Skip to main content
Fig. 1 | BMC Microbiology

Fig. 1

From: Modeled microgravity alters apoptotic gene expression and caspase activity in the squid-vibrio symbiosis

Fig. 1

Overview of the host Euprymna scolopes, experimental setup, and developmental timeline under different gravitational treatments. a Image of E. scolopes paralarvae at the time of hatching. The location of the light organ within the host mantle cavity is marked (black box). b Fluorescent micrograph showing the bilobed light organ (top) with pronounced fields of ciliated epithelial cells forming distinctive appendage-like structures (cea) extending from either side of the light organ. Light organs stained with acridine orange at the time of hatching (lower left) and during the peak of bacteria-induced apoptosis at 16 h (lower right) show punctate nuclei demarking apoptotic cell death only in those cells exposed to V. fischeri. c High aspect ratio vessels positioned in the modeled microgravity treatment (left) and gravity (right) control positions. d Comparative timeline demonstrating the shift in bacteria-induced apoptosis between gravity and modeled microgravity conditions. The onset and peak of bacteria-induced apoptosis is accelerated in low shear modeled microgravity conditions (LSMMG)

Back to article page