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Abstract

stimulating property of ZFFnic.

and plant infection are distinct from Al-2 and AHL.

Background: Oomycetes attack a huge variety of economically and ecologically important plants. These
pathogens release, detect and respond to signal molecules to coordinate their communal behaviors including the
infection process. When signal molecules are present at or above threshold level, single zoospores can infect
plants. However, at the beginning of a growing season population densities of individual species are likely below
those required to reach a quorum and produce threshold levels of signal molecules to trigger infection. It is
unclear whether these molecules are shared among related species and what their chemistries are.

Results: Zoospore-free fluids (ZFF) from Phytophthora capsici, P. hydropathica, P. nicotianae (ZFFnic), P. sojae (ZFFsoj)
and Pythium aphanidermatum were cross tested for stimulating plant infection in three pathosystems. All ZFFs
tested significantly increased infection of Catharanthus roseus by P. nicotianae. Similar cross activities were observed
in infection of Lupinus polyphyllus and Glycine max by P. sojae. Only ZFFnic and ZFFsoj cross induced zoospore
aggregation at a density of 2 x 10° ml”". Pure autoinducer-2 (Al-2), a component in ZFF, caused zoospore lysis of P.
nicotianae before encystment and did not stimulate plant infection at concentrations from 0.01 to 1000 pM. P.
capsici transformants with a transiently silenced Al-2 synthase gene, ribose phosphate isomerase (RP), infected
Capsicum annuum seedlings at the same inoculum concentration as the wild type. Acyl-homoserine lactones
(AHLs) were not detected in any ZFFs. After freeze-thaw treatments, ZFF remained active in promoting plant
infection but not zoospore aggregation. Heat treatment by boiling for 5 min also did not affect the infection-

Conclusion: Oomycetes produce and use different molecules to regulate zoospore aggregation and plant
infection. We found that some of these signal molecules could act in an inter-specific manner, though signals for
zoospore aggregation were somewhat restricted. This self-interested cooperation among related species gives
individual pathogens of the same group a competitive advantage over pathogens and microbes from other
groups for limited resources. These findings help to understand why these pathogens often are individually
undetectable until severe disease epidemics have developed. The signal molecules for both zoospore aggregation

Background

Zoosporic plant pathogens in the phylum Oomycota of
the Stramenopila kingdom include hundreds of devastat-
ing species that attack a broad range of economically
important agricultural and ornamental crops as well as
forest tree species [1,2]. These oomycetes, including
Phytophthora and Pythium species, use motile zoospores
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for dispersal and plant infection [3-5]. Plant infection by
zoosporic pathogens is often effective in nature despite
the fact that the population density in primary inoculum
sources is relatively low [6-9]. This has led to differing
theories with regard to density-dependent zoospore
behaviors and plant infection [10-17]. A recent study
with Phytophthora nicotianae showed that plant infec-
tion may be regulated through zoosporic extracellular
products in zoospore-free fluid (ZFF) which can pro-
mote infection by a single zoospore [18]. This indicates
that the physical presence of the threshold density of
zoospores at an infection site is not strictly required,
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and plant infection can be initiated efficiently through
chemical communication by the population. However, it
is not clear how such a process is carried out by a
pathogen at its naturally occurring low population den-
sity, which would be unlikely to produce adequate levels
of functional signals unless these signals were also pro-
duced by other organisms and readily accessible in the
environment.

Ca®* and autoinducer 2 (AI-2), two widespread and
non-specific signaling molecules, are known to be pro-
duced by zoosporic oomycetes [19-21]. Ca** plays a cen-
tral role in autonomous encystment, adhesion and
germination of cysts in zoosporic oomycetes
[3,10,14,22-24]. However, it is not considered to be an
autoinducer because Ca®* does not directly trigger coop-
erative behaviors of zoospores and acts more like a sec-
ondary messenger [18]. AI-2 was first detected in
bacteria and is utilized for metabolism and quorum sen-
sing in bacteria [25-27]. In the latter process, bacteria
respond to these released signaling molecules or autoin-
ducers to coordinate their communal behavior. Eukar-
yotes including oomycetes can also produce AI-2 or Al-
2-like activities [21,28-30] although they do not use the
LuxS pathway that most bacteria use [31,32]. Instead,
AI-2 is formed spontaneously from D-ribulose-5-phos-
phate that is synthesized in these eukaryotes from pen-
tose-phosphates by ribose phosphate isomerase (RPI) in
the pentose-phosphate pathway [28]. AI-2 has been pro-
posed as a universal signaling molecule in bacteria based
on its role in inter-species signaling and postulated
cross-kingdom communication [33-40]. However, the
function of AI-2 in eukaryotes has not been established.

The aim of this study was to investigate the nature of
signal molecules in ZFF. Specifically, we identified inter-
specific signaling activities of ZFF from four Phy-
tophthora species and one Pythium species. We also
assessed the potential of AI-2 along with another known
bacterial autoinducer as signal molecules for communi-
cation among zoosporic species.

Results and Discussion

ZFF interspecific stimulation of zoosporic infection
Zoospore-free fluids were prepared from suspensions at
a density of 10* zoospores ml™' or higher of Phy-
tophthora nicotianae (ZFFnic), P. capsici (ZFFcap), P.
hydropathica (ZFFhyd), P. sojae (ZFFsoj) and Pythium
aphanidermatum (ZFFaph) and evaluated in three phy-
topathosystems. Inoculation of annual vinca (Cathar-
anthus roseus) with suspensions containing an average
of one zoospore of P. nicotianae in any of the four ZFFs
resulted in significantly higher infection (P < 0.001)
compared to the control (SDW). Specifically, percen-
tages of sites infected were 39%, 21%, 11%, and 15% for
ZFFaph ZFFhyd, ZFFnic, and ZFFsoj, respectively
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compared to 3% for SDW (Figure 1A). Similarly,
ZFFaph, ZFFhyd, ZFFnic and ZFFsoj stimulated infec-
tion of lupine (Lupinus polyphyllus) by P. sojae (Figure
1B), while ZFFcap and ZFFsoj stimulated infection of
soybean (Glycine max) by P. sojae (Figure 1C). These
results indicate that ZFF from the different Phy-
tophthora species and Py. aphanidermatum contained
one or more signals stimulating zoosporic infection by
P. nicotianae and P. sojae that are active across species
boundaries.

Many plants are attacked by multiple oomycete spe-
cies [1]. The ability of oomycete pathogens to benefit
from the presence of related (or unrelated) species is
presumably a selective advantage, especially if the
diverse pathogens are competing for a limited resource
(i.e. the host plant tissue) and/or the initial population
density of each individual pathogen population is low.
Such self-interested cooperation may have further
advantages if the effector molecules released by each
pathogen species have complementary or synergistic
capabilities for suppressing plant defenses.

ZFF inter-specific regulation of zoospore aggregation

To determine whether ZFF may also have cross-species
activity in regulating zoospore aggregation, fresh zoos-
pores of P. nicotianae and P. sojae at a concentration (2
x 10° ml') below normal aggregation thresholds
(approx. 10° ml™") were cross incubated in multiwell
plates with ZFFsoj or ZFFnic and compared with those
in SDW. Zoospores of P. nicotianae in ZFFsoj and those
of P. sojae in ZFFnic aggregated (Figure 2C and 2G) as
if they were in ZFF produced by their own species. As
expected, zoospores of neither species aggregated in
SDW (Figure 2D and 2H). ZFFcap and ZFFaph did not
stimulate zoospore aggregation by P. nicotianae or P.
sojae zoospores. However, they did stimulate germina-
tion of cysts of both P. nicotianae and P. sojae (Figure
2A, B, E, F), which may explain their activity in promot-
ing plant infection (Figure 1). It was interesting that
zoospores of P. capsici did not aggregate even at a den-
sity of 10° zoospores ml™. These results indicate that
the signal(s) involved in aggregation are somewhat spe-
cies-restricted and may be different from those mediat-
ing the infection process.

Al-2 is not involved in zoospore communication and
promotion of plant infection

To test whether AI-2 may be involved in zoospore com-
munication and promotion of plant infection, purified
AI-2 was used in place of ZFF. AI-2 was tested at a
wide concentration range of 0.01 uM -1 mM for its
effects on P. nicotianae zoospore behaviors and plant
infection; the concentration of AI-2 in ZFF was esti-
mated to be less than 2 uM [21]. Under the microscope,
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Figure 1 Cross effects of zoospore-free fluid (ZFF) from different pythiaceous species on plant infection by Phytophthora sp. ZFF was
prepared from zoospore suspensions of Py. aphanidermatum (ZFFaph) and P. hydropathica (ZFFhyd) at 3 x 10* ml”", and from P. capsici (ZFFcap),
P. nicotianae (ZFFnic) and P. sojae (ZFFsoj) at 5 x 10 ml”', respectively. Each ZFF was used as diluent to prepare inocula at a final density of 100
zoospores ml™' (or approximately 1 per 10-ul drop) and evaluated against sterile distilled water (SDW) in three pathosystems. (A) Catharanthus
roseus cv. Little Bright Eye x P. nicotianae. Ten drops of inoculum were applied to the underside of each detached leaf at different sites and
infection was assessed after 3-day incubation at 23°C. Each column is a mean percentage of sites diseased (N = 54). (B) Lupinus polyphyllus x P.
sojae. Two drops of inoculum were applied to each cotyledon and disease was assessed after 5-day incubation at 23°C. Each column is a mean
percentage of dead seedlings (N = 30). (C) Glycine max cv. Williams X P. sojae. Two drops of inoculum were applied to hypocotyl of each
seedling and disease was assessed after 4-day incubation at 26°C. Each column is a mean percentage of dead seedlings (N = 6). Bars represent
standard deviation in each case.

Figure 2 Effect of zoospore-free fluid (ZFF) on aggregation of Phytophthora nicotianae and Phytophthora sojae zoospores. Zoospores of
P. nicotianae (2 x 10° mI™") were incubated in ZFF of (A) Py. aphanidermatum, (B) P. capsici, (C) P. sojae, and (D) sterile distilled water (SDW).
Zoospores of P. sojae (2 x 10° ml™") were incubated in ZFF of () Py. aphanidermatum, (F) P. capsici, (G) P. nicotianae and (H) SDW. Images were
captured 18 hours after incubation at 23°C. Bar = 50 um.
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Table 1 Effect of purified Al-2 on encystment and
germination of P. nicotianae zoospores after overnight
incubation at 23°C

Conc. of  No. of cysts No. of No. of empty No. of lysed
Al-2 (uM) germinating cells zoospores?
cysts

M° std® M Std M Std M St

0 5 03 12 23 39 1.0 1 38

0.01 10 03 7 05 22 13 17 1.0

0.1 5 05 4 08 22 0.8 25 05

1 2 03 0 0.0 21 1.8 33 20

10 " 0.5 0 0.0 22 2.1 19 2.5

100 20 1.0 0 0.0 0 0.0 36 1.0

1000 14 1.3 0 0.0 0 0.0 42 13

? Difference between the total number of zoospores (56 + 4) in SDW and
those countable in Al-2 at each concentration.

® M is the mean from 12 replicate fields (at 100x) of three assays. Std is the
standard deviation.

an increased number of zoospores treated with AI-2
lysed before encystment and failed to germinate as the
AI-2 concentration was increased (Table 1). Zoospore
aggregation was not observed at any concentration
tested. In infection experiments with annual vinca, AI-2
did not promote single zoospore infection at any con-
centration. Interestingly, AI-2 induced hypersensitive
response (HR)-like micro-lesions on the inoculated sites
at 100 uM and higher. These results indicated that AI-2
was not responsible for any of the zoospore signals
found in ZFF.

As a complementary test for the ability of AI-2-like
molecules to mediate zoospore communication and pro-
mote plant infection, we cloned and silenced the ribose
phosphate isomerase (RPI) gene of P. capsici. RPI converts
ribose-5-phosphate to ribulose-5-phosphate, which can
spontaneously convert to AI-2-like molecules under phy-
siological conditions [28]. RPI was proposed to be respon-
sible for production of AI-2-like molecules in zoosporic
pathogens [21]. To silence the RPI gene of P. capsici, pro-
toplasts of P. capsici were treated with RPI dsRNA. If RPI
had a role in production of zoospore signaling molecules,
RPI-silenced lines would be expected to require much
higher zoospore concentrations to infect plants than the
wild type due to reduced or blocked AI-2 production by
the inocula. One third of the 48 T, lines regenerated 7
days after dsRNA exposure showed no or decreased
expression with RPI compared to the endogenous control
actin detected using RT-PCR. Half of these silenced or
down regulated RPI lines retained the same reduced tran-
script levels two weeks after being transferred to fresh
media (T;) (Figure 3E). Five T; lines were simultaneously
tested for zoospore threshold for infection. The resulting
disease incidences were very similar to those produced by
wild type P. capsici at zoospore inoculum concentrations
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Figure 3 Infection of Capsicum annuum cv. California Wonder
by wild or gene-silenced Phytophthora capsici. Two 10-ul drops
of zoospore suspension at 10% 10° or 10 ml™" were applied to
hypocotyl of pepper seedling and disease was assessed after 5-day
incubation at 26°C. (A, B, ©) Symptoms on seedlings inoculated with
wild type at 107, 10° and 10 zoospores ml™, respectively. (D)
Disease incidence of seedlings inoculated with wild or ribose
phosphate isomerase (RPI) gene-silenced strains (N = 6). (E) RP/
expression in transiently silenced lines (T;) on day 14 after transfer
from7 day- old regenerated transformants (To) treated with dsRNA
as indicated by the RT-PCR products of RP/ compared with equal
amounts of endogenous control actin from the T; mutant RNA.

ranging from 10% to 10* ml*! (Figure 3A-D) (P = 0.705; P
= 0.065; P = 0.598, respectively). These results indicate
that RPI silencing had no significant impact on zoospore
communication during infection. The ZFF activity of the
silenced lines was not evaluated due to the transient nat-
ure of dsRNA-mediated silencing [41] and insufficient
numbers of T; zoospores for ZFF production. Neverthe-
less, these findings are consistent with the conclusion that
AI-2-like molecules that might be produced via the action
of RPI are not required for infection at low inoculum
densities.

The function of AI-2-like activities produced by zoos-
poric oomycetes remains unclear although it regulates
bacteria quorum sensing [21]. Two-way communication
has been observed between eukaryotes and bacteria such
as Leguminosae and bacterial rhizobia [42] and between
mycorrhiza and Streptomyces [43]. In the former case,
plants release flavonoids that bind LysR-family transcrip-
tional regulators in the bacteria, leading to the produc-
tion of Nod factor that facilitates nitrogen fixation. In the
latter case, fungal metabolites stimulate the bacteria to
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produce auxofuran which promotes growth of both the
fungus and the host plants. Perhaps zoosporic oomycetes
utilize AI-2 to attract quorum sensing bacteria which
subsequently release factors that facilitate plant infection.
Indeed, bacteria have been shown to benefit sporangium
production by zoosporic oomycetes [44].

Involvement of other molecules in ZFF activity
Acyl-homoserine lactones (AHLs), or bacterial autoindu-
cer 1, are utilized by zoospores of the green seaweed
Enteromorpha (Ulva) for communication in the search
for settlement surfaces [45]. A bioassay was performed
using the Agrobacterium tumefaciens reporter strain
KYC55/p]Z410/p]Z384/p]Z372 [46] in plate and spec-
trophotometric tests to determine whether this molecule
is present in ZFF. LacZ activity was detected in all four
positive control plates at nM concentrations of AHL but
not in ZFFnic or ZFFsoj prepared from zoospore sus-
pensions at > 10* spores ml™" nor in concentrated
extracts from them obtained with ethyl acetate. These
results indicate that zoospores from these oomycete spe-
cies do not produce AHLs which therefore cannot be
responsible for any ZFF activity.

Temperature sensitivity of ZFF activities

To begin to characterize the signal molecules in ZFF we
tested their temperature sensitivity. ZFFnic did not sti-
mulate zoospore aggregation after a freeze-thaw or heat
treatment, suggesting that the molecule promoting this
behavior may be a protein or lipoprotein that is sensitive
to heat and freezing. On the other hand, freeze-thaw did
not affect the activity of ZFFnic in promoting plant
infection by zoospores (data not shown). In addition,
ZFFnic boiled for 5 minutes remained as active as the
untreated in promoting infection (Figure 4), indicating
that the molecule which stimulates plant infection is
temperature insensitive and different from that involved
in aggregation.

Conclusion

This study demonstrated inter-specific activities of
zoospore extracellular products in promoting zoospore
aggregation and plant infection by Phytophthora. Zoos-
poric oomycetes contain hundreds of species and are
widespread in irrigation water and plant production
fields. However, specific populations detected in pri-
mary inoculum sources are not in sufficient numbers
to produce signals that could promote plant infection.
Inter-specific chemical communication (probably self-
interested) as a strategy used by zoosporic pathogens
for effective plant infection provides insights into the
destructiveness of these pathogens and the importance
of the microbial community and the environment in
the infection process.
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Figure 4 Zoospore-free fluid (ZFF) stimulation of Phytophthora
infection is unaffected by heat treatment. Fach leaf of
Catharanthus roseus cv. Little Bright Eye was inoculated with twelve
10-pl drops of inoculum of P. nicotianae at approximately one
zoospore per drop. Zoospores were suspended in (A) sterile distilled
water, (B) untreated ZFF from the same species at 5 x 10°
zoospores ml™" and (C) heat-treated ZFF. Disease symptoms were
photographed after 3-day incubation at 23°C.

AI-2 was excluded as a signal for communal beha-
vior in zoosporic oomycetes, despite its detection in
ZFF and widespread presence in the environment. AI-2
synthase RPI and purified AI-2 both were not required
for regulation of zoospore aggregation and infection.
AHLs also were excluded because of their absence in
ZFF. Thus, zoosporic oomycetes may use completely
different chemicals from bacteria for quorum sensing.
Analysis of ZFF revealed that functional signals con-
trolling zoospore aggregation and plant infection differ
in molecular composition. The former is not tempera-
ture labile and acts upon a restricted number of spe-
cies while the latter is heat labile and non-species-
specific. Identifying these molecules will facilitate our
understanding of the mechanisms underlying natural
plant infection by these pathogens and may lead to
innovative control strategies.
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Methods

Zoosporic oomycetes and culture conditions

Four Phytophthora species, P. nicotianae (1B11), P.
sojae (28G4), P. capsici (24F4), P. hydropathica (37E6)
and one Pythium species Py. aphanidermatum (18H?7)
were used in this study. These species are distinct in
morphology and genetics [2,47]. Specifically, P. nicotia-
nae, P. capsici and Py. aphanidermatum have broad
host ranges while P. sojae has a restricted host range,
generally infecting only soybeans and lupines. P. hydro-
pathica (37E6) originated from irrigation water and is
a pathogen of nursery plants [48]. The isolates were
maintained on clarified vegetable juice agar (CV8A)
medium [49] at 23°C.

Preparation of zoospore-free fluid

Zoospore-free fluid (ZFF) from a particular species is
designated with an abbreviated species name. For exam-
ple, ZFFnic represents ZFF from a P. nicotianae zoos-
pore suspension. ZFF was prepared from nutrient-
depleted zoospore suspensions starting with sporangium
induction as described previously [18,21]. Specifically,
prior to sporangium production, P. sojae and Py. apha-
nidermatum were cultured for 3-4 days and the other
species were cultured for 1-2 wk in 10% CV8 broth.
After nutrient depletion (medium removal and water
rinses), the mycelial mats were further incubated for 16-
18 h for P. sojae and Py. aphanidermatum, 2-3 days for
P. capsici and one week for the other species under
fluorescent light at 23°C to obtain a desired number of
sporangia. To induce zoospore release, the mats with
sporangia were flooded with chilled SDW and kept
under lights until the desired zoospore density was
reached. ZFF was obtained by passing a zoospore sus-
pension through a 0.2 pm pore-size filter after vortexing
for 2 min. ZFF was used fresh or stored at -20°C. Freez-
ing destroyed the aggregation-promoting activity of ZFF,
but not its infection-promoting activity.

Phytopathosystems, plant growth conditions, inoculum
preparation and inoculation

Four phytopathosystems, P. nicotianae x annual vinca
(Catharanthus roseus cv. Little Bright Eye), P. sojae x
lupine (Lupinus polyphyllus), P. sojae x soybean (Glycine
max cv. Williams) and P. capsici x pepper (Capsicum
annum cv. California Wonder) were used.

Annual vinca plants were prepared in the greenhouse
where 4-wk old seedlings were grown in pine bark with
fertilizer for 4-6 wk. Soybean and pepper seedlings were
prepared by growing 9 seeds per pot in sterilized Soilless
Potting Mix (Schultz Professional) supplied with fertili-
zer and fungicide for 2 and 4 weeks, respectively, in the
greenhouse. For lupine plants, 10 germinated seeds per
styrofoam cup were grown in sterilized vermiculite
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(Whittemore Com) and fertilizer solution 20-20-20
(Scotts) for 2 wk in the growth chamber.

Single-zoospore inocula with an average concentration
of one zoospore per drop (10 pl) were prepared by dilu-
tion of a fresh zoospore suspension at 10* ml™ with a
test solution to 100 zoospore ml™'. Test solutions
included SDW, dilutions from 1 mM purified AI-2
(Omm Scientific Inc, Dallas, TX) and ZFF from different
species. To test whether ZFF was heat or freezing labile,
ZFFnic boiled for 5 min or freeze thawed was also
included. For determination of the infection threshold of
P. capsici, the zoospore suspension was diluted in SDW
to prepare inocula at 10%, 10° or 10* ml, containing an
average of 1, 10, or 100 zoospores per 10-pl drop.

For inoculation with P. nicotianae, detached annual
vinca leaves were used as described previously [18].
Each leaf was inoculated at 10 sites unless stated other-
wise with a 10-ul drop of single zoospore inocula. Each
treatment included six replicate leaves and was done at
least three times.

In the P. sojae x lupine phytopathosystem, each coty-
ledon of lupine plants received one 10-pl drop of a sin-
gle zoospore inoculum. Each treatment included 10
cups. Each cup contained 5-10 plants. Inoculated plants
were kept in a moist chamber at 23°C in the dark over-
night, then at a 10 h/14 h day/night cycle until symp-
toms appeared. Plants with damping-off symptoms were
recorded as dead plants. Each assay was repeated twice.

Similarly, for soybean and pepper plant inoculation,
two 10-pl drops of an inoculum containing single or
multiple zoospores were placed on the hypocotyls of
each plant which was laid on its side in a moist cham-
ber. Inoculated plants were kept in the dark overnight
and then placed upright in a growth chamber at 26°C
until symptoms appeared. For soybean, each treatment
included at least 3 replicate pots containing 7-9 plants
and was repeated twice. For pepper plants, each inocula-
tion was performed in 6 replicate pots containing 3-8
plants.

Microscopy of zoospore activity

To determine zoospore responses to ZFF and other che-
micals, 30 pl zoospore suspensions at 10* zoospores ml°
! were added to 120 pl of a test solution in a well on a
depression slide to obtain a density of 2 x 10® zoospores
ml . Test solutions included fresh or treated (boiled or
freeze/thawed) ZFF, a serial dilution from purified AI-2
at 1 mM, or SDW. Each test contained two replicate
wells per treatment and was repeated once. The slides
were placed on wet filter paper in 10-cm Petri dishes
and incubated at 23°C. Zoospore behaviors including
encystment, aggregation, germination and differentiation
in three random fields in each well were examined with
an IX71 inverted microscope (Olympus America Inc.,
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Pennsylvania, USA) after overnight incubation. Images
were captured with the Image-Pro°® Plus software version
5.1 (Media Cybernetics, Inc, Maryland, USA).

Transient RPI gene silencing mediated by dsRNA and RT-
PCR analysis
The procedure was adopted from that for P. infestans
[41]. To obtain a template for preparation of sense and
antisense RNAs by transcription, two pairs of primers
containing the T7 RNA polymerase promoter in their
forward or reverse sequences were designed for amplifi-
cation of a partial RPI sequence extracted from the P.
capsici genome http://genome.jgi-psf.org/PhycaF7/Phy-
caF7.home.html. These primers were dsRPIPcapF: 5’-
CAA GCT AAG CAG CTC ATC GCC CA-3’; dsRPIP-
capRT7: 5-GTA ATA CGA CTC ACT ATA GGG CAA
CAG GCA CCC CCT GGG TCC A-3’; dsRPIPcapR: 5’
CAA CAG GCA CCC CCT GGG TCC A-3(TGGACC-
CAGGGGGTGCCTGTTG); and dsRPIPcapFT7: 5-GTA
ATA CGA CTC ACT ATA GGG CAA GCT AAG CAG
CTC ATC GCC CA-3’. Concentrated PCR amplicons
were transcribed to produce sense and antisense RNAs
using Megascrit RNAi kit (Ambion). Both sense and anti-
sense RNA were mixed to obtain dsRNA at 168 ng ul™.
To silence RPI, P. capsici protoplasts were transfected
with the dsRNA. For each transfection, 24 ul of dsRNA
(4 pg) was dried under vacuum (20-30 min) and then
suspended in 10 pl PEG and 0.8 M mannitol solutions,
respectively then incubated with 10 ul Lipofectin (Invi-
trogen) for 15 min prior to mixing with 20 pl P. capsici
protoplasts. Protoplasts were prepared using a modified
transformation protocol for P. sojae [50]. After further
incubation for 24 h at 23°C, the mixture was transferred
to 200 ml pea broth with ampicillin and vancomycin
then 4 ml was transferred into each well of 12-well plates.
To determine RPI expression in dsRNA-treated lines,
mycelia from each well (line) were subcultured and
extracted for RNA on day 7 using the Qiagen RNeasy
plant kit. RNA was prepared from the lines before (T)
and two weeks after transfer (T;) as well as from the
wild type culture. All the RNAs were treated with the
RNase-Free DNAase Set (Qiagen), quantified and sub-
jected to reverse transcription using the SuperScript III
Reverse Transcriptase kit (Roche) followed by PCR
using primers RPIPcapF: 5- CAG ACG TCG CAG ATA
CTA TTA ACC A-3’; and RPIPcapR: 5'-CTC CAG
GAA GTA ATG CAT GAC ACA A-3’ for RPI and
actin housekeeping gene primers [50] for an endogenous
control. The PCR products were then analyzed by
electrophoresis.

Detection of AHL activity
Acyl-homoserine lactone (AHL) activity was deter-
mined with an Agrobacterium tumefaciens AHL
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reporter strain (KYC55/pJZ410/p]Z384/p]Z372) [46].
The reporter strain cannot produce AHLs but has
plasmids containing a tral-lacZ reporter fusion and the
regulator TraR driven by a T7 expression system. In
the presence of exogenous AHLs, the over-expressed
TraR activates the reporter fusion, resulting in produc-
tion of B-galactosidase. The reporter can detect a
broad range of AHLs ranging from 4- to 18-carbon
acyl moieties at nanomolar levels [46]. We monitored
LacZ activity by observing X-gal hydrolysis colorimetri-
cally in the culture plates [51] and quantified the activ-
ity using the lactose analog ONPG (orthonitrophenyl-
galactopyranoside) in a spectrophotometric assay [46].
ZFFnic and ZFFsoj from different zoospore suspen-
sions, their ethyl acetate extracts, four positive controls
(N-hexanoyl-, N-octanoyl-, N-decanoyl-, and dodeca-
noyl-DL-homoserine lactones (Sigma-Aldrich, Atlanta,
Georgia, US) and a negative control (SDW) were
included in the experiments. All AHLs were assessed
at concentrations of 10 nM and 100 nM.

In plate assays, 10 ul of ZFF, a synthetic AHL or SDW
was injected at the center of the test plates with a pip-
ette once the overlay was set. After incubation at 28°C
for 2 days, LacZ activity was measured by the diameter
of the blue area in test plates. The experiments were
performed four times, and each experiment had two
replicate plates. In spectrophotometric assays, the repor-
ter was pre-induced in the AT medium containing anti-
biotics and stored at -80°C. The thawed cells were
resuspended in AT medium (1:1000). A 200-pl aliquot
of ZFF or SDW, or 50 pl of synthetic AHL was added
to glass tubes containing 2 ml suspension. Cultures
were grown on a shaker at 28°C until ODgyy = 1.0 (1.5
days). The bacterial cells in each tube were lysed by the
addition of 800 pl of Z buffer, 20 ul of 0.05% SDS and
30 ul of chloroform followed by vortexing. LacZ activity
was measured using the Miller Unit at ODy,¢ for the
supernatant after the reaction with 100 ul of ONPG was
ended by 1 M Na,COs. The experiment was carried out
in replicate and performed twice.

Statistical analysis

Data from independent experiments were processed and
statistically analyzed using ANOVA in Excel. All P-
values were determined based on one-way ANOVA
unless otherwise stated.
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