.
with M. bovis BCG on day 1, followed by i.g. T. muris infection on
day 42. Mice were killed on day 63 and the relevant tissues collected
for further analysis. (B) BALB/c mice were infected i.g. with T. muris
every 10 days starting on day 1. Animals were co-infected i.n. with
M. bovis BCG on day 10. Mice were killed on day 52 and the relevant
tissues collected. Appropriate single infections and PBS controls were
included in parallel for both protocols. Experiments were performed
with 5 to 10 animals per group. P values <0.05 were considered
statistically significant. (ns = non significant).
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relevant organs removed for investigation. The second
protocol (Figure 1B) was designed to first establish a
TH2-inducing T. muris infection prior to challenge with
M. bovis BCG infection. Animals were infected i.g.
with 200-250 embryonated 7. muris eggs or an equal
amount of PBS on day 1 and every 10 days thereafter
until experimental completion. On day 10, animals were
infected i.n. with 1-5 x 10° CFU BCG bacilli or an equal
volume of PBS. After 6 weeks (day 52), all mice were
humanely euthanized and the relevant organs removed
for investigation. Experiments were completed in tripli-
cate at three separate times.

Immune phenotyping and intracellular cytokine analysis
Immune phenotyping was performed using single cell
suspensions from spleens and mesenteric lymph nodes
(MLNs). Intracellular cytokine expression was deter-
mined following stimulation with 50 ng/ml Phorbol
12-myristate 13-acetate (PMA) (Sigma), 1 pg/ml Ionomy-
cin (Sigma) and 10 pg/ml Brefeldin A (BFA) (Sigma) for 4
hours at 37°C and 5% CO,. Cells were resuspended in PBS
containing 1% BSA and 0.1% Sodium Azide (wash buffer)
and stained for 30 minutes with fluorochrome conjugated
anti-mouse antibodies against CD3, CD4, CD8, CD25,
B220, Foxp3, IFN-y and IL-4 (BD Biosciences, Caltag
or Biolegend). Cells were fixed with 1% formaldehyde,
washed and resuspended in wash buffer. Lymphocyte
populations were determined based on their Forward/
Side scatter profile and gates set with the help of appro-
priate FMOs and Isotype controls. Acquisitions were
performed on a FACSCalibur (BD Biosciences) using
appropriate instrument settings, color compensation
and isotype controls for all antibodies. At least 5 x 10*
lymphocyte events were acquired and data analysis per-
formed using CellQuest software (BD Bioscience).

In vitro pathogen-specific cytokine analysis

Spleen (1 x 107 cells/ml) single cell suspensions were
stimulated for 24 hours with live BCG cultures (MOI 5:1),
50 pg/ml E/S antigen or culture media as control at 37°C,
5% CO,. Culture supernatants were used for cytokine
concentration analyses using the luminex bead-array tech-
nology (LINCO Research) to test for the soluble cytokines
IFEN-y, TNF-q, IL-4, IL-10, IL-13 and IL-17 using a Bio-
Plex platform (Bio-Rad Laboratories). Background read-
ings were controlled by subtraction of unstimulated
control sample measurements. Values were checked
against internal quality controls to monitor analysis ac-
curacy within specified concentration ranges.

Nucleic acid extraction and relative quantitative real time
PCR

Total RNA was extracted from the upper right lobe of
mouse lungs and spleen tips using Trizol (Gibco BRL)
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and subsequently treated with a DNA-free kit (Ambion)
to remove contaminating DNA. First strand cDNA was
transcribed using the QuantiTect Reverse Transcription
kit (Qiagen) according to the manufacturer’s protocols.
Relative quantification of IFN-y, IL-4, IL-10, TGF-f and
Foxp3 were performed using SYBR Green PCR Master
Mix kit (Roche), cDNA (500 pg) and primers (0.5 pM)
on the LightCycler system v3.5 (Roche). All primers were
designed to span intron-exon boundaries (Table 1). The
delta-delta Ct method was used to calculate relative gene
expression levels between two samples. Gene expression
was assayed quantitatively and normalized to that of a
housekeeping gene (GAPDH, HPRT, 18S-RNA) to obtain
a RNA ratio in order to establish the relevant change in
RNA expression [29].

Histology

Left upper lung lobes were fixed in 10% buffered forma-
lin, embedded in paraffin blocks and sections (3-5 pm)
stained with Haematoxylin and Eosin (H&E) for light
microscopy. Pulmonary histopathological scoring was
performed in a blinded fashion and calculated separately
for each lung section as previously described [32]. In
brief, a scale of 0 to 4 was used to individually score the
level of peribronchiolitis, perivasculitis, interstitial pneu-
monitis and alveolitis of each section in order to obtain
an average score for each lung. A score of 0 was based
upon observation of normal, uninfected mouse lung
samples and a score of 4 on previous studies of greatest
inflammatory change and pathology brought about by i.n
M. bovis BCG infection in BALB/c mice. Scoring of
gastrointestinal histopathology was achieved by measuring
mucus production, presence of mast cells and mitotic
body enumeration in fixed caecum tips imbedded in paraf-
fin blocks. Sections (3-5 pm) were used for Periodic Acid
Schiff (PAS) staining to score goblet cell-mucus produc-
tion within caecal crypts as the percentage PAS positive
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stain in the crypt epithelium and lamina propria. Acidified
toluidine blue staining was used for the quantification of
mast cells in caecum tip samples and enumeration of mi-
totic bodies within caecum crypts. Scoring was conducted
from two sets (cross sectional and longitudinal) of 20
caecal crypt units per animal. All slides were evaluated
using the ZS300 Imaging system v.3.0 (Carl Zeiss Vision).

Statistical analysis

Data was analyzed using STATISTCA v.7 (StatSoft) soft-
ware. Nonparametric analysis and Mann—Whitney U tests
were performed for comparison between groups and the
data presented as median values. Multiple group analysis
included the multiple comparison correction (Bonferroni).
Statistically significant differences were judged as p < 0.05.

Results

M. bovis BCG clearance and lung pathology is not
influenced by an established or successive T. muris
infection

The influence of 7. muris infection on host ability to
control a chronic, low grade M. bovis BCG infection in
BALB/c mice was investigated for both experimental
protocols (Figure 1A and B). Results demonstrated that
an ongoing helminth-induced TH2 immune background,
pre-established by 7. muris trickle infection, failed to
alter mycobacterial proliferation and dissemination when
compared to M. bovis BCG-only infected mice in the
lungs (Figure 2A) and spleen (data not shown). Similarly,
initiation of a TH2 immune environment subsequent to
BCG infection, resulted in equivalent pulmonary bacter-
ial burdens between co-infected and BCG-only infected
groups (Figure 2B). These end point CFU findings were
confirmed by growth curve data demonstrating no signifi-
cant difference in pulmonary mycobacterial burden be-
tween co-infected and M. bovis BCG-only infected mice at
several time points post M. bovis BCG infection (Figure 2C).

Table 1 List of primer sequences used for relative quantitative real-time PCR

Target Forward Reverse

HPRT GACTGTAGATTTTATCAGACT GTCTGGCCTGTATCCAACACTTC
GPDH GGTGGCAGAGGCCTTTG TGCCGATTTAGCATCTCCTT

“185 [30] GTCTGTGATGCCCTTAGATG AGCTTATGACCCGCACTTAC
“TGF-B [30] CCGCAACAACGCCATCTATG CTCTGCACGGGACAGCAAT
“IFN-y [31] AAGTTCTGGGCTTCTCCTCCTG GCCAGTTCCTCCAGATATCCAAGA
“IL-10 [30] CTGGACAACATACTGCTAACCG GGGCATCACTTCTACCAGGTAA
“IL4 31] TCAACCCCCAGCTAGTTGTC TTCAAGCATGGAGTTTTCCC
GATA3 CTGGAGGAGGAACGCTAATG GGTTGAAGGAGCTGCTCTTG
Thet AGCAAGGACGGCGAATGTT GGGTGGACATATAAGCGGTTC
*Foxp3 [30] CACAATATGCGACCCCCTTTC AACATGCGAGTAAACCAATGGTA

“Primer sequences adapted from reference.
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Figure 2 M. bovis BCG clearance and mycobacterial-induced lung pathology is not influenced by an established or successive T. muris
infection. (A) Viable pulmonary M. bovis BCG CFU numbers at experimental endpoint in co-infected (black) and BCG-only (clear) infected BALB/c
mice infected according to experimental design as shown in Figure 1A. Data display mean + SEM, representing 3 individual experiments of 5-6
animals per group. (B) Viable pulmonary M. bovis BCG CFU numbers at experimental endpoint in co-infected (black) and BCG-only (clear) infected
BALB/c mice infected according to experimental design as shown in Figure 1B. Data display mean =+ SEM, representing 3 individual experiments
of 5-6 animals per group. (C) Viable pulmonary M. bovis BCG CFU growth curve data of co-infected (black) and BCG-only (clear) infected mice at
days 14, 24 and 35 post BCG infection (D) Representative histological H&E stained lung sections captured at 10x magnification illustrating the
differences in histopathology between BCG/T.muris co-infected, BCG-only infected, uninfected and T. muris-only infected BALB/c mice infected
according to experimental design as shown in Figure TA. (E) Pulmonary histopathological scoring was performed in a blinded fashion according
to the degree of peribronchiolitis (b), perivasculitis (v), interstitial pneumonitis (i) and alveolitis (a) per lung. Average pulmonary scores of BALB/c
mice infected according to experimental design as shown in Figure 1A. Groups included naive (circle), . muris-only (diamond), BCG-only (triangle)

considered statistically significant. (*p < 0.05, ns = non significant).

and co-infected (square) mice. Data display mean + SD, representing 2 individual experiments of 5-6 animals per group. P values <0.05 were

Histological scoring of both infection protocols indicated
that T. muris-only infected mice displayed normal lung
pathology with only minimal cell infiltration compared to
naive mice, whereas the degree of pulmonary pathology
and the cellular composition and organization in the
lungs following M. bovis BCG co-infection were signi-
ficantly increased (Figure 2D and E). No significant
differences in pulmonary inflammatory scores could be
detected between BCG-only and co-infected mice for
either infection protocols (Figure 2D, 2E and Additional
file 1: Figure S1).

Previously established BCG infection delays T. muris
expulsion in co-infected animals

The influence of M. bovis BCG co-infection on eradica-
tion of T. muris in BALB/c mice was evaluated as worm
expulsion for both experimental protocols (Figure 1A
and B). In each case, susceptible IL-4KO mice with
disrupted protective TH2 responses, were included as
controls of delayed worm clearance [33]. Following the
infection strategy in Figure 1A, the helminth burden at
experimental completion demonstrated that almost half
(44%; 4/9) of mice with an established chronic BCG
infection, that were subsequently co-infected with a low
dose of helminth eggs, still presented with T. muris,
whereas significantly more animals (88%; 7/8) from the
T. muris-only infected group had cleared all helminths
(Figure 3A). Both groups displayed significantly lower
worm burdens compared to IL-4KO mice infected with
T. muris only (Figure 3A). Similar results were observed
in experimental repeats using a high dose of helminth
eggs, showing helminth clearance in (100%; 0/9) T. muris-
only infected BALB/c mice, whereas 7. muris expulsion
failed in (40%; 4/10) M. bovis BCG co-infected BALB/c
mice (Figure 3B). However, when the infection sequence
was reversed, where an initial 7. muris infection was
followed by a subsequent BCG infection (Figure 1B), repeat
experiments consistently indicated helminth clearance in
>90% of both co-infected and 7. muris-only infected mice
(data not shown).

Co-infection exacerbates cell proliferation in caecum tips
A striking observation was the massive amount of mucus
present in the caeca and colons of mice co-infected ac-
cording to either experimental protocol (Figure 1A and B)
in comparison to 7. muris-only infected mice. Although
PAS stained samples failed to demonstrate significant
differences in goblet cell formation or caecal crypt-mucus
production between co-infected and 7. muris-only in-
fected mice (Figure 4A), acidified toluidine blue staining
showed significantly increased numbers of mitotic figures
in caecum crypts of co-infected animals as identified
by their dense chromatic structure (Figure 4B). Very few
mast cells were observed within the epithelium or lamina
propria of the crypt units in co-infected mice and no
significant statistical differences in mast cell recruitment
were observed between infection groups (Figure 4C).
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Figure 3 Co-infection increases retention of T. muris helminths.
The burden of T. muris worms were determined from the caecum
and 3 inches of the colon of BALB/c mice infected according to
the experimental design as shown in Figure TA. Worm counts in
T. muris-only BALB/c (clear circle) and IL-4KO (triangle) strains and
co-infected BALB/c (square) mice infected with a low (A) and high
(B) dose of helminth eggs. Data represents combined results of 2
individual experiments of 4-5 animals per group. P values <0.05
were considered statistically significant. (*p < 0.05).
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Figure 4 Co-infection increases mitotic figures in the caecum crypts. (A) Histological analysis of goblet cell numbers as determined by the
percentage PAS" cells (indicated by arrow) per 2 x 20 cross sectional crypt units in 7. muris-only (clear) and co-infected (black) BALB/c mice
infected according to the experimental design as shown in Figure 1A. Data display median £ min-max, representing 2-3 individual experiments
of 5 animals per group. (B) Toluidine blue stained mitotic bodies (indicated by the arrows) were counted in 2 x 20 crypts/slide. Numbers of
mitotic bodies as determined from cross-sectional and longitudinal crypt units in co-infected (black) and T. muris-only (clear) infected BALB/c mice
infected according to Figure 1A. Data display median + min-max, representing 2-3 individual experiments of 5 animals per group (C) Toluidine
blue staining for the assessment of mast cells (indicated by arrows) in cross sectional and longitudinal crypt units demonstrated few mast cells
within the lamina propria and crypt epithelium of the caecum tissue with most mast cells residing within the submucosa surrounding the caecum. Bar
graph indicating the numbers of mast cells measured in co-infected (black) and T. muris-only (clear) infected groups per 40 caecum crypts. Data display
median + SD of 5 animals per group. P values <0.05 were considered statistically significant. (ns = non significant).
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Co-infection increases CD4" splenocyte frequencies and
modifies the TH1/TH2 immune balance

Flow cytometric analysis demonstrated that co-infection
according to either infection protocol (Figure 1A and B)
did not impact lymphocyte composition in the spleen or
MLN, since no significant differences between infection
groups were observed for populations of CD3" T cells
or B220" B cells (data not shown). However, analysis
of ex-vivo lymphocyte subpopulations in BALB/c mice
infected according to Figure 1A, revealed an increase in
CD4" T helper cell population in the spleens of mice
co-infected according to the protocol in Figure 1A,
when compared to BCG-only infected mice (Figure 5A).
Although no differences in the percentages of natural
regulatory T cell (CD4"CD25"Foxp3") populations were
observed between infection groups in either the spleen
or MLN (data not shown), co-infection significantly
increased the percentage of IL-4-producing CD4" and
CD8" splenocytes in comparison to M. bovis BCG-only
infected controls (Figure 5B). IL-4-producing CD4" and
CD8" MLN cells from co-infected mice were however
significantly reduced in comparison to 7. muris-only in-
fected mice (Figure 5C). A marked decrease in CD8 TFNy"
MLN cells was also observed in co-infected mice in com-
parison to mice infected only with 7. muris, whereas
frequencies of CD4" IFNy" MLN cells were measured
at similar levels between co-infected and T.muris-only
infected mice (Figure 5D).

When the infection order was reversed during trickle in-
fection to address the effect of introduction of co-infection
with M. bovis BCG into an established helminth-induced
TH2 environment (Figure 1B), a significant increase in acti-
vated effector T cell (CD4"CD25 Foxp3’) percentages in
MLN s of co-infected animals was observed in comparison
to T. muris-only infected controls (Figure 5E). A trend
towards decreased frequencies of inducible regulatory T
cells (iTreg) (CD4"CD25 Foxp3") was also observed in the
MLNSs of co-infected compared to 7. muris-only infected
mice (Figure 5F). No significant differences in ex vivo cyto-
kine production between infection groups were observed
for CD4" and CD8" lymphocytes in the spleen or MLNs
(data not shown).

Co-infection reduces pathogen-specific TH1 and TH2
immune responses
Pathogen-specific TH1/TH2/TH17/Treg cytokine immune
responses in the spleen were analyzed only in BALB/c mice
infected according to the protocol in Figure 1A, since
no significant differences in ex vivo T cell cytokine pro-
duction between infection groups were observed in the
spleens or lungs of mice infected according to the
protocol in Figure 1B.

E/S stimulated splenocytes from both co-infected and
BCG-only infected mice displayed a prominent reduction
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in TH2/Treg (IL-4, IL-13 and IL-10) cytokine production
when compared to 7. muris-only infected animals, al-
though IL-4 levels were significantly increased in co-
infected compared to BCG-only infected mice (Figure 6A).
Similarly, E/S-specific TH1 cytokines (TNF-a and IFN-y)
were reduced in both the co-infected and BCG-only
infected groups with respect to T. muris-only infected
animals (Figure 6A). No notable differences between the
infection groups were observed for helminth-specific
IL-17 production (data not shown).

BCG-stimulated splenocytes displayed notably low
concentrations of TH2 (IL-4 and IL-13) cytokines in
all infection groups. Although no significant differences
in concentrations of the cytokines, IFN-y and IL-17
(Figure 6B) were measured between infection groups,
co-infection significantly decreased production of the cy-
tokines TNF-q, IL-10 and IL-4 in comparison to T. muris-
only and/or BCG-only infected mice (Figure 6B).

Co-infection reduces the pulmonary cytokine gene
expression profile relative to BCG-only infected animals
To assess whether the immunological changes observed
in mice infected according to the infection protocol indi-
cated in Figure 1A, also extends to alterations in pul-
monary and splenic gene expression levels, the relative
gene expression of co-infected mice and BCG-only in-
fected mice was determined. At week 9, the relative gene
expression ratios from co-infected mice demonstrated
significantly decreased RNA levels in the lungs for TGE-
B (p=0.034), Foxp3 (p=0.042) and IFN-y (p=0.012)
relative to BCG-only infected mice (Figure 7). The levels
of IL-10 (p=0.072) also showed a trend towards de-
creased expression across these two groups (Figure 7).
Analysis of RNA profiles in the spleen failed to show
significant variations in expression levels for any of the
genes measured, between co-infected and BCG-only
infected groups (data not shown).

Discussion

In this study, we demonstrate the capability of the gastro-
intestinal tract restricted helminth, 7. muris, to induce local
and systemic TH2 immune responses that affect immunity
to M. bovis BCG. Of particular interest was the sig-
nificant reduction in BCG-specific TNF-a and IL-10
cytokine concentrations and significant increase in IL-
4-producing CD4" and CD8" T cells in the spleens of
co-infected mice, in comparison to BCG-only infected
mice. In addition, we show that co-infection signifi-
cantly reduced pulmonary IFN-y, TGE-f and Foxp3
gene expression, relative to BCG-only infected mice.
Collectively, our data show a down-regulation in pul-
monary TH1 and Treg-associated responses and the
induction of systemic TH2 responsiveness following
co-infection. Nevertheless, lung and systemic bacterial
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Figure 5 Co-infection affects the frequency of CD4" and Treg
lymphocyte populations and alters ex vivo TH1/TH2 cell
populations. (A) Percentages of CD4" splenocytes in BCG-only (clear)
and co-infected (black) BALB/c mice infected according to experimental
design in Figure 1A. Data display median + min-max, representing 2-3
individual experiments of 20 animals per group. (B) Percentages of
IL-4 producing CD4" and CD8" splenocytes in BCG-only (clear) and
co-infected (black) BALB/c mice infected according to the protocol
in Figure 1B. Data display median + min-max, representing 2-3
individual experiments of 8-10 animals per group. (C-D) Percent-
ages of CD4"IL-4", CD8*IL-4* and CD4"IFN-y" MLN cell populations
in T. muris-only (clear) and co-infected (black) BALB/c mice infected
according to experimental design in Figure 1B. Data represents
experiments with 8-10 animals per group. Percentages of (E) activated
T cells (CD4"CD25 " Foxp3) and (F) inducible regulatory T cells (iTreg)
(CD4"CD25 Foxp3™) in MLNs of T. muris-only (clear) and co-infected
(black) BALB/c mice infected according to experimental design in
Figure 1B. Data display median + min-max, representing 2-3 individual
experiments of 8-10 animals per group. P values <0.05 were considered
statistically significant. (*p < 0.05, **p < 0.01, ns = non-significant).

burdens remained unaffected in co-infected mice and
did not translate into alterations in pulmonary histopath-
ology with respect to BCG-only infected mice, suggesting
that protective host immune responses could be suffi-
ciently compartmentalized to appropriately respond to the
mycobacterial infection. Previous reports have demon-
strated the host’s ability to fully compartmentalize im-
munity during co-infection with TH1 and TH2-inducing
pathogens at different sites of the mammalian body [34].
While helminth co-infection has been shown to negatively
influence host control of other intracellular pathogens,
several reports suggest that this outcome is specific to the
helminth species investigated [35-38]. Even so, T. muris
infection marginally increased pulmonary cellular infil-
tration with respect to naive mice, likely due to systemic
inflammation caused by the helminth infection or the
presence of helminth antigens. Although not discussed
here, work done by us shows that neither adoptive transfer
of splenocytes or MLN leukocytes from helminth-only
infected animals, or abrogation of IL-4 in IL-4 deficient
mice, resulted in altered mycobacterial burden (unpub-
lished data). These transfer experiments could however
not exclude a role for suppressive MLN or spleen cell
subsets since purified populations were not used in these
experiments. Also, the timing of transfer and the absence
of continual pathogen-derived antigen stimulation in the
recipient host could play a role in the effector responses
and activation status of these cells.

Interestingly, our results show that prior pulmonary
M. bovis BCG infection also significantly affected local
and systemic protective host immune responses to a
subsequent 7. muris infection. Although the lack of
ex vivo phenotyping data from BCG-only infected mice
is a weakness in this infection protocol, co-infected mice
displayed a significant reduction in E/S-specific TH1
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Figure 6 Co-infection leads to altered pathogen-specific TH1 and TH2 immune responses. TH1 and TH2 cytokine concentrations were
measured from 24 hour (A) E/S stimulated and (B) BCG-stimulated splenocyte cultures of co-infected (grey), T. muris-only (clear) and BCG-only
(black) BALB/c mice infected according to the protocol illustrated in Figure TA. Results from stimulated values were corrected for background
unstimulated controls. Data display median + min-max, representing 2-3 individual experiments of 5 animals per group. P values <0.05 were
considered statistically significant. (*p < 0.05, **p < 0.01, ns = non-significant).




Nel et al. BMC Microbiology 2014, 14:9
http://www.biomedcentral.com/1471-2180/14/9

Lung RNA BCG vs BCG/T.muris — Bca

0.0159 H BB BCG/T.muris

~  0.010 L
58
S %2  0.005 i
20
@2 0002,
838 a
u’j .8 0.001 4 — m ’_,_‘
< © — - mi i ﬁ- &
Z E 1.5x10°;
€2 1.0x10°;

~ 5.0x10°

0 "TGFp IL-10 Foxp3 GATA3 Thet IFNy IL-4

Figure 7 Co-infection decreases the expression ratio of
pulmonary RNA cytokine transcripts relative to those of BCG-only
infected BALB/c mice. BALB/c mice were co-infected (black)
according to the protocol illustrated in Figure TA with BCG-only
(clear) infected mice included as controls. At week 9, total RNA
was extracted from the right upper lung lobe, cDNA produced
and the relative gene expression ratio in co-infected mice relative
to that of BCG-only infected mice, determined by real-time PCR.
Following HKG normalization and delta-delta Ct analysis, the
expression ratio of the genes TGF-B, IL-10, Foxp3, GATA3, T-bet,
IFN-y were calculated. Data display median + SE, representing 8-10
animals per group. P values <0.05 were considered statistically significant
in comparison to BCG-only infected. (*=p < 0.05).

and TH2 cytokine responses in the spleen, and signifi-
cantly reduced IL-4 producing CD4" and CD8" T cells
and IFN-y-producing CD8" T cells in the mesenteric
lymph nodes when compared to 7. muris-only infected
mice. In support of a functional role for this reduction
in T. muris-specific immunity, we demonstrated an associ-
ated delay in helminth clearance and increased helminth-
related intestinal pathology in co-infected mice, when
compared to 7. muris-only infected mice. These intestinal
pathological changes were characterized by increased cell
turnover, suggesting increased apoptosis or cell damage,
necessitating cell replacement [39]. Intestinal crypt cell
apoptosis was previously reported to occur following
T. muris infection and subsequently shown to be reduced
following neutralization of IFN-y and TNF-a [40]. In par-
allel with this we observed an increase in intestinal mucus
production, which likely operates as a compensatory
mechanism to aide expulsion of persisting parasites. Our
results verify reports illustrating that M. bovis co-infection
increase helminth parasite burden and correlates with
decreased IL-4 and IL-13 cytokine production [41]. Our
findings also agree with early reports demonstrating a
reduction in protective immune responses and a delay in
T. muris expulsion during other co-infections with Nema-
tospiroides dubius, Plasmodium berghei or Trypanosoma
brucei [42-44]. Tt is well established that resolution of
T. muris infection is characterized by the production of
TH2 cytokines, resulting in intestinal goblet cell hyperpla-
sia and increased intestinal epithelial cell turnover [45,46].
On the other hand, mast cells, y§ T cells and eosinophils
are suggested as dispensable for T. muris expulsion [45,47]
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and the contribution of B cells and antibody responses re-
mains controversial [48-50]. Previous reports convincingly
show that T. muris infection is delayed following depletion
of CD4 T cells [51], inhibition/down-regulation of TH2
cytokines [33,45] and increased TH1 polarization [52].
It is therefore likely that our observation of reduced
helminth-specific TH2 responses in this co-infection
model could, at least in part, explain the delay in T.
muris expulsion, although induction of TH1 immune
responses to M. bovis BCG following T. muris infection
would also influence parasite expulsion. Interestingly,
altering the infection sequence to elucidate the effect of a
subsequent mycobacterial infection on an established
helminth-induced TH2 immune response did not have
any negative influence on mycobacterial or helminth clear-
ance by the host. This is most likely to be due to the rapid
clearance of the helminth infection and development of
resistance to re-infection, or due to the presence of an
established TH1 immune response for altering helminth
clearance [53].

These modified pathogen-specific and non-specific
immune responses following co-infection provide clear
evidence that both pathogens have the ability to recip-
rocally modulate immune responses towards each other
at their individual infection foci. More importantly, the
down-regulation of overall immune responsiveness in
the context of both infections suggests co-infection-
induced immune suppression as a possible mechanism.
Several reports confirm that chronic immune activation
during helminth infections could initiate immune sup-
pression or anergy [22]. Here, we show significant in-
creases in the frequency of systemic CD4" T cells and
effector T cells in MLN of co-infected animals, suggest-
ing increased immune activation following co-infection.
Although the presence of immune suppressive regula-
tory cell populations was investigated, no differences in
the frequencies of Treg populations could be detected
between infection groups in either of the BALB/c co-
infection models. As Treg cells exert their suppressive
function in a cytokine dependent manner and also interact
with other T cells and APC directly, the implications of
co-infection on regulatory immune mechanisms are not
clear. Changes in IL-10, Foxp3 and TGEF-B gene expres-
sion reveal that the role of Tregs cannot be excluded. Our
results could point towards a role for other immune re-
gulatory cell populations, and current research efforts are
focused towards the involvement of innate nuocytes and
myeloid derived suppressor cells (MDSCs) [54,55].

Conclusion

In summary, the work presented here supports the hy-
pothesis that co-infection by two unrelated and anatom-
ically separated pathogens can reciprocally alter the
host’s immune response to either infection. Co-infection
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altered host pathology and the host’s ability to expel invad-
ing helminth parasites; however the magnitude of the
impact was dependent on the sequence of co-infection.
These phenotypic changes were associated with alterations
in organ-restricted TH1/TH2/Treg immune balance, im-
mune suppression and pathogen-specific and non-specific
cytokine responses. It is likely that multiple mechanisms
may operate concurrently and further research is needed
to identify the critical factors involved, although our
results strongly support a mechanism whereby chronic
immune activation leads to hyporesponsiveness resulting
in reduced pathogenic control during co-infection. These
findings demonstrate the complexity of immune response
regulation and systemic interaction between innate and
adaptive immunity and thereby hightlights the need for
greater understanding of the role of infection history on
the evolution of host immunity.

Additional file

Additional file 1: Figure S1. Representative histological H & E stained
lung sections captured at 10x magnification illustrating the differences in
histopathology between T. muris/BCG co-infected, BCG-only infected,
uninfected and T. muris - only infected BALB/c mice infected according
to experimental design as shown in Figure 1B.
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