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Abstract

Background: Important biological processes require selective and orderly protein-protein interactions at every level
of the signalling cascades. G proteins are a family of heterotrimeric GTPases that effect eukaryotic signal
transduction through the coupling of cell surface receptors to cytoplasmic effector proteins. They have been
associated with growth and pathogenicity in many fungi through gene knock-out studies. In Sporothrix schenckii, a
pathogenic, dimorphic fungus, we previously identified a pertussis sensitive G alpha subunit, SSG-1. In this work we
inquire into its interactions with other proteins.

Results: Using the yeast two-hybrid technique, we identified protein-protein interactions between SSG-1 and other
important cellular proteins. The interactions were corroborated using co-immuneprecipitation. Using these
techniques we identified a Fe/Mn superoxide dismutase (SOD), a glyceraldehyde-3-P dehydrogenase (GAPDH) and
two ion transport proteins, a siderophore-iron transporter belonging to the Major Facilitator Superfamily (MFS) and
a divalent-cation transporter of the Nramp (natural resistance-associated macrophage protein) family as interacting
with SSG-1. The cDNA’s encoding these proteins were sequenced and bioinformatic macromolecular sequence
analyses were used for the correct classification and functional assignment.

Conclusions: This study constitutes the first report of the interaction of a fungal G alpha inhibitory subunit with SOD,
GAPDH, and two metal ion transporters. The identification of such important proteins as partners of a G alpha subunit in
this fungus suggests possible mechanisms through which this G protein can affect pathogenicity and survival under
conditions of environmental stress or inside the human host. The two ion transporters identified in this work are the first
to be reported in S. schenckii and the first time they are identified as interacting with fungal G protein alpha subunits.
The association of G protein alpha subunits to transport molecules reinforces the role of G proteins in the response to
environmental signals and also highlights the involvement of fungal G protein alpha subunits in nutrient sensing in
S. schenckii. These interactions suggest that these permeases could function as transceptors for G proteins in fungi.

Background
Sporothrix schenckii is a human and animal pathogen
belonging to the family Ophiostomataceae [1]. While
this family of fungi includes important plant pathogens,
S. schenckii is a human pathogen commonly found in

soil or vegetation with infections commonly seen in
agricultural workers and gardeners. It is the etiologic
agent of a disease known as sporotrichosis, an important
cutaneous lymphatic mycosis with a worldwide distribu-
tion [2-4]. S. schenckii is dimorphic and can grow either
in a mycelial form with long branching filaments at 25°
C or in the form of spherical ovoid yeast cells which are
typically found in animal hosts [1].
In nature or in animal hosts, fungal cells must respond

efficiently to changing environmental conditions in order
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to survive. Cell membrane receptors play an essential role
in the response of the fungal cell to the environment.
Information is conveyed to the interior of the cell follow-
ing the binding of ligands to receptors. The heterotri-
meric G proteins constitute a family of GTPases that
transmit messages received at cell surface receptors
(GPCR) to cytoplasmic effector proteins inside the cell
[5]. Heterotrimeric G proteins are made up of three sub-
units: the GTP-binding a subunit and the tightly asso-
ciated complex of b and g subunits. Once a ligand binds
to a receptor, the heterotrimeric G proteins are activated,
initiating the exchange of GDP to GTP in the Ga subunit
causing a conformational change that results in the disso-
ciation of the heterotrimer into Ga-GTP and Gbg subu-
nits. The Ga-GTP and/or Gbg subunits interact with
effector proteins such as enzymes or ion channels, result-
ing in the regulation of a broad range of cellular pro-
cesses and pathways [6-10]. Many genes encoding
heterotrimeric G protein subunits have been described in
fungi. GPA-like G protein a subunits are present in: Sac-
charomyces cerevisiae [11-13], Cryptococcus neoformans
[14] and Candida albicans [15,16], and in the plant
pathogens Ustilago maydis [17], among others. Ga subu-
nits similar to the traditional Ga class rather than to the
GPA group have been described in the filamentous fungi
and plant pathogens such as Aspergillus nidulans [18],
Neurospora crassa [19-21], Cryphonectria parasitica
[22,23], and Magnaporthe grisea [24].
In S. schenckii, we reported the first member of the

Gai family in a human pathogenic fungus [25]. The
cDNA of ssg-1 encoded a 353 amino acids pertussis
toxin sensitive Gai subunit of 41 kDa. Subsequently, we
identified and sequenced two new G protein alpha subu-
nit genes in this fungus encoding SSG-2 [26] and SSG-3
(mRNA GenBank accession no. AY957584). The ssg-2
cDNA encoded a protein with 355 amino acids and a
molecular weight of 40.90 kDa. The ssg-3 cDNA
encoded a protein with 354 amino acids and a predicted
molecular weight of 40.87 kDa. These three proteins
have the consensus sequences that identify Ga subunits,
which are the five highly conserved domains that form
the guanine nucleotide binding site that define the Ga
protein superfamily [27].
Ga subunits have been implicated in the regulation of

fungal development and pathogenicity mostly based on the
evidence derived from gene knock-out studies. In N. crassa,
deletion of the Gai homologue gna-1, results in impaired
proliferation, defective macroconidiation, and production of
abnormal female reproductive structures. A second Ga
subunit gene in N. crassa, gna-2, has overlapping functions
with gna-1, as demonstrated by a double deletion assay
[20]. The third Ga subunit gene in N. crassa is gna-3.
Mutants of gna-3 share several phenotypes with the

adenylyl cyclase mutants such as premature conidiation,
short aerial hyphae and reduced ascospore viability [21].
Strains of the chestnut blight fungus C. parasitica,

harboring RNA viruses exhibit reduced levels of viru-
lence, which were attributed to lower levels of the Gai
subunit CPG-1 [22]. Disruption of cpg-1 affects hyphal
growth, conidiation, female fertility, and virulence. Dis-
ruption of a second G protein a subunit gene, cpg-2,
resulted in a slight reduction of growth rate and asexual
sporulation, but no significant reduction in virulence
[28]. Further testing of G protein subunits in C. parasi-
tica revealed a third Ga homologue, CPG-3, but its
functions have not been determined [23].
M. grisea, the fungal pathogen that causes rice blast

disease, has three Ga subunits [24]. Disruption of the
Gai subunit gene, magB, reduces vegetative growth,
conidiation, appressorium formation, pathogenicity, and
blocks sexual development [29]. Also, the targeted dele-
tion of a regulator of G protein signalling, MoRIC8,
which interacts with the pertussis sensitive MagB alpha
subunit, rendered the fungus non-pathogenic [30]. Dis-
ruption of the two other Ga subunit genes, magA and
magC, affected latter stages of sexual development [24].
In U. maydis, which causes corn smut disease, four

genes encoding Ga subunits, gpa1 to gpa4, have been
described [17]. The Gpa1, Gpa2, and Gpa3 have homo-
logues in other fungal species, but the Gpa4 is unique
to this fungus. Gpa3 is most closely related to the GPA-
1 of C. neoformans (75% identity), and is required for U.
maydis pathogenicity, and mating [31].
The studies mentioned above are a few examples of

the work done on the role of Ga subunits in the biology
of fungi. Specifically they demonstrate a role for these
subunits in the response to stressful conditions and
pathogenicity. Nevertheless, the actual proteins with
which these Ga subunits interact have not been identi-
fied. Our initial inquiry into the protein-protein interac-
tions involving heterotrimeric G protein alpha subunits
was done using SSG-2 as bait. In this case, we identified
a cytoplasmic phospholipase (cPLA2) homologue inter-
acting with this Ga subunit [26]. This was the first
report of a G protein alpha subunit interacting with a
protein directly related to pathogenicity in fungi. PLA2

was also found to be necessary for the expression of the
dimorphic potential of S. schenckii [26].
In this work, we inquired into the proteins interacting

with the S. schenckii pertussis sensitive G protein alpha
subunit, SSG-1, using the yeast two-hybrid assay. We
identified proteins related to the response of fungi to
stressful conditions and pathogenicity. The identification
of such important proteins as partners of SSG-1 offers
evidence on how this Ga subunit can affect survival of
the fungus in the human or animal host and enhances
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our knowledge of the mechanisms involved in the dis-
ease producing processes of fungi.

Results
More than 60 inserts from colonies growing in quadru-
ple drop out medium (QDO) (SD/-Ade/-His/-Leu/-Trp/
X-a-gal) from two different S. schenckii yeast cDNA
libraries were analyzed for the presence of SSG-1 inter-
acting proteins. Only inserts from colonies that grew in
QDO and were positive for X-a-gal were cloned and
sequenced. Four of these colonies were chosen for
further characterization because the inserts were identi-
fied as encoding proteins related to survival in stressful
conditions and/or pathogenicity in many microorgan-
isms, specifically fungi [32-36]. These inserts encoded
the C-terminal domains of a mitochondrial superoxide
dismutase (SOD), a cation transporter of the Nramp
family, a sidereophore-iron transporter and glyceralde-
hyde-3-P dehydrogenase (GAPDH).

Genetic and bioinformatic characterization of S. schenckii
SOD (SsSOD)
The sequence obtained by PCR from the insert in col-
ony number 21 showed a 463 bp product and a derived
amino acid sequence of 17 amino acids containing part
of an Fe/Mn SOD C-terminal domain. The TAG stop
codon at the end of the coding sequence was followed
by a 387 bp 3’UTR and a 27 bp poly A+ tail. The online
BLAST algorithm [37] matched the sequence to
the C-terminal domain of superoxide dismutase from
Aspergillus fumigatus (GenBank no. EAL88576.1).
The sequencing strategy used to complete the coding

sequence of the sssod cDNA is shown in Figure 1A. The
cDNA and coding sequence were completed (GenBank
accession numbers: DQ489720 and ABF46644.3) as
shown in Figure 1B using 5’RACE. This figure shows a
cDNA of 1479 bp with an ORF of 972 bp encoding a 324
amino acid protein with a calculated molecular weight of
35.44 kDa. The PANTHER Classification System [38]
identified this protein as a member of the SOD2 family
(PTHR11404:SF2) (residues 26-319) with an extremely
significant E value of 2.4 e-66. Figure 1B does not show
the characteristic histidine residues that are part of the
metal ion binding site in human SOD2 (GenBank acces-
sion no. NP_000627), H26 and H73. In S. schenckii, H73
is substituted by D125. Another metal binding residue,
present in human SOD2, D159 is absent from this pro-
tein and its homologues (Figure 1 and also Additional
File 1). In S. schenckii, it is substituted by S275 and N in
all other fungal homologues (Additional File1). Another
metal binding residue, H163 in human SOD2 is present
in S. schenckii as H279. Residues that are present in 100%
of the SODs and the GXGX signature (present as GPGF)
are shadowed in yellow in Figure 1B.

A mitochondrial targeting sequence was identified
using PSORT II [39], with a putative cleavage site at
amino acid 53 (SRH/DA) and a probability of it being
mitochondrial of 52.5% vs. a probability of it being cyto-
plasmic of 21.7%. PSORT II [39] also identified an endo-
plasmic reticulum (ER) membrane modified retention
signal at the N-terminus (FRPR) and the C-terminus
(QKLK). The TargetP 1.1 Server [40] predicted a shorter
mitochondrial signal peptide with a length of 45 amino
acids. This signal peptide length is more in accordance
with the structure of other members of the SOD2
family.
A multiple sequence alignment of the derived amino

acid sequence of SsSOD to other fungal SOD homolo-
gues and the human SOD2 is included in Additional
File 1. BLAST search for the deduced amino acid
sequence identified this protein as approximately 40%
identical to a Fe/Mn SODs of fungi such as: Chaeto-
mium globosum, Gibberella zeae and M. grisea, among
others (Additional File 2, Supplemental Table S1).

Genetic and bioinformatic characterization of S. schenckii
Nramp (SsNramp)
The insert in colony number 156 was identified as the C-
terminal domain of an Nramp (Smf1/Smf2) homologue
after sequencing. This insert was preliminarily identified
as a sequence that matched with Nramp transporters
from A. fumigatus (GenBank no. XP_751729.2) using the
online BLAST algorithm [37].
The coding sequence of the ssnramp cDNA was com-

pleted using 5’ RACE as shown in Figure 2A (GenBank
accession numbers: GQ411366.1 and ACV31218.1). Fig-
ure 2B shows the 2243 bp cDNA with an ORF of 1989
bp encoding a 663 amino acid protein with a calculated
molecular weight of 71.41 kDa. This figure also shows
the sequence of the original insert isolated from col-
ony156 shadowed in gray that consisted of 498 bp ORF
followed by a 185 bp 3’UTR and 19 bp poly A+ tail.
The invariant residues are highlighted in yellow in Fig-

ure 2B. These include residues: D151 (86 in mouse
Nramp2), E219 (154 in mouse Nramp2), H339 (267 in
mouse Nramp2) and R524 (416 in mouse Nramp2), and
the highly conserved residues: D226 (161 in mouse
Nramp2) and D256 (192 in mouse Nramp2). G191 is
also conserved in all Nramp homologues and in
SsNramp it corresponds to G249. The amino acid
sequence, DPGN, constitutes an Nramp invariant motif
and is present in SsNramp (amino acids 151-154) and
its homologues. This motif is located between TM helix
1 and TM helix 2 and is extra-cytoplasmic as expected.
Using the PANTHER Classification System [38] to

analyze the deduced amino acid sequence, we identified
this protein as a metal transporter of the Nramp family
(PTHR11706:SF11) with an E value of 1.5 e-245. Blocks
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B. 
     1 - actcacgcgacaccgcatcccgacgacgaccggcggccactgcacaccccgtgacagcgt - 60  
    61 - caattgatcgacatctactcgcgtcctgcaccATGTTCCGTCCGAGGTTACGGGCGCCGG - 120  
     1 -                                 M  F  R  P  R  L  R  A  P  A - 10  
   121 - CCGCGCTCGGCGGTAACATCACCATCAGCAGCAGCTCTGGAGCATCCATGTTGGCGCGGC - 180  
    11 -   A  L  G  G  N  I  T  I  S  S  S  S  G  A  S  M  L  A  R  R - 30  
   181 - GGCCGGCACAGAGCGCGCTGGCGCCAATAGCACAGGCCCGCCGCAGCATACACCACCTGC - 240  
    31 -   P  A  Q  S  A  L  A  P  I  A  Q  A  R  R  S  I  H  H  L  P - 50  
   241 - CCGTGTCGCGCCACGATGCCCGTGTTGGCGTGCCCAACCTGCTGTCCGCCGAGGGCTTCG - 300  
    51 -   V  S  R  H  D  A  R  V  G  V  P  N  L  L  S  A  E  G  F  D - 70  
   301 - ACCTCGCCTGGACGCAGCACATGACCCTGATGCTCAACCGCCTGAACCAGCTGGCCGCAG - 360  
    71 -   L  A  W  T  Q  H  M  T  L  M  L  N  R  L  N  Q  L  A  A  G - 90  
   361 - GCACCACATACGAGGACCGCGAGCTCAAGAGCATCATCATCCGGACGGCCGGCAACCAGA - 420  
    91 -   T  T  Y  E  D  R  E  L  K  S  I  I  I  R  T  A  G  N  Q  S - 110  
   421 - GCAGCGCGGCCATCTTCAACTACGCCAGCATGGCCCACAACACCGACTTCTTCTTCAAGC - 480  
   111 -   S  A  A  I  F  N  Y  A  S  M  A  H  N  T  D  F  F  F  K  H - 130  
   481 - ACATCATCCCCGCGTCCGCATCGCCGGCCGAGGCCGCGGCCGCACGCGAGATCCCCGCGA - 540  
   131 -   I  I  P  A  S  A  S  P  A  E  A  A  A  A  R  E  I  P  A  T - 150  
   541 - CGCTGCGCCTGGCCATCGAGGACAACTTTGGCAGCGTCGAGACGCTGCGCCGCGAGTTTC - 600  
   151 -   L  R  L  A  I  E  D  N  F  G  S  V  E  T  L  R  R  E  F  L - 170  
   601 - TGGCCATTGCCCAGGGCATGTTCGGCCCCGGCTTCATCTGGCTCGTCAAGGCCAACGGCC - 660  
   171 -   A  I  A  Q  G  M  F  G  P  G  F  I  W  L  V  K  A  N  G  L - 190  
   661 - TCAACCAGATGGGCCGCGGCGGCGACAGCCTGCGCCTGCTGAATACGTACCACGCCGGCT - 720  
   191 -   N  Q  M  G  R  G  G  D  S  L  R  L  L  N  T  Y  H  A  G  S - 210  
   721 - CGCCGTACCCGGGCGCGCACTACCGCCGGCAGATGACGGACATGAACACCGTGGGCGCCG - 780  
   211 -   P  Y  P  G  A  H  Y  R  R  Q  M  T  D  M  N  T  V  G  A  E - 230  
   781 - AGGTCGCCGAGAACGAAGACGACCCGGCCGAGAACTGGCTCAAGCGGCAGGCGGTCGCCG - 840  
   231 -   V  A  E  N  E  D  D  P  A  E  N  W  L  K  R  Q  A  V  A  A - 250  
   841 - CGGACCCGAGCCTGTGGAAGCAGCCCGACCGGCGCCCGCCGGGCGGCGTCGAGGCCATTC - 900  
   251 -   D  P  S  L  W  K  Q  P  D  R  R  P  P  G  G  V  E  A  I  P - 270  
   901 - CGCTGCTCTGTGTGAGCACGTGGGAGCACGTGTGGCTGCGGGACTACGGGCTGGGCGCGG - 960  
   271 -   L  L  C  V  S  T  W  E  H  V  W  L  R  D  Y  G  L  G  A  D - 290  
   961 - ACGGCTACGGCGGCAAGGCGGCGTTTGTCGAGGCCTGGTGGAACGCGATTGACTGGGAGG - 1020  
   291 -   G  Y  G  G  K  A  A  F  V  E  A  W  W  N  A  I  D  W  E  A - 310  
  1021 - CCGTGGCGAGCCTGGCCAACCTGAACCGGCAGAAGTTGAAGACAtaggacggacggcgcg - 1080  
   311 -   V  A  S  L  A  N  L  N  R  Q  K  L  K  T  *                - 324  
  1081 - aaggacgacgaagacgacggggacggtgacagccagaagagtggaaaagaaccaaaaaca - 1140  
  1141 - gacgaggcggagacaccatctggcgttgtatatggtcatactatattttgtacgatagac - 1200  
  1201 - aaaaagagaacaaaacatcccagcgtcagttgctttaggtgtgctcaagcctaggctcag - 1260  
  1261 - taggttgcgctgcgacataacgtctcacaatattctcataacggatgaagtcatgtgatt - 1320  
  1321 - gccttaggttgcagtctgggacggcactttttataggaactgctttgtaaactacgcatt - 1380  
  1381 - tgggtgacagtcacttgtgcatctttgcgagcttgtttaaagtatatattactcaaaata - 1440  
  1441 - ccgtcccatgacaaaaaaaaaaaaaaaaaaaaaaaaaaa                      - 1479  
  

ATG (93)   TAG (1064) 

  5' RACE 212 bp 
           PCR 643 bp + intron 

RTPCR  684 bp   

5' RACE 240 bp 

5' RACE 180 bp 

    1479 bp 

RTPCR  315 bp   

yeast two hybrid clone 440 bp

Figure 1 cDNA and derived amino acid sequences of the S. schenckii sssod gene. Figure 1A shows the sequencing strategy used for the
sssod gene. The size and location in the gene of the various fragments obtained from PCR and RACE are shown. Figure 1B shows the cDNA
and derived amino acid sequence of the sssod gene. Non-coding regions are given in lower case letters, coding regions and amino acids are
given in upper case letters. The conserved residues are shadowed in yellow. The original sequence isolated using the yeast two-hybrid assay is
shadowed in gray.
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   1 – cccaatgtggaattcgccctttgttcactacttgggctgtcctcatcATGAACCGCCCGTCACGCACCGACGAGCCGCCGCGCAGCGATG - 90  
   1 -                                                M  N  R  P  S  R  T  D  E  P  P  R  S  D  G - 15  
  91 - GCCTGAACCAAAGCCCCAACGAGCTGTCGAATGACCTCACCACCAACGAGGACCTTAACGGCACGGCCAATTCCCGCCGGTTCAGACGCT - 180  
  16 -   L  N  Q  S  P  N  E  L  S  N  D  L  T  T  N  E  D  L  N  G  T  A  N  S  R  R  F  R  R  S - 45  
 181 - CCGTCTCCCCTCACGACCTACAGGCCGGTCTTCCTGGAGAAACAAATCGATTCGGGATCGCTGTCGACAATCCAGACGACCCTGGCTACC - 270  
  46 -   V  S  P  H  D  L  Q  A  G  L  P  G  E  T  N  R  F  G  I  A  V  D  N  P  D  D  P  G  Y  Q - 75  
 271 - AGAAGACAGCCGCTGCGGGGCCGATTACCACCCGGGTCGACTCCGTGGCCTCGGCGCGACGGCCGAGCCAAAGCAGTGTTCCGCCCAACA - 360  
  76 -   K  T  A  A  A  G  P  I  T  T  R  V  D  S  V  A  S  A  R  R  P  S  Q  S  S  V  P  P  N  S - 105  
 361 - GCGACGGTGGGGCACTCCAAGCGGGTGGACATGGCGACGGAAACCGGCGCCAGGGTCCCTTCTGGAAGGTCGTCTCTAGTCTTAGGACGG - 450  
 106 -   D  G  G  A  L  Q  A  G  G  H  G  D  G  N  R  R  Q  G  P  F  W  K  V  V  S  S  L  R  T  A - 135  
 451 - CTATTCGATTTGTCGGACCGGGCTTCATCGTGTCTGTCGCATACATCGACCCCGGCAACTACTCAACTGACATCGCGGCTGGTGCTTCGT - 540  
 136 -   I  R  F  V  G  P  G  F  I  V  S  V  A  Y  I  D  P  G  N  Y  S  T  D  I  A  A  G  A  S  Y - 165  
 541 - ACCGTTACAAGCTGCTTTTCGTCGTGCTGATGAGCAACTGCTTTGCCATTTACCTGCAGAGCATGTGCATCAAGCTGGGGACCGTCAGCG - 630  
 166 -   R  Y  K  L  L  F  V  V  L  M  S  N  C  F  A  I  Y  L  Q  S  M  C  I  K  L  G  T  V  S  G - 195  
 631 - GCCGCAACCTTGCTGCCGCCTGCCGCGCATTCCTTCCGCGCTGGCTCAATATTAGCCTGTACATCCTTGCCGAAGTCGCCATCATCGCCA - 720  
 196 -   R  N  L  A  A  A  C  R  A  F  L  P  R  W  L  N  I  S  L  Y  I  L  A  E  V  A  I  I  A  T - 225  
 721 - CCGACATCGCTGAGGTCATCGGTACGGCCATTGCTCTGAACCTGTTGCAGCCCAAGATCCCGCTCGTGGCCGGATGCACCATCTCGATTG - 810  
 226 -   D  I  A  E  V  I  G  T  A  I  A  L  N  L  L  Q  P  K  I  P  L  V  A  G  C  T  I  S  I  V - 255  
 811 - TCGATGTGTTCATTGTGCTCCTCTTCTGCAAACCTGAAAATGGCACACGCAGCGGCTTGCGCGCCTTTGAGCTCATTGTCGTCCCACTGG - 900  
 256 -   D  V  F  I  V  L  L  F  C  K  P  E  N  G  T  R  S  G  L  R  A  F  E  L  I  V  V  P  L  V - 285  
 901 - TGCTCGGCGTCGTCATTTGCTTCTGTATCCAGCTGTCCATGATTGACCACACCACAACCAGTGTCGGCGAGGTGTTTCGCGGCTATTTGC - 990  
 286 -   L  G  V  V  I  C  F  C  I  Q  L  S  M  I  D  H  T  T  T  S  V  G  E  V  F  R  G  Y  L  P - 315  
 991 - CATCGGCAGCCGTCATTGAGCAGCAGGGCCTGTACCAGGCCTGCGGCATCTTGGGTGCCACGGTGATGCCTCACAGCCTGTATCTGGGCT - 1080 
 316 -   S  A  A  V  I  E  Q  Q  G  L  Y  Q  A  C  G  I  L  G  A  T  V  M  P  H  S  L  Y  L  G  S - 345  
1081 - CGGGCATTGTGCAGGCACGGCTGCGCGAGTACGACGAGAAGTACGGCCTCCTTCCACCCGAAGAGGACCAGCAACCGCAAATGGTCGAGC - 1170 
 346 -   G  I  V  Q  A  R  L  R  E  Y  D  E  K  Y  G  L  L  P  P  E  E  D  Q  Q  P  Q  M  V  E  R - 375  
1171 - GGGAGGCTGATGACGAAGCATCGGACAACGACAACGGCCGCCATGGCAACCGCACCCTCTCATCCCTTCGGCAGCAGTTCTACCTTGCCA - 1260 
 376 -   E  A  D  D  E  A  S  D  N  D  N  G  R  H  G  N  R  T  L  S  S  L  R  Q  Q  F  Y  L  A  K - 405  
1261 - AGAAGCACACCGAAGACCGGTCCCAAACGCACACGTACATCCCCTCGCTGCGGGCCATCCGCCACTGCTACAAGTACTCGGTTGTTGAGG - 1350 
 406 -   K  H  T  E  D  R  S  Q  T  H  T  Y  I  P  S  L  R  A  I  R  H  C  Y  K  Y  S  V  V  E  V - 435  
1351 - TCGCCGTCTCGCTCTTTACCTATGCCCTCTTTGTCAACTCGGCCATTCTCATCGTGGCTGGTGCTGCGCTCTACCAGAACACCATCGCCA - 1440 
 436 -   A  V  S  L  F  T  Y  A  L  F  V  N  S  A  I  L  I  V  A  G  A  A  L  Y  Q  N  T  I  A  M - 465  
1441 - TGGGTGCCGACATCTTTGCTGTCCACGAACTCCTGTCGAATACGCTGTCCAAGGCGGCTGGTTTTGTCTTTGCGCTTGCCCTCTTGTTGT - 1530 
 466 -   G  A  D  I  F  A  V  H  E  L  L  S  N  T  L  S  K  A  A  G  F  V  F  A  L  A  L  L  L  S - 495  
1531 - CAGGCCTCTCGGCCGGTGTCGTCTGCACCGTGGCTGGCCAGATGGTCTGCGAAGGCGCCTTGCAGTGGACGATTGCGCCCTGGCTACGGC - 1620 
 496 -   G  L  S  A  G  V  V  C  T  V  A  G  Q  M  V  C  E  G  A  L  Q  W  T  I  A  P  W  L  R  R - 525  
1621 - GCCTGCTGACGCGGTCCATTAGCATCCTGCCGAGCATCGTCATCGCGGGTGCTGTTGGGCGCGACGGGCTGGACGCCGCTCTCAATGCCT - 1710 
 526 -   L  L  T  R  S  I  S  I  L  P  S  I  V  I  A  G  A  V  G  R  D  G  L  D  A  A  L  N  A  S - 555  
1711 - CGCAGGTTGTGCTGAGCATTGTGCTTCCGTTTGTCACAGCACCTTTGCTTTGGTTCACATCGTTTGACAAGTACATGACCGTGCAGCCCG - 1800 
 556 -   Q  V  V  L  S  I  V  L  P  F  V  T  A  P  L  L  W  F  T  S  F  D  K  Y  M  T  V  Q  P  G - 585  
1801 - GTGCCGCCCGCTTTGCGCTGCGTGTGCGGTACCGCAAGACAGCGAGCAGTACGAGCGACATTGGCAATGTAAACCAAAACCAAGGCACTC - 1890 
 586 -   A  A  R  F  A  L  R  V  R  Y  R  K  T  A  S  S  T  S  D  I  G  N  V  N  Q  N  Q  G  T  P - 615  
1891 - CCGACGGCGAGGAGGGTGACCCGCGTGGCAACGAGGCCCCTGCCAAGATGGCCAACTCGTGGCCCACGGCCATCCTGGGTCTTGCGATCT - 1980 
 616 -   D  G  E  E  G  D  P  R  G  N  E  A  P  A  K  M  A  N  S  W  P  T  A  I  L  G  L  A  I  W - 645  
1981 - GGATATTCATCACGGTTTTGAACATTGCGAATCTGGTTCTTCTCGGCAAGGGCAACtaacacaagcaagtcaaaatcatacgctggacat - 2070 
 646 -   I  F  I  T  V  L  N  I  A  N  L  V  L  L  G  K  G  N  *                                  - 675  
2071 - aaaacgatgctgccgttttggatatatggacattttaagaagaaccctacatgggaaatgccagtacatgatgttttttttgtcaactta - 2160 
2161 - ctggacttggccccaaaaatatttgcagtgttcatagaataaaataaaacatcagtattaggccaaaaaaaaaaaaaaaaaaa        - 2243 

              
   ATG (32)                                                                                                                   TAA(2002) 

yeast two hybrid clone, 705 bp 

5’ RACE, 487 bp 

5’ RACE, 537 bp 
5’ RACE, 606 bp 

5’ RACE, 399 bp 

2192 bp 

A. 
 
 
 
 
 
 
 
 
 
 
 
 
B. 

Figure 2 cDNA and derived amino acid sequences of the S. schenckii ssnramp gene. Figure 2A shows the sequencing strategy used for the
ssnramp gene. The size and location in the gene of the various fragments obtained from RACE are shown. Figure 2B shows the cDNA and
derived amino acid sequence of the ssnramp gene. Non-coding regions are given in lower case letters, coding regions and amino acids are
given in upper case letters. The conserved residues are shadowed in yellow. The original sequence isolated using the yeast two-hybrid assay is
shadowed in gray.
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server analysis showed natural resistance-associated
macrophage protein signature from amino acids 214 to
575. PSORT II analysis [39] of this Nramp homologue
suggests that it resides in the plasma membrane with
65.2%, plasma membrane vs. 30.4% endoplasmic reticu-
lum. Using the TMHMM Server we found the 11 trans-
membrane helices that characterize this transporter
family as shown in Figure 3.
A multiple sequence alignment of the derived amino

acid sequence SsNramp and other fungal homologues is
included as Additional File 3. The percent identity of
SsNramp to that of other fungi such N. crassa, S. cerevi-
siae and Coccidioides posadasii among others, is in the
range of 47 to 56% (Additional File 2, Supplemental
Table S2).

Genetic and bioinformatic characterization of S. schenckii
Sit (SsSit)
The online BLAST algorithm matched the sequence
obtained from the insert in colony number 435 with a
putative siderophore transporter from A. fumigatus
(GenBank accession number EAL86419.1) [37]. This
insert contained 370 bp and encoded 98 amino acids of

a siderophore-iron transporter C-terminal domain fol-
lowed by a 45 bp 3’UTR.
The sequencing strategy used for obtaining the cDNA

coding sequence of the sssit gene homologue was based
on 5’RACE, shown in Figure 4A. This figure shows a
cDNA of 2194 bp with an ORF of 1914 bp encoding a
638 amino acid protein with a calculated molecular
weight of 69.71 kDa (GenBank accession numbers:
GQ411365 and ACV31217). The PANTHER Classifica-
tion System [38] identified this protein as a siderophore-
iron transporter 3 of the Major Facilitator Superfamily
(PTHR24003:SF129) (residues 109-529) with an extre-
mely significant
E value of 2.1e-78 [38]. Using the TMHMM Server we

found 13 transmembrane helices as shown in Figure 5.
The number and localization of the transmembrane
helices fluctuated between 11 and 13 helices, depending
on the transmembrane helix prediction server used.
Further studies will be needed to address these discre-
pancies, therefore, the predicted membrane topology
must be considered to be speculative. All prediction ser-
vers coincide in the identification of the 11 TM helices
shown in Additional File 4 containing the multiple
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Figure 3 Transmembrane domain analysis of SsNramp. Figure 3 shows the transmembrane domain analysis of SsNramp. This figure shows
the 11 predicted transmembrane helices in SsNramp that characterize this transporter family. Predictions were made with TMHMM and results
were visualized with TOPO2.
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    1 - ctgaaatcgttcacttatttattcctcccgtgccgctcacgtctatttctttttgaagctactctacatcatctccttctacatgtggtc - 90  
   91 - atccagctgaaacttgttcacaatatcctagcctccaagcccccagactttggtcgattcaccgttttctttctcaattcattcaataca - 180  
  181 - gcataacgccactgatcaagaaacATGTCTACACATCCCGCAGATGATCAGCCTATAAGCATGGTTCCCATGAGCATGCCATCCACGGAA - 270  
    1 -                         M  S  T  H  P  A  D  D  Q  P  I  S  M  V  P  M  S  M  P  S  T  E   - 22  
  271 - TCTCCTAAAGGGCACGAGTTGTTCGACATCTCGGAGAAGAGAGAAGCGGAAGCGACCGTCACCGATACTCAACACGACACCGGAGTTAGT - 360  
   23 - S  P  K  G  H  E  L  F  D  I  S  E  K  R  E  A  E  A  T  V  T  D  T  Q  H  D  T  G  V  S   - 52  
  361 - CGTGTTGAGGCCTTTAACAAGGTGCTGTACCGGTCCGGCAAGAAGGGCAAGGTCCTGCTGTGGCTGCTCGGCATTTCCATCTTCCTCACC - 450 
   53 - R  V  E  A  F  N  K  V  L  Y  R  S  G  K  K  G  K  V  L  L  W  L  L  G  I  S  I  F  L  T   - 82  
  451 - ATGTTTGTCTATGCACTGGACCAAGGCATCACGTCTACCATATTCAGCACGCTGGCGGCGTCGACCTTTGGGGTTCATAGTCAAATTGGA - 540  
   83 - M  F  V  Y  A  L  D  Q  G  I  T  S  T  I  F  S  T  L  A  A  S  T  F  G  V  H  S  Q  I  G   - 112  
  541 - ACTGTTAGCACTGCCAGCCAGATCATTCGTGCAATCAGCAAGCCATTCATTGGCAAGATCGCCGACATCACCTCGCGGCCTACGACGTAC - 630  
  113 - T  V  S  T  A  S  Q  I  I  R  A  I  S  K  P  F  I  G  K  I  A  D  I  T  S  R  P  T  T  Y   - 142  
  631 - GTCATCATCCTCGTCTTCTACGTCGTGGGTTTTGCTGTCGCTGCCAGTGCCAGTAACTTTGCATCGTACACTGTCGGCGTTTGCTTCACC - 720  
  143 - V  I  I  L  V  F  Y  V  V  G  F  A  V  A  A  S  A  S  N  F  A  S  Y  T  V  G  V  C  F  T   - 172  
  721 - TCCATTGGCAAGTCTGGCCTCGACTTACTTAGCGACATCATTGTCGCCGATCTGACACCATTGGAATGGCGTGGCTTCTTCAGCGCATGT - 810  
  173 - S  I  G  K  S  G  L  D  L  L  S  D  I  I  V  A  D  L  T  P  L  E  W  R  G  F  F  S  A  C   - 202  
  811 - TTATCACTCCCCTTCATTGTCACAGTGCCTGTTAATGGTTTTATTAGCAGTGGCTTCTACGGCAACTGGCGCTGGGGCTTAGGCATGTTT - 900  
  203 - L  S  L  P  F  I  V  T  V  P  V  N  G  F  I  S  S  G  F  Y  G  N  W  R  W  G  L  G  M  F   - 232  
  901 - GCCATTATGGTGCCCGTGCTTCTCATGCCTGCTATCCTGACACTCTACACGATTCAGCGTCGTGGGAAGCAGGCCGGCATGGTCGCAATG - 990  
  233 - A  I  M  V  P  V  L  L  M  P  A  I  L  T  L  Y  T  I  Q  R  R  G  K  Q  A  G  M  V  A  M   - 262  
  991 - GCTGATTCGAAGGATATTCGCACAGGCCGTACCGAAGCATCCACTGGCAGCATCGCATACTGGGCCCATTTGGCGTACCAAGGACTTATC - 1080 
  263 - A  D  S  K  D  I  R  T  G  R  T  E  A  S  T  G  S  I  A  Y  W  A  H  L  A  Y  Q  G  L  I   - 292  
 1081 - GACATTGATATCTTTGGCCTCTTCCTTCTGGGCTTTGCCTTCTCCCTCATCCTCCTGCCTATTACACTAGCTGGTGACGCTAAGAATGGT - 1170 
  293 - D  I  D  I  F  G  L  F  L  L  G  F  A  F  S  L  I  L  L  P  I  T  L  A  G  D  A  K  N  G   - 322  
 1171 - TGGCACAATCCGAGCATGATTGCCATGATCGTGGTTGGCTTCGTCTTTCTCATCTTGTTCGCGCTCTTCGAGTACTTCGTGGCCCGCAAG - 1260 
  323 - W  H  N  P  S  M  I  A  M  I  V  V  G  F  V  F  L  I  L  F  A  L  F  E  Y  F  V  A  R  K   - 352  
 1261 - CCATTGATGACTCGCAACATCTTGAACAACCGCGCTTTCATCGCTGGCGTCATCATCCACACCTTCAACCAGCTTGCATCAGCCGTCCGC - 1350 
  353 - P  L  M  T  R  N  I  L  N  N  R  A  F  I  A  G  V  I  I  H  T  F  N  Q  L  A  S  A  V  R   - 382  
 1351 - AACACCTACTTCTCGTCATACATTCTCAACATCAAACAGTGGACGACGTACCAGTGGACCATTTTCCTCGGCATCACAACTATGGGTCTC - 1440 
  383 - N  T  Y  F  S  S  Y  I  L  N  I  K  Q  W  T  T  Y  Q  W  T  I  F  L  G  I  T  T  M  G  L   - 412  
 1441 - TGTATCGTCGGCCCCTGCGTCGGGTTAATCCACCGTACCACACACCGATACAAAACTGTTATGGTGCTCGGTGCTGCAGCTAAGGTCCTC - 1530 
  413 - C  I  V  G  P  C  V  G  L  I  H  R  T  T  H  R  Y  K  T  V  M  V  L  G  A  A  A  K  V  L   - 442  
 1531 - GGCTACGGTCTGCTGATCCAGGGCAACGGCAACATGACGCAGGACACGGTACGCCTGGTTGCGGCGCAGCTCATATTCTGCCTTTCATCC - 1620 
  443 - G  Y  G  L  L  I  Q  G  N  G  N  M  T  Q  D  T  V  R  L  V  A  A  Q  L  I  F  C  L  S  S   - 472  
 1621 - CTCAACGTTGTTGGTGCCCGTGTGAGTGTGCAGGCATCCGTCCCCCATAAAGATATCGCATCACTGATCTCGATTATTACGTTGTGGTCG - 1710 
  473 - L  N  V  V  G  A  R  V  S  V  Q  A  S  V  P  H  K  D  I  A  S  L  I  S  I  I  T  L  W  S   - 502  
 1711 - ACCTTGGGCTCAAGTGTTGGAAGTGCCGTTGCATCGGCCATCTGGACCAACCAAATGCTTGATCAGATGCGCGTGGAGCTTCCCGGAGTT - 1800 
  503 - T  L  G  S  S  V  G  S  A  V  A  S  A  I  W  T  N  Q  M  L  D  Q  M  R  V  E  L  P  G  V   - 532  
 1801 - CCCGAGTCTACTATTAAGACTGTGTACGGGAGTATTCGATCCTTACGAAAGTACGACTTCAATGATCCCGTCAGACAGGGCTCTATCCGT - 1890 
  533 - P  E  S  T  I  K  T  V  Y  G  S  I  R  S  L  R  K  Y  D  F  N  D  P  V  R  Q  G  S  I  R   - 562  
 1891 - GCGTACGCTATTGTCAATGGCCACATTACTACGGCCTCAATCTGCCTATCTGTCGTTACACTCTTTGCTTCCGTCTGTATGCCAAACTTT - 1980 
  563 - A  Y  A  I  V  N  G  H  I  T  T  A  S  I  C  L  S  V  V  T  L  F  A  S  V  C  M  P  N  F   - 592  
 1981 - TATCTCGGAAAGCAGCAGAACGCCGTCGACAACAAAGGCCTCGACGGGTCGTCTATCGATGTCCCACAAAATCGTAAGGAAGACACATCA - 2070 
  593 - Y  L  G  K  Q  Q  N  A  V  D  N  K  G  L  D  G  S  S  I  D  V  P  Q  N  R  K  E  D  T  S   - 622  
 2071 - ACGACTACGCGGCCATTTTGGAAGAAACTTGTTACCTTATATTATAAAtaagtagtagtaagtacggaacactgttttatattaatacta - 2160 
  623 - T  T  T  R  P  F  W  K  K  L  V  T  L  Y  Y  K  *                                          - 638  
 2161 - ttactcaaaaaaaaaaaaaaaaaaaaaaaaaaaa                                                         - 2194 

      ATG (204)                                                                                                                       TAA (2118) 

A. 
 
 
 
 
 
 
 
 
 
 
 
B. 

yeast two hybrid clone, 371 bp 

5’ RACE, 324 bp 

5’ RACE, 300 bp 

5’ RACE, 713 bp 

5’ RACE, 624 bp 

2194 bp 

Figure 4 cDNA and derived amino acid sequences of the S. schenckii sssit gene. Figure 4A shows the sequencing strategy used for sssit
gene. The size and location in the gene of the various fragments obtained from PCR and RACE are shown. Figure 4B shows the cDNA and
derived amino acid sequence of the sssit gene. Non-coding regions are given in lower case letters, coding regions and amino acids are given in
upper case letters. The original sequence isolated using the yeast two-hybrid assay is shadowed in gray.
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sequence alignment. PSORT II analysis [39] classifies
this transporter as residing in the plasma membrane
(78.3%: plasma membrane vs. 21.7%: endoplasmic
reticulum).
In Additional File 4, multiple sequence alignment of

the derived amino acid sequence sssit and other sidero-
phore-iron transporter homologues from fungi such as
G. zeae, C. globosum and Aspergillus flavus is shown.
The percent identity of SsSit varied considerably
between the S. schenckii transporter and that of other
fungi. The highest percent identity was approximately
74% to that of G. zeae (Additional File 2, Supplemental
Table S3).

Genetic and bioinformatic characterization of S. schenckii
GAPDH (SsGAPDH)
A GAPDH homologue identified as being present in the
surface of various fungi, was the insert from colony
number 159 [36]. This insert had 697 bp and encoded
a140 amino acid sequence. This represented almost half
of the amino acid sequence of GAPDH and a 274 bp
3’UTR. The online BLAST algorithm matched the
sequence with GAPDH from G. zeae (GenBank acession
number XP_386433.1) with 87% identity in the C-term-
inal region [37].
Figure 6A shows the sequencing strategy used for obtain-

ing the cDNA coding sequence of the gapdh gene homolo-
gue. Figure 6B shows a cDNA of 1371 bp with an ORF of
1011 bp encoding a 337 amino acid protein with a calcu-
lated molecular weight of 35.89 kDa (GenBank accession
numbers: GU067677.1 and ACY38586.1). The PANTHER
Classification System [38] identified this protein as glycer-
aldehyde-3-P-dehydrogenase (PTHR 10836) (residues
1-336) with an extremely significant E value of 3 e-263.

Pfam [41] identified an NAD binding domain from amino
acid 3 to 151 (E value of 5e-59) and a glyceraldehyde-3-P
dehydrogenase C-terminal domain from amino acid 156-
313 (E value of 3.1e-74). Prosite Scan search identified a
GAPDH active site from amino acids 149 to 156 [42,43].
A multiple sequence alignment of SsGAPDH to other

GAPDH fungal homologues such as those from M. gri-
sea, G. zeae and C. globosum is given in Additional File
5. This figure shows the extremely high degree of con-
servation among these proteins in the range of 71 to
87% (Additional File 2, Supplemental Table S4).

Confirmation of the SSG-1-protein interactions by co-
immunoprecipitation and Western blot
Figure 7 shows the confirmation of the protein-protein
interactions by using co-immunoprecipitation (Co-IP)
and Western blots. The results of independent Co-IPs
for each of the different SSG-1 interacting proteins are
shown. In all co-immunoprecipitation and Western blot
analyses, SSG-1 was observed as a band with a calcu-
lated molecular weight of 59.8 ± 1.5 kDa, always within
less than 1 standard deviation of the average. The calcu-
lated theoretical value, considering that SSG-1 was
expressed fused to the GAL-4 binding domain, was 61.1
kDa. In all graphics shown in Figure 7, lanes 2 and 4
present the negative controls as described herein. Lane
2 shows the results obtained in the Western blot when
the primary anti-cMyc antibody was not added (negative
control). Lane 4 shows the results obtained in the Wes-
tern blot when the primary anti-HA antibody was not
added (negative control).
Figure 7A shows the confirmation of the interaction

observed in the yeast two-hybrid assay between SSG-1
and SsSOD by Co-IP and Western blot analysis. Lane 1
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Figure 5 Transmembrane analysis of the S. schenckii siderophore-iron transporter. Figure 5 shows the transmembrane domain analysis of
SsSit. Thirteen transmembrane helices were predicted using TMHMM. TMHMM results were visualized with TOPO2.
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     1 - aatccatcaactcttctgtcctgtatccccatcactatattcaattgagctctttgaaga - 60  

    61 - tctcgcacccaactcaagtcaaaATGGTTGTCAAGGCTGGTATCAACGGTTTCGGCCGCA - 120  

     1 -                        M  V  V  K  A  G  I  N  G  F  G  R  I - 13  

   121 - TTGGTCGTATCGTTTTCCGCAATGCCATCGAGCACGGTGACGTCGAGGTTGTTGCTGTCA - 180  

    14 -   G  R  I  V  F  R  N  A  I  E  H  G  D  V  E  V  V  A  V  N - 33  

   181 - ACGACCCTTTCATTGATACCAACTACGCTGCCTACATGCTCAAGTACGACTCTACCCACG - 240  

    34 -   D  P  F  I  D  T  N  Y  A  A  Y  M  L  K  Y  D  S  T  H  G - 53  

   241 - GCGCCTTCAAGGGTGAAATCAAGGTCGAGGCCAACGGCCTGAACGTCAACGGCAAGTCCG - 300  

    54 -   A  F  K  G  E  I  K  V  E  A  N  G  L  N  V  N  G  K  S  V - 73  

   301 - TTCGCTTCTACCAAGAGCGCGACCCGGCCGCTATCCCTTGGAAGGACACCGGTGCCGAGT - 360  

    74 -   R  F  Y  Q  E  R  D  P  A  A  I  P  W  K  D  T  G  A  E  Y - 93  

   361 - ACGTCGTCGAGTCCACCGGTGTCTTCACCACCACCGACAAGGCCAAGGCCCATCTGGCTG - 420  

    94 -   V  V  E  S  T  G  V  F  T  T  T  D  K  A  K  A  H  L  A  G - 113  

   421 - GCGGTGCCAAGAAGGTCATCATCTCGGCCCCCTCCGCCGATGCCCCCATGTACGTCATTG - 480  

   114 -   G  A  K  K  V  I  I  S  A  P  S  A  D  A  P  M  Y  V  I  G - 133  

   481 - GCGTCAACGAGAAGACCTACGACGGCAAGGCCGACGTCATTTCCAACGCCTCGTGCACCA - 540  

   134 -   V  N  E  K  T  Y  D  G  K  A  D  V  I  S  N  A  S  C  T  T - 153  

   541 - CCAACTGCCTGGCTCCCCTGGCGAAGGTCATCAACGATAAGTTCGGCATCGTTGAGGGTC - 600  

   154 -   N  C  L  A  P  L  A  K  V  I  N  D  K  F  G  I  V  E  G  L - 173  

   601 - TCATGACCACCGTCCACTCCTACACCGCCACCCAGAAGACCGTCGACGGTCCCTCCGCCA - 660  

   174 -   M  T  T  V  H  S  Y  T  A  T  Q  K  T  V  D  G  P  S  A  K - 193  

   661 - AGGACTGGCGCGGTGGCCGTGGCGCCGCCCAGAACATCATCCCCTCCAGCACAGGTGCCG - 720  

   194 -   D  W  R  G  G  R  G  A  A  Q  N  I  I  P  S  S  T  G  A  A - 213  

   721 - CCAAGGCCGTCGGCAAGGTCATCCCTGAGCTGAACGGCAAGCTGACCGGCATGTCCCTGC - 780  

   214 -   K  A  V  G  K  V  I  P  E  L  N  G  K  L  T  G  M  S  L  R - 233  

   781 - GTGTCCCCACTGCCAACGTCTCCGTGGTCGACCTGACAGCCCGCCTGGAAAAGGGTGCCT - 840  

   234 -   V  P  T  A  N  V  S  V  V  D  L  T  A  R  L  E  K  G  A  S - 253  

   841 - CCTACGACGAGATCAAGGCCGCTATTAAGGAGGCTTCCGAGGGCCCCCTGAAGGGCATTT - 900  

   254 -   Y  D  E  I  K  A  A  I  K  E  A  S  E  G  P  L  K  G  I  F - 273  

   901 - TCGGCTACACCGAGGACGATGTGGTCTCCAGCGATCTGAACGGCAACTTGAACTCGTCCA - 960  

   274 -   G  Y  T  E  D  D  V  V  S  S  D  L  N  G  N  L  N  S  S  I - 293  

   961 - TCCTCGACGCCAAGGCTGGTATCTCCCTGAACCCCAACTTCGTCAAGCTCGTCAGCTGGT - 1020  

   294 -   L  D  A  K  A  G  I  S  L  N  P  N  F  V  K  L  V  S  W  Y - 313  

  1021 - ATGACAACGAGTGGGGCTACAGCCGTCGCGTTGTTGACCTTATCAGCTACGTAGCCAAGG - 1080  

   314 -   D  N  E  W  G  Y  S  R  R  V  V  D  L  I  S  Y  V  A  K  V - 333  

  1081 - TCGATAGTTCGCATtagctacatggccggatcagcccacggatttaaggtttttcagtca - 1140  

   334 -   D  S  S  H  *                                              - 337  

  1141 - accatggtcgtagagacaggacacgcaacgaggaacgggaaacaacaactttctggtttt - 1200  

  1201 - gaaacataaacgagttaaaaaggtcatcctaaacgcgaaatgtgcgtgtgctgcggtgat - 1260  

  1261 - tggcagcactgtttcccggtagcttagattccatatttctctcttttttttttttacttt - 1320  

  1321 - ttaactttttttttcttttcttaaaaaaaaaaaaaaaaaaaaaaaaaaaaa          - 1371 

 

 

              ATG (84)                                                                                                                 TAG (1097)

yeast two hybrid clone, 697 bp 

PCR product, 1125 bp 

5'RACE, 714bp 

A. 

 

 

 

 

 

 

B. 

1371 bp

Figure 6 cDNA and derived amino acid sequences of the S. schenckii ssgapdh gene. Figure 6A shows the sequencing strategy used for
ssgapdh gene. The size and location in the gene of the various fragments obtained from PCR and RACE are shown. Figure 6B shows the cDNA
and derived amino acid sequence of the ssgapdh gene. Non-coding regions are given in lower case letters, coding regions and amino acids are
given in upper case letters. The original sequence isolated using the yeast two-hybrid assay is shadowed in gray.
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shows the band obtained using anti-cMyc antibody that
recognizes SSG-1. Lane 3 shows the band obtained
using anti-HA antibody that recognizes the SsSOD frag-
ment (amino acids 260 to 324). The observed molecular
weight of this band is 33.5 kDa and is slightly higher
than the theoretical value (26.5 kDa), calculated consid-
ering that only the last 65 amino acids of the protein
were present and that this fragment was fused to the
GAL-4 activation domain (Additional File 2, Supplemen-
tal Table S5). This difference between the observed and
the theoretical molecular weight could be due to sodium
dodecyl sulfate (SDS) binding because of the large num-
ber of hydrophobic and basic residues in this protein
fragment. It could also be the effect of post-translational
modifications of the peptide which might include

myristoylation and phosphorylation (Prosite Scan analy-
sis) [42-44].
The results that confirm the interaction observed

between SSG-1 and SsNramp by Co-IP and Western
blot analysis are shown in Figure 7B. Lane 1 shows the
band obtained using anti-cMyc antibody that identified
SSG-1. Lane 3 shows the band obtained using anti-HA
antibody that recognizes the original SsNramp C-term-
inal domain isolated from the yeast two-hybrid clone.
This band is of the expected size (35.5 kDa) because the
original insert contained the last 165 amino acids of the
protein fused to the GAL-4 activation domain (Addi-
tional File 2, Supplemental Table S5).
Co-immunoprecipitation and Western blot analysis

shown in Figure 7C confirmed the interaction observed

Figure 7 Co-immunoprecipitation and Western Blot analyses of SSG-1 interacting proteins. Whole cell free extracts of S. cerevisiae cells
expressing the complete c-myc tagged SSG-1 coding sequence fused to the GAL4 activation domain (bait protein) and the HA tagged protein
fragment fused to the GAL4 DNA binding domain (prey protein) were co-immunoprecipitated as described in Methods. The co-
immuneprecipitated proteins were separated using 10% SDS polyacrylamide electrophoresis and transferred to nitrocellulose. The nitrocellulose
strips were probed with anti-cMyc antibodies (Lane 1) and anti HA antibodies (Lane 3). Pre-stained molecular weight markers were included in
outside lanes of the gel. The position of the molecular weight markers is indicated in the figure. Lanes 2 and 4 are negative controls where no
primary antibody was added. Figure 7A corresponds to the results of the Co-IP of SSG-1 and SsSOD, Figure 7B corresponds to the results of the
Co-IP of SSG-1 and SsNramp, Figure 7C corresponds to the results of the Co-IP of SSG-1 and SsSit and Figure 7D corresponds to the results of
the Co-IP of SSG-1 and SsGAPDH.
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in the yeast two-hybrid assay between SSG-1 and SsSit.
Lane 1 shows the band obtained using anti-cMyc anti-
body that recognizes SSG-1. Lane 3 shows the band
obtained using anti-HA antibody that recognizes the ori-
ginal SsSit fragment isolated from the yeast two-hybrid
clone. This band is of the expected size (33.2 kDa) tak-
ing into consideration the molecular weight of the last
177 amino acids of the protein and that of the GAL-4
activation domain (Additional File 2, Supplemental
Table S5).
The interaction between SSG-1 and SsGAPDH by co-

immunoprecipitation and Western blot analysis is
shown in Figure 7D. Lane 1 shows the band obtained
using anti-cMyc antibody that recognizes SSG-1. Lane 3
shows the band obtained using anti-HA antibody that
recognizes the original SsGAPDH fragment isolated
from the yeast two-hybrid clone. This band is of the
expected size (35.5 kDa) considering that the insert
encoded only the last 140 amino acids of the protein
and that the fragment was fused to the GAL-4 activation
domain (Additional File 2, Supplemental Table S5).

Discussion
Heterotrimeric G proteins are universal recipients of
environmental signals in all living eukaryotic cells [45].
Genes encoding G protein subunits have been exten-
sively studied in fungi [46], but in there is limited infor-
mation available regarding heterotrimeric G proteins
signalling pathways in the pathogenic fungi other than
that related to the cAMP dependent pathway. Further
inquiry is needed to comprehend the full scope of G
protein signalling pathways in pathogenic fungi. An
important way to discover other signalling pathways
involving heterotrimeric G proteins is to study protein-
protein interaction. This study was aimed at identifying
important components of the G protein alpha subunit
SSG-1 signalling using a yeast two-hybrid screening
approach. More than 30 potential interacting proteins
were identified but we chose to corroborate and inform
the interactions of S. schenckii homologues of four very
important proteins: SOD, Nramp, Sit1 and GAPDH. All
of these proteins have been identified in other fungi as
being involved in pathogenicity or environmental stress
response as will be discussed below.
The superoxide dismutase (SOD) identified as inter-

acting with SSG-1 belongs to a family of enzymes that
catalyze the dismutation of oxygen radical to hydrogen
peroxide eliminating superoxide anions generated in
aerobic respiration [47,48]. Many SOD genes have been
identified in fungal genomes [49]. SODs have been
shown to contribute to growth and survival of fungi
under oxidative stress conditions, specifically inside
macrophages. In C. neoformans, SOD1 mutants were
observed to be less virulent while SOD2 mutants had

increased susceptibility to oxidative stress and showed
decreased growth at elevated temperatures [50,51]. Viru-
lence in C. neoformans variety gattii has been reported
to be dependent on both SOD1 and SOD2 [32,33]. In C.
albicans the null mutant of mitochondrial SOD2 was
more sensitive than wild-type cells to stress [52] and the
SOD1 null mutant had attenuated virulence [53].
S. schenckii superoxide dismutases have not been stu-

died. In fact, this is the first report of the presence of a
member of this protein family in this fungus. Analysis of
the amino acid sequence of SsSOD against the Homo
sapiens database using BLAST shows that it is homolo-
gous to the human manganese superoxide dismutase
SOD2 family with 32% identity. This same analysis,
using the fungal databases revealed that SsSOD is phylo-
genetically closely related to SODs of the filamentous
fungi with the sequence identity being in the range of
23-43%. Also SsSOD has a calculated molecular weight
of 35.44 kDa, very close to that of other fungal homolo-
gues. The specific role of SOD2 in S. schenckii stress
and pathogenesis has yet to be addressed.
Fungal SODs have two main locations: cytosolic or

mitochondrial [49]. Analysis using PSORT II [39] and
TargetP [40] suggests that SsSOD isolated by the yeast
two-hybrid analysis is a mitochondrial SOD. Being a
mitochondrial protein does not disqualify SsSOD as an
interacting partner of SSG-1. It is important to note
that Gai subunits can be present not only in the cyto-
plasm but also in the mitochondria [54]. Also, SODs
acquire the metal ion during protein synthesis and this
seems to occur in the cytoplasmic face of the mitochon-
drial membrane. It is also of interest to note that
another mitochondrial protein was also found to inter-
act with SSG-1 (unpublished results). This protein
belongs of the mitochondrial metal transporter protein
family (Mtm family) that is known to be involved in the
acquisition of the metal ion by SODs [55,56]. These
results together with the interactions of SSG-1 and the
metal ion transporters SsNramp and SsSit, discussed
below suggest a possible role of SSG-1 in SODs metal
acquisition.
Metals are essential nutrients and important co-factors

of a variety of proteins and enzymes; they are required
for the survival of all organisms. Fungi have developed
multiple strategies to acquire metals from the environ-
ment [57]. The human host is a hostile environment for
invading pathogens because it actively sequesters and
limits nutrients [58]. The term nutritional immunity has
been coined to describe metal ion sequestration [59]. In
this work we have identified a homologue of the Nramp
family of cation transporters present in higher organ-
isms and yeasts [60,61] as interacting with SSG-1. This
family of transporters is associated with virulence in
bacteria and to resistance to infection in mammalian
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hosts [34,62]. The Nramp family specifically transports
manganese and iron although they have the capacity to
transport other divalent cations such as nickel, zinc,
copper, cobalt and cadmium [60]. They are character-
ized by a hydrophobic core with 10-12 transmembrane
helices [61], also present in the S. schenckii homologue
described here. The Nramp family consists of Nramp1,
Nramp2, and the yeast proteins Smf1, Smf2 and Smf3
[60,63]. Smf1 and Smf2 are believed to be involved in
manganese homeostasis. Smf1 is a cell surface manga-
nese transporter [56,63]. The S. schenckii Nramp
described here is more closely related to Smf1, it is simi-
lar in size to Smf1 and is predicted to be located in the
plasma membrane by PSORT II analysis [39]. Although
there is considerable similarity between SsNramp and
Smf1, SsNramp’s role in cation transport must be eluci-
dated and its substrate identified.
Another critical aspect for the survival of fungal

pathogens inside the host is the capacity to accumulate
iron [64]. In this work we report a siderophore-iron
transporter as interacting with SSG-1. In response to
low iron availability, most fungi synthesize siderophores
that chelate iron which is ultimately taken up as a side-
rophore-iron complex [65,66] by members of the Major
Facilitator Superfamily transporters (MSF) [65,67].
Members of the MFS do not possess well-defined con-
served motifs as it is known from other transporter
superfamilies but the Panther Classification System
identified SsSit1 as a siderophore iron transporter. Stu-
dies in C. albicans revealed a role for a siderophore iron
transporter (SIT1) in epithelial invasion. Gene knock-
out studies of sit1 led to a reduction in the invasion and
penetration of epithelia by this fungus [35]. In C. neofor-
mans, SIT1 has a role in the structure of the cell wall
and melanization [68].
It is of interest to note that S. schenckii is capable of

producing its own siderophores, unlike S. cerevisiae that
does not [66,69]. The identification of the relationship
between siderophore iron transport and a Ga subunit
opens a new angle to the already complex regulation of
iron uptake in fungi and identifies G proteins as poten-
tially important players in the tightly regulated mechan-
ism of iron acquisition.
The reported interaction of these two ion transport

proteins with SSG-1 in S. schenckii is a key factor dis-
cussed here. In addition to the ion transporters reported
in this work, SSG-1 has been observed to interact with a
monosaccharide transporter of the MFS family (unpub-
lished results) and SSG-2 can interact with a hexose
transporter of this same family of proteins (unpublished
results). It is a known fact that heterotrimeric G pro-
teins interact with classical receptor proteins in the
membrane resulting in the activation of signal transduc-
tion pathways. However, it has been observed that

nutrient carriers can also function as receptors for sig-
nalling [70,71]. The activation of signal transduction
pathways by nutrients has been recognized in other sys-
tems mainly, S. cerevisiae [72]. Yet, many of the primary
intracellular receptors of the signals generated through
nutrient carriers have not been identified. In this paper
we offer evidence that links transport molecules to G
protein signalling and suggests that G proteins could be
one of the effectors of nutrient sensing in fungi. There
is a hypothesis that GPCR receptors may have evolved
from nutrient transporters that gradually lost their
transport capacity [71]. Our findings provide a new ave-
nue to study this evolutionary hypothesis.
Another SSG-1 interacting protein identified in this

work was GAPDH, a highly conserved fungal protein as
shown in Additional File 5. The presence of GAPDH, a
glycolytic enzyme, on the surface of fungal cells has
been reported for various fungal species, such as C. albi-
cans [73] and Paracoccidiodes braziliensis [36]. This
alternative localization of the enzyme suggests other
roles for this protein besides glycolysis, possibly related
to pathogenesis and stress response. In P. braziliensis,
this enzyme has been identified as important in the
adhesion to pneumocytes [36] while in S. cerevisiae,
GAPDH was reported to affect survival under condition
of oxidative stress as a target for S-thiolation, [74]. In
Schizosaccharomyces pombe GAPDH was transiently
oxidized in response to hydrogen peroxide, enhancing
the association between a response regulator and
MAPKKK’s promoting peroxide stress signalling [75].
The association of GAPDH to SSG-1 offers additional
information to be considered when assessing the role of
GAPDH outside of its traditional function as a glycolytic
enzyme.
The actual identification of protein-protein interac-

tions constitutes a very important and necessary step if
we are to understand the role of G proteins in fungal
signalling pathways. The results presented in this paper
suggests the involvement of SSG-1 with proteins whose
role in many other fungi have been recognized as part
of the protective mechanism against the strain that both
the environment and the human host pose for the survi-
val of the fungus.

Conclusions
This study constitutes the first report of the protein-
protein interactions of the fungal Gai subunit SSG-1
with cellular proteins. SOD, GAPDH, and two metal ion
transporters were identified as SSG-1 interacting pro-
teins and these interactions were confirmed using Co-
IP. The identification of such important proteins as
partners of a Ga subunit in this fungus suggests possible
mechanisms through which this G protein can affect
pathogenesis or survival under conditions of stress and
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nutrient limitation inside the human host or the envir-
onment. These proteins belong to different families and
have different but well-established roles, yet all converge
in a common role: involvement in the response to stress.
Individually, SOD2 is well known as a major player in
the elimination of ROS in all cells while GAPDH has
been recognized as promoting resistance to oxidative
stress in fungi. The two ion transporters identified in
this work are important in overcoming the metal ion
limitations imposed on invading pathogens by the
human or animal host as a defence mechanism and pro-
vide the necessary metal co-factors for SODs and other
important proteins. The association of G protein alpha
subunits to transport molecules reinforces the role of G
proteins in the response to environmental signals and
also highlights the involvement of fungal G protein
alpha subunits in nutrient sensing in S. schenckii. These
interactions suggest that these permeases could function
as transceptors for G proteins in fungi.

Methods
Strains and culture conditions
S. schenckii (ATCC 58251) was used for all experiments.
The yeast form of the fungus was obtained from conidia
as previously described [76]. S. cerevisiae strains AH109
and Y187 were used for the yeast two-hybrid screening
and were supplied with the MATCHMAKER Two-
Hybrid System (Clontech Laboratories Inc., Palo Alto,
CA, USA).

Nucleic acids isolation
Total RNA was obtained from S. schenckii yeast cells as
described previously by us [25]. Poly A+ RNA was
obtained from total RNA using the mRNA Purification
Kit from Amersham Biosciences (Piscataway, NJ, USA).

Yeast two-hybrid assay
MATCHMAKER Two-Hybrid System was used for the
yeast two-hybrid assay using all 3 different reporter genes
for the confirmation of truly interacting proteins (Clon-
tech Laboratories Inc.). For the construction of the SSG-
1 bait plasmid, a pCR®2.1-TOPO® plasmid (Invitrogen
Corp. Carlsbad, CA, USA) containing the ssg-1 gene
cDNA sequence of S. schenckii from the laboratory col-
lection was used as template for PCR to obtain the cod-
ing sequence of the ssg-1 gene. E. coli TOP10F’ One
Shot® chemically competent cells (Invitrogen Corp.) con-
taining the plasmid were grown in 3 ml of LB broth with
kanamycin (50 μg/ml) at 37°C for 12 to 16 hours and the
plasmid isolated with the Fast Plasmid™ Mini kit (Brink-
mann Instruments, Inc. Westbury, NY, USA). The ssg-1
insert was amplified by PCR using primers containing the
gene sequence and an additional sequence containing an
added restriction enzyme site. The Ready-to-Go™ Beads

(Amersham Biosciences, GE Healthcare, Piscataway, NJ,
USA) were used for PCR. The forward PCR primer
included the adapter sequence added at the 5’ end con-
taining the restriction site for Nde I was used to amplify
the ssg-1 cDNA. The primers used were: SSG-1/NdeI/
(fw) 5’ ccatatggccatgggttgcggaatgagtgtggaggag 3’ and
SSG-1 (rev) 5’ gataagaccacatagacgcaagt 3’. The ssg-1
cDNA sequence with the added restriction enzyme site
was cloned again in the same vector, amplified and puri-
fied using the QIAfilter Plasmid Purification kit (Qiagen
Corp., Valencia, CA, USA). The ssg-1 gene was excised
from the vector by sequential enzymatic digestion with
Nde I and EcoR I. The pGBKT7 plasmid vector was line-
arized using the same enzymes mentioned above. The
restriction digested ssg-1 gene and the linearized
pGBKT7 were ligated using the Quick Ligation™ Kit
(New England Biolabs, Inc., Ipswich, MA, USA). The
ligation reaction was centrifuged briefly and incubated at
25°C for 5 min, chilled on ice, and used to transform E.
coli TOP10F’ One Shot® chemically competent cells. The
correct orientation and frame of the inserted gene
sequence was verified by sequencing analysis. The bait
containing plasmid was isolated using Fast Plasmid™
Mini technology (Brinkmann Instruments) and used to
transform competent S. cerevisiae yeast cells (Y187) with
the YEAST-MAKER™ Yeast Transformation System 2
(BD Biosciences, Clontech Laboratories Inc.). Tests for
autonomous gene activation and cell toxicity were carried
out as described by the manufacturer.
A cDNA library using S. schenckii yeast RNA was con-

structed as described previously in AH109 cells [26].
Transformants were selected in SD/-Leu plates, harvested
and used for mating with the bait containing S. cerevisiae
strain Y187. Mating of S. cerevisiae yeast cells strains
Y187 (Mat-a) and AH109 (Mat-a) was done according to
the manufacturer’s instructions as described previously.
Colonies growing in triple drop out medium (TDO)
(SD/-Ade/-Leu/-Trp) were tested for growth and a-
galactosidase production in quadruplet drop out medium
(QDO), SD/-Ade/-His/-Leu/-Trp/X-a-gal. Re-plating of
these positive colonies into QDO medium was done to
verify that they maintain the correct phenotype.
Colony PCR was used to corroborate the presence of

both plasmids in the diploid cells using the T7/3’BD
sequencing primer pair for the pGBKT7/ssg-1 plasmid
and the T7/3’AD primer pair for the pGADT7-Rec
library plasmid and yeast colony suspension as template.
The Ready-to-Go™ Beads (Amersham Biosciences) were
used for PCR. The amplification parameters were those
described previously [26]. PCR products were analyzed
on agarose gels and the DNA recovered using Spin-X
Centrifuge Tube Filters as described by the manufac-
turer (0.22 μm, Corning Costar Corp., Corning, NJ,
USA). The PCR products were cloned and amplified as
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described previously [26]. Plasmid preparations were
obtained using the Fast Plasmid™ Mini technology
(Brinkmann Instruments) and the inserts sequenced
using commercial sequencing services from SeqWright
(Fisher Scientific, Houston, TX, USA) and Retrogen
(San Diego, CA, USA).

Co-immunoprecipitation (Co-IP) and Western blots
For Co-IP of SsSOD and SsGAPDH, the C-terminal
domains of these proteins previously identified as inter-
acting with SSG-1 in the yeast two-hybrid assay were
amplified using cDNA as template and the following
primers: SOD-Nde1 (fw) 5’ catatgcgcccgccgggcggcgtt
and SOD-Xma1 (rev) 5’ cccgggtcctatgtcttcaacttc 3’ and
GAPDH-Nde1(fw) 5’ catatggactggcgcggtggccgt 3’ and
GAPDH-XMA1 (rev) 5’ cccgggtgctaatgcgaactatcg 3’.
These primers included restriction enzyme sites that
enabled the cloning of these fragments into pGADT7AD.
Competent yeast cells AH109 were transformed with the
cloned fragments and used for mating with Y187 con-
taining plasmid pGBKT7 with the SSG-1 coding insert
using the small scale mating protocol as described by the
manufacturer. After mating the cells were plated in TDO
and them transferred to QDO with X-a-gal. All colonies
that grew in QDO and were blue were tested for the pre-
sence of both plasmids and the SsSOD and SsGAPDH
inserts were sequenced for corroboration of the sequence
and correct insertion. For all other Co-IP’s the original
yeast two-hybrid clones were grown in QDO.
Co-Ip and Western blots were used to confirm the

interaction of proteins identified in the yeast two-hybrid
analysis with SSG-1 as described previously [26]. S. cere-
visiae diploids obtained in the yeast two hybrid assay
were grown in QDO, harvested by centrifugation and
resuspended in 8 ml containing phosphate buffer saline
(800 μl) with phosphatase (400 μl), deacetylase (80 μl)
and protease inhibitors (50 μl), and PMSF (50 μl). The
cells were broken as described previously [77]. The cell
extract was centrifuged and the supernatant used for
Co-IP using the Immunoprecipitation Starter Pack (GE
Healthcare, Bio-Sciences AB, Bjorkgatan, Sweden).
Briefly, 500 μl of the cell extract were combined with 1-
5 μg of the anti-cMyc antibody (Clontech, Corp.) and
incubated at 4°C for 4 h, followed by the addition of
protein G beads and incubated at 4°C overnight in a
rotary shaker. The suspension was centrifuged and the
supernatant discarded, 500 μl of the wash buffer added
followed by re-centrifugation. This was repeated 4
times. The pellet was resuspended in Laemmeli buffer
(20 μl) and heated for 5 min at 95°C, centrifuged and
the supernatant used for 10% SDS PAGE at 110 V/1 h.
Electrophoretically separated proteins were transferred

to nitrocellulose membranes using the BioRad Trans
Blot System® for 1 h at 20 volts and blocked with 3%

gelatin in TTBS (20 mM Tris, 500 mM NaCl, 0.05%
Tween-20, pH 7.5) at room temperature for 30-60 min.
The strips were washed for with TTBS and incubated
overnight in the antibody solution containing 20 μg of
antibody, anti-cMyc or anti-HA (Clontech, Corp.). The
bait protein (SSG-1) is expressed with a c-myc epitope
tag and is recognized by the anti c-myc antibody. The
prey proteins are all expressed with an HA epitope tag
that is recognized by the anti HA antibody. Controls
where the primary antibody was not added were
included. The antigen-antibody reaction was detected
using the Immun-Star™ AP chemiluminescent protein
detection system from BioRad Corporation (Hercules,
CA, USA) as described by the manufacturer.

Sequencing the sssod, ssnramp ssgapdh, and sssit genes
Polymerase chain reaction (PCR), Rapid amplification of
cDNA ends (RACE) and Reverse transcription Polymerase
chain reaction (RTPCR)
The 5’ ends of the S. schenckii sssod, ssnramp, sssit and
ssgapdh gene homologues were obtained using RLM-
RACE (Applied Biosystems, Foster City, CA, USA) with
S. schenckii cDNA as template. All RACE reactions were
carried out in the ABI PCR System 2720 (Applied Bio-
systems). The touchdown PCR and nested PCR para-
meters used for the initial RACE reactions were the
same as described previously [26]. Nested primers were
designed to improve the original amplification reactions.
Bands from the 5’ nested PCR were excised from the gel
and cloned as described above. Primers for RACE were
designed based on the sequence obtained from the yeast
two-hybrid assay. For the initial 5’ RACE of sssod gene
the following primers were used: GSP-UTR-1(rev) 5’
actcttctggctgtcaccgtccccgtc 3’; NGSP-UTR-2 (rev) 5’
cgccgtccgtcctatgtcttcaacttc 3’; GSP-AWTQHMTLNL
(rev) 5’ ggttgagcatcagggtcatgtgctgcgtccaggc 3’; NGSP-
RSIHHLPV (rev) 5’ gacacgggcaggtggtgtatgctgcgg 3’;
GSP-HNTDFFFKH (rev) 5’ tgcttgaagaagaagtcggtgttgtgg
3’ and NGSP-TTYEDREL (rev)
5’ ctcttgagctcgcggtcctcgtatgtggtgc 3’. For PCR the pri-

mers used were: forward primer WTQYMTL (fw) 5’
ttggacccagtacatgaccctgat 3’ (obtained from the published
sequence of the G. zeae sod gene, GenBank accession
no. XP_387245.1) and lower primer HVWLRDYG (rev)
5’ agcccgtagtcccgcagccacacgtg 3’. For RTPCR the follow-
ing primers were used: MFRPR (fw) 5’ gcaccatgttccgtcc-
gagg 3’ and PSLWKQP (rev) 5’ ctgcttccacaggctcgggt 3’.
For 5’ RACE of ssnramp gene the following primers

were used: GSP-TASSTSTSDI (rev) 5’ ccaatgtcgctcg-
tactgctcgctgtc 3’; NGSP-TSFDKYMT (rev) 5’ cggtcatg-
tacttgtcaaacgatgtga 3’; NGSP-VVEVAVSLF (rev) 5’
aaagagcgagacggcgacctcaacaac 3’; GSP/NGSP-LSMIDHTT
(rev) 5’ tgtggtgtggtcaatcatggacagc 3’ and NGSP-
WKVVSSLR (rev) 5’ cctaagactagagacgaccttccag 3’. The
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complete cDNA coding sequence of ssnramp was con-
firmed using RTPCR with cDNA as template and the fol-
lowing primers: UP-1(fw) 5’ tgttcactacttgggctgt 3’ and
LW-1 (rev) 5’ gcttgtgttagttgcccttg 3’.
For 5’ RACE of the sssit gene, the following primers

were used: GSP-SVVTLFASV (rev) 5’ gacggaagcaaa-
gagtgtaacgacaga 3’; NGSP-SLRKYDFND (rev) 5’ tcatt-
gaagtcgtactttcgtaaggat 3’; GSP/NGSP-QLIFCLSS (rev)
5’ gggatgaaaggcagaatatgagctgcg 3’; GSP/NGSP-LIHRT-

THR (rev)
5’ tcggtgtgtggtacggtggattaac 3’; GSP-LEWRGFFS (rev)
5’ cgctgaagaagccacgccattccaatg 3’; GSP-TESPKGHE

(rev) 5’ ctcgtgccctttaggagattccgt 3’ and NGSP-STHPAD
(rev) 5’ gatcatctgcgggatgtgtagaca 3’. The complete cDNA
coding sequence of the sssit gene was confirmed using
RTPCR. cDNA was used as template for RTPCR and the
following primers: UP-Sit (fw) 5’ ttcaatacagcataacgccact-
gatc 3’ and LW-Sit (rev) 5’ aaaacagtgttccgtacttactacta 3’.
For the initial 5’ RACE of the ssgapdh gene the follow-

ing primers were used: GAPDH-GMSLRVPTA (rev)
5’ gcagtggggacacgcagggacatgccg 3’; NGSP-GAPDH-
QNIIPSSTG (rev) 5’ ctgtgctggaggggatgatgttctggg 3’. For
RTPCR the following primers were used: GPDH-UP-
KMVV (fw) 5’ caaaatggttgtcaaggc 3’ and GAPDH-LW-
ISPRI (rev) 5’ aaatccgtgggctgatcc 3’.

Bioinformatics Sequence Analysis
The theoretical molecular weights of the proteins were
calculated using the on-line ExPASy tool (http://expasy.
org/tools/pi_tool.html). On-line Prosite Scan (Proscan)
(http://expasy.org/tools/scanprosite/), Pfam (http://pfam.
sanger.ac.uk/search) and Blocks (http://blocks.fhcrc.org/
blocks/blocks_search.html) searches were used to iden-
tify potential motifs present in SsSOD, SsGAPDH, SsSit
and SsNramp [41,43,78]. The protein classification was
performed using the PANTHER Gene and Protein Clas-
sification System (http://www.PANTHERdb.org) [38].
On-line database searches and comparisons for SsSOD,
SsGAPDH, SsSit and SsNramp were performed with
Integrated Protein Classification (iProClass) database
(http://pir.georgetown.edu/pirwww/dbinfo/iproclass.
shtml) [79] and the BLAST algorithm (http://www.ncbi.
nlm.nih.gov/BLAST/) with a cutoff of 10-7, a low com-
plexity filter and the BLOSUM 62 matrix [37]. Trans-
membrane helices were identified using the TMHMM
Server v. 2.0 (http://www.cbs.dtu.dk/services/TMHMM)
[80] and visualized with TOPO2 (http://www.sacs.ucsf.
edu/TOPO2/). Cellular localization of the SsSOD and
SsNramp was done using the PSORT II Server (http://
PSORT.ims.u-tokyo.ac.jp/) [39] and the TargetP 1.1 ser-
ver (http://www.cbs.dtu.dk/services/TargetP) [40]. Multi-
ple sequence alignments were built using MCOFFEE
(http://www.tcoffee.org) [81,82]. The alignments in

Additional Files 1 and 3 to 5 were visualized using
the program GeneDoc (http://www.psc.edu/biomed/
genedoc).

Additional material

Additional file 1: Protein multiple sequence alignment of SsSOD to
other fungal SOD homologues. Multiple sequence alignment of the
predicted amino acid sequence of S. schenckii SsSOD and SOD
homologues from other fungi. In the alignment, black shading with
white letters indicates 100% identity, gray shading with white letters
indicates 75-99% identity, gray shading with black letters indicates 50-
74% identity.

Additional file 2: Supplementary tables. Supplemental Table S1
compares SsSOD to other SOD homologues, Supplemental Table S2
compares SsNramp to other Nramp homologues, Supplemental
Table S3 compares SsSit to other fungal siderophore transporter
homologues and Supplemental Table S4 compares SsGAPDH to other
fungal GAPDH homologues. The percent identity of the SsSOD, SsNramp,
SsSit and SSGAPDH to other fungal homologues was calculated using
iProClass database and the BLAST algorithm. Supplemental Table S5
contains the calculated and expected molecular weights of the proteins
identified by co-immunoprecipitation.

Additional file 3: Protein multiple sequence alignment of SsNramp
to other fungal Nramp homologues. Multiple sequence alignment of
the predicted amino acid sequence of S. schenckii SsNramp and Nramp
homologues from various fungi and mouse. In the alignment, black
shading with white letters indicates 100% identity, gray shading with
white letters indicates 75-99% identity, gray shading with black letters
indicates 50-74% identity. The invariant residues are shaded in blue in
the consensus line. Bold lines above sequences identify predicted
transmembrane helices.

Additional file 4: Protein multiple sequence alignment of SsSit to
other fungal Sit homologues. Multiple sequence alignment of the
predicted amino acid sequence of S. schenckii SsSit and Sit homologues
from various fungi. In the alignment, black shading with white letters
indicates 100% identity, gray shading with white letters indicates 75-99%
identity, gray shading with black letters indicates 50-74% identity. Bold
lines above sequences identify 11 of the possible 13 predicted
transmembrane helices. These 11 TM helices were consistently identified
by multiple prediction servers. The gray bold lines above sequences
identify the two additional TM helices identified by TMHMM. Red boxes
highlight motifs that characterize the MFS.

Additional file 5: Protein multiple sequence alignment of SsGAPDH
to other fungal GAPDH homologues. Multiple sequence alignment of
the predicted amino acid sequence of S. schenckii SsGAPDH and GAPDH
homologues from various fungi. In the alignment, black shading with
white letters indicates 100% identity, gray shading with white letters
indicates 75-99% identity, gray shading with black letters indicates 50-
74% identity.
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