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Abstract

Background: Eukaryotic organisms employ cell surface receptors such as the seven-transmembrane G
protein-coupled receptors (GPCRs) as sensors to connect to the environment. GPCRs react to a variety of
extracellular cues and are considered to play central roles in the signal transduction in fungi. Several species of the
filamentous ascomycete Trichoderma are potent mycoparasites, i.e. can attack and parasitize other fungi, which
turns them into successful bio-fungicides for the protection of plants against fungal phytopathogens. The
identification and characterization of GPCRs will provide insights into how Trichoderma communicates with its
environment and senses the presence of host fungi.

Results: We mined the recently published genomes of the two mycoparasitic biocontrol agents Trichoderma
atroviride and Trichoderma virens and compared the identified GPCR-like proteins to those of the saprophyte
Trichoderma reesei. Phylogenetic analyses resulted in 14 classes and revealed differences not only among the three
Trichoderma species but also between Trichoderma and other fungi. The class comprising proteins of the PAQR
family was significantly expanded both in Trichoderma compared to other fungi as well as in the two mycoparasites
compared to T. reesei. Expression analysis of the PAQR-encoding genes of the three Trichoderma species revealed
that all except one were actually transcribed. Furthermore, the class of receptors with a DUF300 domain was
expanded in T. atroviride, and T. virens showed an expansion of PTH11-like receptors compared to T. atroviride and
T. reesei.

Conclusions: Comparative genome analyses of three Trichoderma species revealed a great diversity of putative
GPCRs with genus- and species- specific differences. The expansion of certain classes in the mycoparasites T.
atroviride and T. virens is likely to reflect the capability of these fungi to establish various ecological niches and
interactions with other organisms such as fungi and plants. These GPCRs consequently represent interesting
candidates for future research on the mechanisms underlying mycoparasitism and biocontrol.
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Background
Fungi are eukaryotes and include organisms with im-
portant ecological and economic roles. The relatively
simple structure and the ease of cultivation and genetic
manipulation make fungi interesting eukaryotic models
for studying fundamental biological processes. They
share important features with even mammalian cells
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such as conserved signal transduction pathways that
regulate cell function [1,2]; thus studying fungal signal-
ing and environmental sensing contributes to our know-
ledge on conserved basic molecular principles of life.
Communication of cells with each other and with their

environment is crucial for survival of organisms. Conse-
quently, ingenious mechanisms of sensing environmen-
tal signals and elaborated ways of adaption to the
environment evolved [3]. Cell surface receptors connect
the cell to the environment by functioning as sensors.
Among these receptors, G protein-coupled receptors
(GPCRs) comprise the largest class with roles in virtually
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every physiological function [4]. GPCRs have a com-
mon domain structure containing seven stretches of
hydrophobic amino acids spanning the cytoplasmic
membrane connected by intra- and extracellular loops
with the N-terminus located outside of the cell and the
C-terminus within the cytoplasm [5]. The classic para-
digm is based on a physical interaction of the GPCR
with an intracellular Gα subunit once the receptor is
activated by ligand binding which leads to dissociation
of Gα from Gβγ subunits [6]. Both signalling units
then regulate activities of downstream effectors [7-9].
In eukaryotic organisms a plenty of different GPCRs is
facing a small amount of G proteins. If G proteins
were the only transmitters of GPCR-mediated signal-
ing, this unequal ratio seems to limit the specificity of
signal transduction. In recent years several intracellu-
lar partners other than G proteins were identified that
are capable of mediating signals originating from these
receptors. These include arrestins, G protein-coupled
receptor kinases, small GTP-binding proteins, and
many more [10-13]. Accordingly, GPCRs are extremely
diverse in sequence and function and missing genome
sequence information and constraints in structure pre-
diction for a long time impaired research on these pro-
teins. Although pheromone- and nutrient- sensing
GPCRs have been studied extensively in yeast and
some filamentous fungi [14-26] far more GPCRs re-
main to be identified and characterized.
The fungal genus Trichoderma comprises saprophytic

and mycoparasitic species, and species interacting with
plants and animals [27]. Because of these versatile lifestyles
and the variety of interactions with other organisms,
Trichoderma fungi are valuable models for studying organ-
ismic cross-talk and signaling. Studies on heterotrimeric G
proteins revealed a multitude of processes being regulated
by these signal transduction compounds in Trichoderma.
The class I adenylate cyclase-inhibiting as well as the class
III adenylate cyclase-activating Gα subunits regulate vege-
tative growth and conidiation of the fungus and affect pro-
cesses relevant for mycoparasitism [28], i.e. a lifestyle
where Trichoderma parasitizes other fungi. Trichoderma
atroviride Tga1 as well as Tga3 govern the production of
extracellular chitinases and antifungal metabolites, and
Tga3 is essential for transmitting signals that regulate the
recognition of the host fungus and attachment to its hy-
phae. Both, T. atroviride Δtga1 as well as Δtga3 mutants,
are unable to overgrow and lyse host fungi [29-31], while
Trichoderma virens TgaA regulates mycoparasitism in a
host-specific manner [32]. For T. virens ΔtgaB mutants
missing the class II Gα-encoding gene, unaltered
growth, conidiation, and mycoparasitic activity have
been reported [32]. In the saprophyte Trichoderma
reesei, the heterotrimeric G protein pathway is crucial
for the interconnection of nutrient signaling and light
response. Besides the Gα subunits GNA1 and GNA3,
which transmit signals positively impacting cellulase gene
expression, GNB1 (Gβ), GNG1 (Gγ) and the phosducin
PhLP1 influence light responsiveness, glycoside hydrolase
expression and sexual development [33,34].
Here we present an exploration of the genomes of the

two mycoparasites T. atroviride and T. virens and iden-
tify members of the G protein-coupled receptor family
from the entire deduced proteomes. The identified pro-
teins are classified and compared to those encoded in
the saprophyte T. reesei and several other fungi. In con-
trast to the presence of only three Gα subunits, one beta
and one gamma subunit in each of the genomes of the
three Trichoderma species, our analyses revealed a great
diversity of GPCRs and differences both between the
three Trichoderma species and between Trichoderma
and other fungi.

Results and discussion
Identification of G protein-coupled receptor-like proteins in
the genomes of three Trichoderma species
The T. atroviride,T. virens and T. reesei genome databases
were searched for putative GPCRs using a homology
(BLAST)-based strategy. Together with the putative
GPCRs identified in the genome of Neurospora crassa [2]
and Phytophtora sojae GPR11 [35], the 18 GPCRs previ-
ously identified in Aspergillus spp. [1] and the three new
GPCRs predicted in the Verticillium genome [36] were
used in a BLASTP search against the predicted
proteomes of the following species of the Sordariomycetes
(Magnaporthe grisea, Podospora anserina, Chaetomium
globosum, Fusarium graminearum, Nectria haematococca,
T. reesei, T. atroviride and T. virens), a subgroup within
the Ascomycota. In an analogous manner, the PTH11
receptor of M. grisea [14,37] was used as a query. All
consequently identified GPCR-like proteins were next
used as a query in similar BLAST searches of the
proteomes of the other species. In the end each pos-
sible combination was tested. By additionally applying
a HMM-based approach, which is suitable for detecting
candidates lacking significant sequence similarity to
known GPCR-like proteins and therefore may escape de-
tection by BLAST-based homology searches, two add-
itional proteins of the PTH11-like class could be identified
(Triat86665, Trive78137).
All identified Trichoderma proteins were evaluated for

the typical topology of seven transmembrane regions
and, if conducive, a manual editing of candidate GPCR
sequences was performed including movement of exon-
intron boundaries and sequence extension or truncation.
This total set of analyses resulted in the identification of
65 and 76 putative GPCRs in T. atroviride and T. virens,
including 38 and 52 PTH11-like receptors, respectively,
which are facing 58 predicted GPCRs in the T. reesei
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genome (Table 1). Among the PTH11-like receptors, a
protein exhibiting 15 transmembrane domains was
found in all three Trichoderma species. An orthologue
of this putative GPCR has previously been identified in
M. grisea and A. nidulans [2] suggesting conservation of
this particular receptor.

Phylogenetic analysis of the identified Trichoderma GPCR-
like proteins
Previous studies led to the categorization of fungal GPCRs
into the following classes: pheromone receptors, carbon
sensors, putative nitrogen sensors, cAMP receptor-like
proteins, GPCRs with an RGS domain, GPCRs related to
rat growth hormone releasing factor, mPR-like GPCRs,
microbial opsins and those related to M. grisea PTH11
[1,2,14]. Recently, this classification has been extended by
Table 1 Classification of putative GPCRs identified in the gen

GPCR class T. atroviride T. vir

I (pheromone receptors) ID 36032 ID 14

II (pheromone receptors) ID 147894 ID 40

III (related to A. nidulans GprC, GprD, and GprE) ID 246916 ID 29

IV (nitrogen sensors) ID 238619 ID 41

ID 300620 ID 83

V (cAMP receptor-like) ID 160995 (Gpr1) ID 33

ID 50902 (Gpr2) ID 51

ID 83166 ID 67

ID 81233 ID 57

VI (GPCRs containing RGS domain) ID 293686 ID 45

ID 40423 ID 78

ID 210761 ID 40

VII (related to rat growth hormone releasing
factor)

ID 133045 ID 14

VIII (related to human steroid receptor mPR) ID 290047 ID 30

ID 210209 ID 47

ID 142946 ID 16

ID 46847

ID 152366 ID 19

ID 142943 ID 92

ID 136196 ID 18

IX (microbial opsins) ID 210598 0

X (similar to PTM1) ID 210445 ID 90

XI (similar to GPCR89) ID 93659 ID 16

XII (family C-like GPCRs) ID 130836 ID 17

XIII (related to GPR11 of P. sojae) ID 136442 ID 13

ID 152316 ID 15

ID 296436

PTH11-like 38 members 52 m

Proteins were grouped into classes according to phylogenetic analyses (Figure 1, A
three novel classes whose members show similarity to
PTM proteins (putative tumor necrosis factor receptors),
to GPR89A of higher eukaryotes, and to family C-like
GPCRs (metabotropic glutamate/pheromone receptors of
Gallus gallus), respectively [36].
A phylogenetic analysis of all putative GPCRs identi-

fied in this study including those previously described
for T. reesei [38,39] revealed that the Trichoderma pro-
teins were distributed over 14 classes including PTH11-
like GPCRs and putative receptors similar to P. sojae
GPR11 (Figure 1, Table 1). Phylogeny also showed that
the orthologous proteins from T. atroviride, T. virens
and T. reesei mainly formed the topologies ((Tr, Tv) Ta)
and ((Ta, Tv) Tr) with 14 and 9 cases, respectively, whereas
the ((Ta, Tr) Tv) topology resulted only once (Figure 1).
This suggests that some of the GPCRs of T. virens are
omes of T. atroviride, T. virens, and T. reesei

ens T. reesei Characteristics/domains

7400 ID 64018 (HPR1) STE2-type

681 ID 57526 (HPR2) STE3-type

548 ID 59778 Git3 (G protein-coupled glucose receptor)
domain

902 ID 80125 PQ-loops

179 ID 4508

049 ID 123806 Secretin-family/ Dicty_CAR domain

368 ID 72004

397 ID 72627

873 ID 72605

779 ID 63981 RGS-domain

031 ID 81383

202 ID 37525

6164 ID 53238 Secretin-like

459 ID 119819 HlyIII-superfamily

976 ID 68212

0502 ID 70139

4061

622 ID 82246

0426 ID 56426

0 Bac_rhodopsin

826 ID 5979 Lung_7TM superfamily

0103 ID 107503 ABA_GPCR domain

9509 ID 55374

017 ID 120238 DUF300 superfamily

638 ID 27948

embers 35 members related to M. grisea PTH11 receptor

dditional file 1). A list of PTH11-like GPCRs is given in Additional file 2.



III (related to A. nidulans GprC,
GprD, GprE)

V (cAMP receptor like)

II (pheromone receptor)

I (pheromone receptor)

VII (MG00532 like)

VIII (PAQR, HlyIII superfamily)

IV (N sensor, PQ loop proteins)

XI (similar to GPCR89)

X (similar to PTM1)

XIII (DUF300 superfamily)

XII (family C like)

IX (opsin)

VI (receptors with RGS domain)

Figure 1 Phylogenetic analysis of predicted GPCRs (except PTH11-like proteins) identified in the genomes of the two mycoparasites T.
atroviride and T. virens, and the saprophyte T. reesei. The 7TM regions were aligned and the tree was constructed using neighbor-joining
methods resulting in a grouping into 13 classes (I-XIII). Classes were numbered according to former classification schemes [12,36]. Nodes
supported with bootstrap values above 70% (1000 repetitions) are indicated with a black dot, nodes with bootstrap values between 50 -70% are
indicated with a grey dot, bootstrap values less than 50% were removed.
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more related to those of T. atroviride and some are more
related to those of T. reesei. This is in accordance to the
phylogeny of these species based on other genes showing
that T. atroviride resembles the more ancient state of
Trichoderma and that both T. virens and T. reesei evolved
later [40]. Accordingly, comparative genome analysis
showed that the lineage to T. reesei appears to have lost a
significant number of genes present in T. atroviride and
maintained in T. virens [40].

Trichoderma members of classes I to VII of fungal GPCRs
Two putative pheromone receptors are encoded in the
genomes of the three Trichoderma species analyzed.
Similar to other fungi, these proteins group to classes I
and II of fungal GPCRs (Figure 1, Additional file 1), re-
spectively, and harbor the typical STE2 (pfam02116;
Triat36032, Trive147400, Trire64018) and STE3 (pfam02076;
Triat147894, Trive40681, Trire57526) domains. Functional
analysis of the pheromone receptors of T. reesei (H. jecorina)
showed that HPR1 and HPR2 confer female fertility in their
cognate mating types, mediate induction of fruiting body de-
velopment, and are involved in ascosporogenesis [23]. While
sexual crossing remains to be experimentally shown
for T. atroviride and T. virens, a respective MAT1-2
mating type locus is present in their genomes and the
corresponding teleomorphs, Hypocrea atroviridis and
Hypocrea virens, have already been described [41,42].
There is no direct sequence homologue of the class III

carbon-sensing GPCRs Gpr1 of Saccharomyces cerevisiae
and GPR-4 of N. crassa [21,43,44] in Trichoderma. Never-
theless, we could identify a 7-transmembrane domain pro-
tein in T. atroviride (Triat246916), T. virens (Trive29548)
and T. reesei (Trire59778) sharing sequence and structural
similarity with Aspergillus nidulans GprC, GprD and
GprE, and GprC and GprD of Aspergillus fumigatus and
Aspergillus oryzae, which have previously been described
as class III GPCRs [1]. GprD negatively regulates sexual
development in A. nidulans and A. fumigatus and GprC
and GprD of A. fumigatus are furthermore involved in in-
tegrating and processing stress signals via modulation of
the calcineurin pathway [45,46]. Recently, GprD was fur-
ther shown to be involved in the sensing of oxylipins in A.
nidulans and A. flavus [47]. Due to the absence of a locus
similar to that of N. crassa GPR-4 in the T. reesei genome,
it has been postulated that T. reesei does not possess a
class III GPCR. Trire59778 was instead grouped to the
cAMP receptor-like class [39]. However, structural
analyses of receptors of classes III and V revealed distinct
topologies: whereas class III members display seven trans-
membrane regions at their amino-terminal end and a long
carboxy-terminal cytoplasmic domain, class V receptors
exhibit five domains at the N-terminal end, a long intra-
cellular loop and two helices next to the C-terminus [1].
Consistent with a clustering of Triat246916, Trive29548
and Trire59778 with A. nidulans GprC, GprD and GprE
in the phylogenetic analysis (Additional file 1), the
Trichoderma proteins clearly share the topology of class
III members and contain a Git3 (pfam11710; G protein-
coupled glucose receptor) domain. Whether these pro-
teins actually are implicated in glucose sensing, remains to
be elucidated.
Fungal GPCRs with similarity to Schizzosaccharomyces

pombe Stm1 have been designated as class IV. The Stm1
receptor has been previously shown to be required for
proper recognition of nitrogen starvation signals and to
couple to the Gpa2 Gα subunit in S. pombe [48]. This class
of GPCRs, all containing PQ-loop repeats, is well con-
served in filamentous fungi [2], although their function re-
mains elusive. Two PQ-loop containing 7-transmembrane
proteins grouping to class IV are encoded in the
mycoparasites T. atroviride and T. virens (Figure 1, Table 1)
which is consistent with previous reports on T. reesei
[38,39]. Interestingly, one of the two class IV members of
T. atroviride, Triat300620, has been found in an EST-based
study to be expressed exclusively under mycoparasitic con-
ditions (i.e. in direct confrontation with the host fungus
Rhizoctonia solani) [49]. This transcriptome analysis fur-
ther revealed that T. atroviride faces stress from nitrogen
limitation when it is confronted with a fungal host accom-
panied by an up-regulation of genes encoding proteolytic
enzymes. Consequently, oligopeptides emerging from an
initial degradation of the host by secreted proteases have
been suggested as signals for nitrogen deficiency by bind-
ing to the Stm1-receptor in a ligand-receptor-specific man-
ner [49]. A possible role of Triat300620 in nitrogen
signaling during mycoparasitism is further supported by
the fact that T. atroviride knock-out mutants missing the
Tga3 Gα protein (orthologue of S. pombe Gpa2) are com-
pletely deficient in mycoparasitism, e.g. unable to attack
and parasitize host fungi [31].
The class V of fungal GPCRs comprises cAMP

receptor-like (CRL) proteins that are distantly related to
the four cAMP receptors of Dictyostelium discoideum
[1,2]. Similar to T. reesei [38], four CRL proteins harbor-
ing a Dicty_CAR (pfam05462) domain were identified in
the genomes of the two mycoparasitic Trichoderma spe-
cies T. atroviride and T. virens (Figure 1, Table 1). Two
of these (Gpr1/ Triat160995 and Gpr2/ Triat 50902)
have been functionally characterized in T. atroviride.
While mutants silenced in the gpr2 gene did not show
any phenotypic alterations [28,38], gpr1 mutants were
unable to attach to host hyphae and to respond to host
fungi with the production of cell wall-degrading en-
zymes. Besides these defects in mycoparasitism-relevant
activities, Gpr1 further affects vegetative growth and
conidiation of T. atroviride [50]. As Gpr1 did not inter-
act with any of the three T. atroviride Gα proteins (Tga1,
Tga2, or Tga3) in a split-ubiquitin yeast-two-hybrid assay
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[50], signal transduction in a G protein-independent man-
ner cannot be ruled out at the moment.
Members of class VI of fungal GPCRs are characterized

by the presence of both 7-transmembrane regions and an
RGS (regulator of G protein signaling) domain in the cyto-
plasmic part of the proteins. They show similarity to
Arabidopsis thaliana AtRGS1 which modulates plant cell
proliferation via the Gpa1 Gα subunit [51]. In contrast to
other filamentous ascomycetes like F. graminearum,
N. crassa, A. nidulans, A. fumigatus, A. oryzae,Verticillium
spp. and M. grisea, which possess only one or two mem-
bers of class VI [1,2], three putative RGS domain-
containing GPCRs could be identified in both T. reesei
[38,39] and the two mycoparasitic species T. atroviride and
T. virens (Table 1).
A putative receptor distantly related to mammalian

GPCRs like the rat growth hormone-releasing factor re-
ceptor has been initially identified in the M. grisea gen-
ome [14]. Similar to closely related fungi like N. crassa
and F. graminearum one orthologue with more than
50% amino acid identity to MG00532 is encoded in the
genomes of T. atroviride, T. virens and T. reesei which
accordingly was assigned to class VII (Table 1).

The PAQR family is expanded in mycoparasitic Trichoderma
species
Receptors responding to progesterone and adiponectin as
ligands have previously been classified as progestin-adipoQ
receptors (PAQR [52], a group of 7-transmembrane pro-
teins lacking significant sequence similarity to any pre-
viously described GPCRs but with ancient evolutionary
roots. The PAQR family also includes prokaryotic
hemolysin-type proteins and members have been iden-
tified throughout the eukaryotic kingdom including 11
paralogues in mammals [52]. In S. cerevisiae the PAQR
family members Izh1p, Izh2p, Izh3p, and Izh4p are in-
volved in the regulation of intracellular zinc levels.
Izh2p has further been reported to play a role in lipid
and phosphate metabolism [53,54], and to function as
a receptor for the plant defense protein osmotin which
induces programmed cell death in yeast [55].
In the genomes of filamentous fungi such as N. crassa,

A. nidulans, F. graminearum, and M. grisea two to three
PAQR-type proteins are encoded and have been designated
as class VIII of fungal GPCRs [1,2]. Our mining of the ge-
nomes of T. virens and T. atroviride revealed the presence
of six and seven PAQR members (Table 1, Figure 1), re-
spectively, all of which bear the hemolysin III motif
(pfam03006, HlyIII) and which face five members identi-
fied in T. reesei [38,39]. Phylogenetic analysis showed
the Trichoderma orthologues Triat136196, Trive180426,
Trire56426 in a clade together with yeast Izh3 (Figure 2).
Izh3 possesses a long N-terminal tail with unknown
function as a distinctive characteristic [55]. Similar
extracellular N-terminal extensions of ~280 amino
acids were found in the Trichoderma Izh3-like proteins
Triat136196, Trive180426 and Trire56426. It is worth
mentioning that some of the Trichoderma class VIII
members do not share the typical GPCR topology but
have an extracellular C-terminus and the N-terminal
domain within the cytoplasm. Triat210209, Triat46847,
Triat142943, Trire82246, Trive92622 are in the same,
although not well supported, cluster with the human
adinopectin receptors adipor1-human and adipor2-
human, which share the same topology [52].
To analyze whether the class VIII genes identified in

the Trichoderma genomes are actually transcribed,
their expression was assessed by RT-qPCR. Respective
transcripts were detected for all five and six genes of
T. reesei and T. virens, respectively, as well as for six of
the seven genes identified in the T. atroviride genome
(Figure 3). Triat46847 was not transcribed under the
growth condition tested (PDA). Analysis of mRNA
levels after co-cultivation of Trichoderma with Rhizoc-
tonia solani revealed a significantly enhanced expres-
sion of Trive160502 (p = 0.000) and Trive180426 (p = 0.031)
in T. virens, Triat152366 (p = 0.027) and Triat210209
(p = 0.000) in T. atroviride, and Trire56426 (p = 0.000) in
T. reesei upon contact with the host fungus (Figure 3).
On the other hand, expression of Triat142946 (p = 0.000),
Triat136196 (p = 0.000) in T. atroviride, Trive92622
(p = 0.000), Trive47976 (p = 0.000), Trive30459 (p = 0.034)
in T. virens, and Trire70139 (p = 0.032), Trire119819
(p = 0.000) in T. reesei was significantly decreased in
the presence of R. solani compared to the corresponding
controls. Transcript levels of Triat290043 (p = 0.971),
Triat142943 (p = 0.093), and Trire82246 (p = 0.102) were
unaffected by the presence of R. solani. Again no transcript
could be detected for Triat46847. Expression of Triat46847
was further assessed on both plates and in liquid minimal
and full media and under different developmental stages
(vegetative growth, conidiation) of the fungus. No tran-
script could be detected under all the conditions tested
(data not shown).
Analysis of the location of the seven PAQR-encoding

genes in the genome of T. atroviride revealed that
three of them (Triat142946, Triat142943, Triat46847)
are in close vicinity on scaffold 19 (Figure 4). This is
similar in T. virens and T. reesei for the orthologues of
Triat142946 and Triat142943 suggesting the possibility
that the third T. atroviride gene (Triat46847), which
was found not to be expressed under any of the condi-
tions tested, may have resulted from gene duplication
with subsequent inactivation.
The finding that the genes located in the genomes of

both T. atroviride and T. virens between the orthologous
receptor triplets Triat142946/Trive160502/Trire70139
and Triat142943/Trive92622/Trire82246 have been



Figure 2 Phylogenetic analysis of PAQR family (class VIII) members. PAQR members identified in the genomes of the three Trichoderma
species and those present in N. crassa (NCU03238, NCU04987), A. nidulans (AnGprP, AnGprO), F. graminearum (FG04051, FG01064), M. grisea
(MG0901, MG05072, MG04679), S. cerevisiae (Izh1p, Izh2p, Izh3p, Izh4p), and the human mPR (mPR-alpha, -beta, -gamma) and adiponectin-
receptors (adipor1, adipor2) were aligned using ClustalX. The alignment was then processed using the Gblocks server [56] and the tree was
constructed using neighbor-joining methods. Nodes supported with bootstrap values above 70% (1000 repetitions) are indicated with a black
dot, nodes with bootstrap values between 50 -70% are indicated with a grey dot, bootstrap values less than 50% were removed.
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lost in T. reesei (Figure 4) is consistent with a reported
paralogous gene expansion in T. atroviride and T. virens
compared to T. reesei and other non-mycoparasitic
fungi [40].
After the class of PTH11-like receptors, the PAQR fam-
ily is the second largest GPCR class in Trichdoderma. The
expansion of the PAQR family especially in T. atroviride
and T. virens together with the fact that S. cerevisiae Izh2
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the respective Trichoderma species was grown alone (white bars). Samples of the gene with highest expression in the control condition were
arbitrarily assigned the factor 1. sar1 was used as reference gene.
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was found to regulate fungal development in response to
plant osmotin [55], make these receptors interesting can-
didates for an involvement in interspecies communication
between Trichoderma and other (host) fungi and/or
plants. The importance of fungal class VIII GPCRs in en-
vironmental sensing is further supported by the recent
characterization of a PAQR family member of the fungus
Sporothrix schenkii. SsPAQR1 was found to respond to
the steroid hormone progesterone by signaling via the Gα
subunit SSG-2 [60].
Trichoderma members of classes IX to XII of fungal GPCRs
A 7-transmembrane protein with a bacteriorhodopsin
domain is encoded in the genome of T. atroviride.
Triat210598 is orthologous to N. crassa NOP-1 and
ORP-1 and A. nidulans NopA (Additional file 1). Inter-
estingly, Triat210598 has no homologs in T. reesei and
T. virens. Due to the finding that Triat210598 is located
in a non-syntenic genome region it has been suggested
that T. reesei and T. virens have lost this gene during
evolution [33]. This hypothesis is in agreement with



T. atroviride
Scaffold 19: 14000-45000

Triat46847Triat142943Triat142946 1 2 3 4 5 6

T. virens
Scaffold 88: 1190000-1170000

Trive92622Trive160502 1 2 47

T. reesei Trire70139 Trire82246

Scaffold 33: 187000-194000

Figure 4 Schematic drawing of the T. atroviride genomic locus with the PAQR (class VIII)-encoding genes Triat142946, Triat142943,
and Triat46847 and the loci with their orthologues in T. virens and T. reesei. Scaffolds and position numbers are given as specified in the
respective genome databases [57-59]. PAQR-encoding genes are indicated by white arrows; other genes are given in grey (1: Triat47305/
Trive123162, putative subtilisin-like peptidase; 2: Triat178339/Trive160495, putative ankyrin repeat domain protein; 3: Triat255480, putative ankyrin
repeat domain protein; 4: Triat215171/Trive160757, hypothetical NACHT and ankyrin domain protein; 5: Triat305654, predicted small secreted
cystein-rich protein; 6: Triat290393, hypothetical protein; 7: Trive66658, hypothetical protein).
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recent results showing that T. reesei and T. virens are
derived relative to T. atroviride, the latter resembling the
more ancient state of Trichoderma [40].
Classes X, XI, and XII of fungal GPCRs have recently

been defined in Verticillium spp. [36]. Similar to Verticil-
lium and other filamentous fungi such as A. nidulans,
M. grisea, N. crassa, and F. graminearum, one putative
PTM1-like GPCR was identified in the two mycoparasites
T. atroviride and T. virens as well as the saprophyte
T. reesei. Consistent with the presence of a Lung_7-
TM_R domain (pfam06814) and similarity to the putative
tumor necrosis factor receptor-like GPCR PTM1 of
S. cerevisiae, the respective Trichoderma proteins were
designated as class X members (Table 1).
One putative member related to human GPR89A was

identified in the genome of each of the three Trichoderma
species (Table 1). The Trichoderma proteins showed the
typical structure previously described for receptors of class
XI with 9 transmembrane regions and a large third cyto-
plasmic loop [36], and contain a ABA_GPCR (pfam12430;
abscisic acid G protein-coupled receptor) domain.
Putative fungal receptors with similarity to family C-like

GPCRs (metabotropic glutamate/pheromone receptors)
have previously been defined as class XII [36]. Similar to
other filamentous ascomycetes, one putative GPCR
grouping to this class was identified in each of the three
Trichoderma species. Whereas the respective proteins
of both T. atroviride and T. reesei exhibit the typical
structure with 7 transmembrane domains and the long
C-terminal tail, the T. virens homologue (Trive179509)
only exhibits 6 transmembrane regions.

PTH11-Related proteins of Trichoderma
The PTH11 receptor was first identified in M. grisea,
where it is required for host surface recognition and patho-
genicity [37]. PTH11 has an extracellular amino-terminal
CFEM domain followed by seven transmembrane regions
and PTH11-related proteins are restricted to fungi belong-
ing to the subphylum Pezizomycotina [14].
In both the mycoparasitic Trichoderma species as well as

T. reesei [38,39], the number of identified PTH11-like
proteins was higher than in the saprophyte N. crassa
(25 members) but lower than in the plant pathogens M.
grisea (61 members) and F. graminearum (106 members)
[2,14]. Similar to the above mentioned fungi, only a subset
of the identified Trichoderma proteins contained the
fungal-specific cysteine-rich CFEM (pfam05730) domain
(Figure 5, Additional file 2), which is characteristically
present in the extracellular region of some membrane
proteins with proposed roles in fungal pathogenicity.
Compared to T. atroviride (38 members) and T. reesei
(35 members), we found a marked expansion of PTH11-
related proteins in T. virens (52 members).

Additional putative GPCRs of Trichoderma which are
beyond the existing classification system of fungal
GPCRs (class XIII)
Recently, a putative GPCR of Phytophtora sojae (GPR11)
controlling zoospore development and virulence of P.
sojae to soybean has been described [35]. Performing
a BLASTP search with GPR11 as a query against the
proteomes of T. atroviride,T. virens,T. reesei, and those of
N. crassa, M. grisea, and A. fumigatus revealed respective
orthologues in all fungi tested. Whereas in T. atroviride
three proteins were identified (Table 1), T. reesei and
T. virens as well as the other ascomycetes possess two
members each. All putative Trichoderma GPCRs identified
this way have a DUF300 domain (domain of unknown
function, pfam03619). Such a domain is also present in e.g.
the class A GPCRs Cand9 and Cand10 of Arabidopsis
thaliana [61] and P. sojae GPR11. Topological analysis of
the Trichoderma proteins revealed a heptahelical topology
with three N-terminal transmembrane regions, a long
second cytoplasmic loop followed by four transmembrane



Figure 5 Neighbor-joining tree of PTH11-related proteins identified in the genomes of the three Trichoderma species. The clade
containing proteins with a CFEM domain is marked with a black line. Nodes supported with bootstrap values above 70% (1000 repetitions) are
indicated with a black dot, nodes with bootstrap values between 50 -70% are indicated with a grey dot, bootstrap values less than 50%
were removed.
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regions and a long intracellular loop at the C-terminus. As
these putative GPCRs represented a separate clade in the
phylogenetic analysis (Figure 1), they were assigned to a
new class (class XIII, Table 1) thereby extending the classi-
fication system of fungal GPCRs to 14 classes.
Conclusions
A thorough examination of the genomes of the two
mycoparasites T. atroviride and T. virens and the sapro-
phyte T. reesei for putative GPCRs revealed for most
classes a high conservation of their number and struc-
ture within this genus. On the other hand, remarkable
differences in individual classes were found among the
three Trichoderma species and among Trichoderma and
other filamentous fungi. Whereas for class I to VII
members, orthologous triplets with similar length and
sequence are present in the genomes of the three
Trichoderma species and their number is also similar to
other fungi, the PAQR family has expanded especially in
T. atroviride. Considering the identification of mem-
bers of classes X, XI, and XII and proteins similar to
the P. sojae GPR11 receptor in Trichoderma, the
presented 14 classes now define the most comprehen-
sive classification system for GPCR-like proteins of
fungi. The huge diversity of GPCRs in Trichoderma spp.
and especially in the mycoparasites is likely to reflect the
capability of these fungi to establish various ecological
niches and interactions with other organisms.
It is worth mentioning that with the exception of few

members, the proteins identified as putative GPCRs in
this study have only been characterized in silico. Taking
into account that only three α, one β and one γ subunit of
heterotrimeric G proteins are encoded in the Trichoderma
genomes which face more than 55 GPCRs, studying the
signaling output and identifying the respective intracel-
lular interaction partners of those receptors will provide
interesting insights on how these fungi adapt to their
different lifestyles.
Methods
Identification of GPCR-encoding genes of Trichoderma
atroviride and Trichoderma virens
Version 2 of the T. atroviride genome database [57]
comprises 11,863 gene models on 29 scaffolds; version 2
of the T. virens genomic sequence [58] comprises 12,427
gene models on 93 scaffolds. For the homology-based
search of GPCR-like proteins from T. atroviride and
T. virens, the genomic sequences and deduced proteomes
of the following fungi were used: Trichoderma reesei [59]
Aspergillus nidulans, Aspergillus fumigatus, Aspergillus
oryzae [62], Neurospora crassa [63], Magnaporthe grisea
[64], Podospora anserine [65], Chaetomium globosum [66],
Fusarium graminearum [67], and Nectria haematococca
[68]. An e-value limit of 1e-09 was applied.
To identify putative GPCRs within the T. atroviride

and T. virens proteomes that lack significant sequence
similarity to known GPCR-like proteins and therefore
may escape detection by homology search, a more sensi-
tive database searching using hidden Markov models
(HMM) was performed using the program HMMER
(http://hmmer.janelia.org/) [69].
All obtained predicted proteins were analyzed with the

TMHMM, ConPred II and HMMTOP algorithms
[70-72] to test for the typical 7-transmembrane domain
topology. For those few proteins exhibiting less than
seven transmembrane domains, the respective encoding
gene and flanking regions were retrieved from the gen-
ome database and examined manually. Wrongly pre-
dicted intron-exon boundaries were mainly found and
manually corrected resulting in the detection of the
missing transmembrane domains.
Protein alignments and phylogenetic analysis
The classification system of Lafon et al. [1], which clas-
sifies fungal GPCRs into nine classes according to their
sequence similarity, was applied to all detected putative
GPCRs of Trichoderma. In addition, members of the
three additional classes identified in Verticillium spp.
[36], and the GPR11 protein of Phytophtora sojae [35]
were used to identify and classify respective members of
T. atroviride, T. virens and T. reesei. Multiple sequence
alignments of the identified putative GPCR-like proteins
and phylogenetic trees with a neighbor-joining approach
were generated using ClustalX [73]. A bootstrap with
1000 repetitions was included.
Cultivations and RT-qPCR analysis
T. atroviride strain P1 (ATCC 74058; teleomorph
Hypocrea atroviridis), T. virens strain IMI 206040
(teleomorph Hypocrea virens), and T. reesei strain QM6a
(ATCC13631; teleomorph Hypocrea jecorina) were used
in this study. The fungi were cultivated at 28°C on either
complete medium (PDA, PDB) or minimal medium
(MM, containing [g/l]: MgSO4 · 7H2O 1, KH2PO4 10,
(NH4)2SO4 6, tri-sodium citrate 3, FeSO4 · 7H2O 0.005,
ZnSO4 · 2H2O 0.0014, CoCl2 · 6H2O 0.002, MnSO4 ·
6H2O 0.0017, glucose 10) on plates and in liquid culture,
respectively. Plate confrontation assays were performed
by cultivating Trichoderma together with Rhizoctonia
solani on PDA plates covered with a cellophane mem-
brane at 28°C. After direct contact between the two
fungi, mycelium of Trichoderma was harvested from the
confrontation zone. For RNA isolation, 30 mg fungal
mycelium was grinded in liquid nitrogen and RNA iso-
lated using the peqGOLD TriFast Solution (PeqLab,

http://hmmer.janelia.org/
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Erlangen, Germany) according to the manufacturer´s
instructions.
For cDNA synthesis the Revert Aid H Minus First Strand

cDNA Synthesis Kit (Fermentas, Vilnius, Lithuania) was
used according to the manufacturer´s instructions with a
combination of an oligo(dT)18 and a random hexamer pri-
mer. The sequences for the respective primer pairs for
cDNA amplification of the reference gene sar1 and the
genes encoding the putative receptors of class VIII identi-
fied in the Trichoderma genomes are given in Additional
file 3. Transcript quantification was performed with the
following PCR program (initial denaturation for 120 s at
95°C, 50 cycles with 95°C for 20 s, 60°C for 20 s and 72°C
for 20 s) on an Eppendorf (Hamburg, Germany) realplex2S
Mastercycler using the IQ SYBR Green Supermix
(Bio-Rad, Hercules, CA) and 25 μl assays with stand-
ard MgCl2 concentration (3 mM) and with final pri-
mer concentrations of 100 nM each. All assays were
carried out in 96-well plates covered with optical tape.
PCR efficiency was determined from a single tube re-
action set-up as described [74] and expression ratio
was calculated according to Pfaffl [75]. All samples
were analyzed in three independent experiments with
three replicates in each run. Statistical analysis was
done by relative expression analysis with REST soft-
ware using the Pair Wise Fixed Reallocation Random-
isation Test [76].
Additional files

Additional file 1: Cladogram of the phylogenetic relationship of
putative GPCRs of classes I to IX of A. nidulans and their
Trichoderma orthologues. The Figure shows the phylogenetic
relationship of the newly identified putative GPCRs of classes I to IX of T.
atroviride, T. virens, and T. reesei with their orthologues previously
identified in A. nidulans [1]. The tree was generated using the CLUSTAL X
alignment.

Additional file 2: PTH11-like GPCRs of T. atroviride, T. virens, and
T. reesei. The table gives the protein IDs of PTH11-like GPCRs identified
in the genomes of the three Trichoderma species. The proteins are
arranged according to the phylogenetic analysis (Figure 5). * Proteins
containing a CFEM domain.

Additional file 3: Primer pairs used for transcript quantification of
class VIII members.
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